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Simple Summary: Previous studies have confirmed the effects of livestock grazing on the habitat
use of ground-nesting birds, while little is known about the effects of livestock on their behaviour.
In this study, we used camera traps to investigate the effects of livestock presence on the spatio-
temporal patterns and behaviour of Reeves’s Pheasant. We found that livestock presence altered the
behavioural patterns of Reeves’s Pheasant. The findings suggest the need to incorporate behavioural
impacts into wildlife conservation.

Abstract: Protected areas are seeing an increase in anthropogenic disturbances in the world. Previous
studies have demonstrated the impact of livestock grazing and human presence on the habitat
use of birds, whereas little is known about the effect of free-ranging livestock on bird behaviour.
Reeves’s Pheasant (Syrmaticus reevesii) is endemic to China and has been threatened by habitat loss
and fragmentation, illegal logging, and human disturbance over the past 20 years. Based on camera
trapping in the Liankangshan National Nature Reserve (LKS) and the Zhonghuashan Birds Provincial
Nature Reserve (ZHS), we explore the effects of livestock grazing and human activities on the spatio-
temporal distribution and behavioural patterns of Reeves’s Pheasant