Long-Term Protein Restriction Modulates Lipid Metabolism in White Adipose Tissues and Alters Colonic Microbiota of Shaziling Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Sample Collection
2.3. Blood Chemical Parameters of Lipid Metabolism
2.4. Real-Time Quantitative PCR Analysis
2.5. Western Blotting Analysis
2.6. Microbiota Analysis
2.6.1. DNA Extraction and PCR Amplification
2.6.2. Illumina MiSeq Sequencing
2.6.3. Data Processing and Statistical Analysis
2.7. Statistical Analyses
3. Results
3.1. Blood Chemical Parameters of Lipid Metabolism
3.2. The mRNA Expression of Genes Related to Lipid Metabolism in Adipose Tissues
3.3. The Protein Expression of Key Molecules Related to Lipid Metabolism in Adipose Tissues
3.4. The Gut Microbiota Composition in Colon
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spurlock, M.E.; Gabler, N.K. The development of porcine models of obesity and the metabolic syndrome. J. Nutr. 2008, 138, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wei, H.; Li, F.; Duan, Y.; Guo, Q.; Yin, Y. Effects of Low-Protein Diets Supplemented with Branched-Chain Amino Acid on Lipid Metabolism in White Adipose Tissue of Piglets. J. Agric. Food Chem. 2017, 65, 2839–2848. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xiang, Y.; Robinson, K.; Wang, J.; Zhang, G.; Zhao, J.; Xiao, Y. Gut Microbiota Is a Major Contributor to Adiposity in Pigs. Front. Microbiol. 2018, 9, 3045. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ma, N.; Song, P.; He, T.; Levesque, C.; Bai, Y.; Zhang, A.; Ma, X. Grape Seed Proanthocyanidin Affects Lipid Metabolism via Changing Gut Microflora and Enhancing Propionate Production in Weaned Pigs. J. Nutr. 2019, 149, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Zhang, L.; Li, F.; Guo, Q.; Long, C.; Yin, Y.; Kong, X.; Peng, M.; Wang, W. β-Hydroxy-β-methylbutyrate modulates lipid metabolism in adipose tissues of growing pigs. Food Funct. 2018, 9, 4836–4846. [Google Scholar] [CrossRef]
- Duan, Y.; Zhong, Y.; Xiao, H.; Zheng, C.; Song, B.; Wang, W.; Guo, Q.; Li, Y.; Han, H.; Gao, J.; et al. Gut microbiota mediates the protective effects of dietary beta-hydroxy-β-methylbutyrate (HMB) against obesity induced by high-fat diets. FASEB J. 2019, 33, 10019–10033. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, J.; Wu, Q.; Chen, J.; Yang, X.; Wang, L.; Jiang, Z. Low Protein Diet Improves Meat Quality and Modulates the Composition of Gut Microbiota in Finishing Pigs. Front. Vet. Sci. 2022, 9, 843957. [Google Scholar] [CrossRef]
- Qiu, K.; Zhang, X.; Jiao, N.; Xu, D.; Huang, C.; Wang, Y.; Yin, J. Dietary protein level affects nutrient digestibility and ileal microbiota structure in growing pigs. Anim. Sci. J. 2018, 89, 537–546. [Google Scholar] [CrossRef]
- Luo, Z.; Li, C.; Cheng, Y.; Hang, S.; Zhu, W. Effects of low dietary protein on the metabolites and microbial communities in the caecal digesta of piglets. Arch. Anim. Nutr. 2015, 69, 212–226. [Google Scholar] [CrossRef]
- Li, Z.; Rasmussen, T.S.; Rasmussen, M.L.; Li, J.; Olguin, C.H.; Kot, W.; Nielsen, D.S.; Jensen, T.E. The Gut Microbiome on a Periodized Low-Protein Diet Is Associated With Improved Metabolic Health. Front. Microbiol. 2019, 10, 709. [Google Scholar] [CrossRef]
- Zheng, J.; Duan, Y.; Yu, J.; Li, F.; Guo, Q.; Li, T.; Yin, Y. Effects of Long-Term Protein Restriction on Meat Quality and Muscle Metabolites of Shaziling Pigs. Animals 2022, 12, 2007. [Google Scholar] [CrossRef]
- Duan, Y.; Li, F.; Tan, B.; Lin, B.; Kong, X.; Li, Y.; Yin, Y. Myokine interleukin-15 expression profile is different in suckling and weaning piglets. Anim. Nutr. 2015, 1, 30–35. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, D.; Ma, W.; Guo, Y.; Wang, A.; Wang, Q.; Lee, D.-J. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp. Appl. Microbiol. Biotechnol. 2016, 100, 1421–1426. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [Green Version]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Liu, Y.; Ding, H.; Huang, P.; Yin, Y.; Deng, J.; Kong, X. Effects of Different Dietary Protein Levels on the Growth Performance, Serum Biochemical Parameters, Fecal Nitrogen, and Carcass Traits of Huanjiang Mini-Pigs. Front. Vet. Sci. 2021, 8, 777671. [Google Scholar] [CrossRef]
- Shen, W.J.; Sridhar, K.; Bernlohr, D.A.; Kraemer, F.B. Interaction of rat hormone-sensitive lipase with adipocyte lipid-binding protein. Proc. Natl. Acad. Sci. USA 1999, 96, 5528–5532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins-Kruchten, A.E.; Bennaars-Eiden, A.; Ross, J.R.; Shen, W.-J.; Kraemer, F.B.; Bernlohr, D.A. Fatty acid-binding protein-hormone-sensitive lipase interaction. Fatty acid dependence on binding. J. Biol. Chem. 2003, 278, 47636–47643. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.J.; Liang, Y.; Hong, R.; Patel, S.; Natu, V.; Sridhar, K.; Jenkins, A.; Bernlohr, D.A.; Kraemer, F.B. Characterization of the functional interaction of adipocyte lipid-binding protein with hormone-sensitive lipase. J. Biol. Chem. 2001, 276, 49443–49448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coe, N.R.; Simpson, M.A.; Bernlohr, D.A. Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J. Lipid Res. 1999, 40, 967–972. [Google Scholar] [CrossRef]
- Hertzel, A.V.; Smith, L.A.; Berg, A.H.; Cline, G.W.; Shulman, G.I.; Scherer, P.E.; Bernlohr, D.A. Lipid metabolism and adipokine levels in fatty acid-binding protein null and transgenic mice. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E814–E823. [Google Scholar] [CrossRef]
- Farmer, S.R. Transcriptional control of adipocyte formation. Cell. Metab. 2006, 4, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.A.; Tao, C.; Jiang, L.; Shao, M.; Ye, R.; Zhu, Y.; Gordillo, R.; Ali, A.; Lian, Y.; Holland, W.L.; et al. Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation. Nat. Cell. Biol. 2015, 17, 1099–1111. [Google Scholar] [CrossRef]
- Tontonoz, P.; Graves, R.A.; Budavari, A.I.; Erdjument-Bromage, H.; Lui, M.; Hu, E.; Tempst, P.; Spiegelman, B.M. Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR7 and RXRa. Nucleic Acids Res. 1994, 22, 5628–5634. [Google Scholar] [CrossRef] [Green Version]
- Cai, H.; Dong, L.Q.; Liu, F. Recent Advances in Adipose mTOR Signaling and Function: Therapeutic Prospects. Trends Pharm. Sci. 2016, 37, 303–317. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Dong, L.Q.; Liu, F. Branched-chain amino acid ratios modulate lipid metabolism in adipose tissues of growing pigs. J. Funct. Foods 2018, 40, 614–624. [Google Scholar] [CrossRef]
- Hu, C.; Li, F.; Duan, Y.; Yin, Y.; Kong, X. Glutamic acid supplementation reduces body fat weight in finishing pigs when provided solely or in combination with arginine and it is associated with colonic propionate and butyrate concentrations. Food Funct. 2019, 10, 4693–4704. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, L.; Li, X.; Wang, X.; Hao, R.; Li, J. Effects of high fructose corn syrup on intestinal microbiota structure and obesity in mice. NPJ Sci. Food 2022, 6, 17. [Google Scholar] [CrossRef]
- Jian, C.; Silvestre, M.P.; Middleton, D.; Korpela, K.; Jalo, E.; Broderick, D.; de Vos, W.M.; Fogelholm, M.; Taylor, M.W.; Raben, A.; et al. Gut microbiota predicts body fat change following a low-energy diet: A PREVIEW intervention study. Genome Med. 2022, 14, 54. [Google Scholar] [CrossRef] [PubMed]
Genes 1 | Primers | Sequences (5′ to 3′) | Product Size, bp |
---|---|---|---|
ACC | Forward | AGCAAGGTCGAGACCGAAAG | 169 |
Reverse | TAAGACCACCGGCGGATAGA | ||
FAS | Forward | CTACCTTGTGGATCACTGCATAGA | 114 |
Reverse | GGCGTCTCCTCCAAGTTCTG | ||
HSL | Forward | CACAAGGGCTGCTTCTACGG | 167 |
Reverse | AAGCGGCCACTGGTGAAGAG | ||
LPL | Forward | CTCGTGCTCAGATGCCCTAC | 148 |
Reverse | GGCAGGGTGAAAGGGATGTT | ||
FATP1 | Forward | ACCACTCCTACCGCATGCAG | 78 |
Reverse | CCACGATGTTCCCTGCCGAGT | ||
FABP4 | Forward | CAGGAAAGTCAAGAGCACCA | 227 |
Reverse | TCGGGACAATACATCCAACA | ||
β-actin | Forward | TGCGGGACATCAAGGAGAAG | 216 |
Reverse | AGTTGAAGGTGGTCTCGTGG |
Item 1 | Dietary Protein Levels | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
+20% | +10% | 0 | −10% | −20% | ANOVA | Linear | Quadratic | ||
TG, mmol/L | 0.31 | 0.38 | 0.33 | 0.40 | 0.44 | 0.02 | 0.30 | 0.06 | 0.17 |
CHOL, mmol/L | 2.82 | 2.31 | 2.35 | 2.60 | 2.52 | 0.07 | 0.16 | 0.51 | 0.17 |
LDL-C, mmol/L | 1.96 | 1.62 | 1.82 | 1.77 | 1.50 | 0.07 | 0.29 | 0.12 | 0.29 |
HDL-C, mmol/L | 1.06 | 0.78 | 0.86 | 1.05 | 1.10 | 0.04 | 0.09 | 0.30 | 0.07 |
Item | Dietary Protein Levels | SEM | p-value | ||||||
---|---|---|---|---|---|---|---|---|---|
+20% | +10% | 0 | −10% | −20% | ANOVA | Linear | Quadratic | ||
Clostridium sensu stricto 1 | 0.08 | 0.13 | 0.11 | 0.11 | 0.12 | 0.00009 | 0.53 | 0.33 | 0.54 |
Treponema | 0.08 | 0.06 | 0.06 | 0.02 | 0.18 | 0.00019 | 0.25 | 0.19 | 0.05 |
UCG-005 | 0.10 | 0.09 | 0.05 | 0.10 | 0.05 | 0.00008 | 0.05 | 0.17 | 0.39 |
Terrisporobacter | 0.05 | 0.08 | 0.09 | 0.05 | 0.05 | 0.00006 | 0.12 | 0.91 | 0.10 |
Unclassified f Lachnospiraceae | 0.04 c | 0.04 c | 0.05 bc | 0.07 a | 0.07 ab | 0.00004 | 0.02 | <0.01 | <0.01 |
Turicibacter | 0.04 | 0.06 | 0.05 | 0.05 | 0.07 | 0.00005 | 0.18 | 0.07 | 0.20 |
Lachnospiraceae XPB1014 group | 0.06 ab | 0.03 bc | 0.02 c | 0.05 ab | 0.06 a | 0.00006 | <0.01 | 0.54 | 0.01 |
Christensenellaceae R-7 group | 0.03 b | 0.08 a | 0.03 b | 0.04 ab | 0.05 ab | 0.00009 | 0.04 | 0.90 | 0.92 |
Lactobacillus | 0.06 | 0.02 | 0.04 | 0.04 | 0.01 | 0.00007 | 0.09 | 0.13 | 0.30 |
Streptococcus | 0.03 | 0.02 | 0.01 | 0.01 | 0.03 | 0.00004 | 0.21 | 0.67 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Duan, Y.; Zheng, C.; Yu, J.; Li, F.; Guo, Q.; Yin, Y. Long-Term Protein Restriction Modulates Lipid Metabolism in White Adipose Tissues and Alters Colonic Microbiota of Shaziling Pigs. Animals 2022, 12, 2944. https://doi.org/10.3390/ani12212944
Zheng J, Duan Y, Zheng C, Yu J, Li F, Guo Q, Yin Y. Long-Term Protein Restriction Modulates Lipid Metabolism in White Adipose Tissues and Alters Colonic Microbiota of Shaziling Pigs. Animals. 2022; 12(21):2944. https://doi.org/10.3390/ani12212944
Chicago/Turabian StyleZheng, Jie, Yehui Duan, Changbing Zheng, Jiayi Yu, Fengna Li, Qiuping Guo, and Yulong Yin. 2022. "Long-Term Protein Restriction Modulates Lipid Metabolism in White Adipose Tissues and Alters Colonic Microbiota of Shaziling Pigs" Animals 12, no. 21: 2944. https://doi.org/10.3390/ani12212944
APA StyleZheng, J., Duan, Y., Zheng, C., Yu, J., Li, F., Guo, Q., & Yin, Y. (2022). Long-Term Protein Restriction Modulates Lipid Metabolism in White Adipose Tissues and Alters Colonic Microbiota of Shaziling Pigs. Animals, 12(21), 2944. https://doi.org/10.3390/ani12212944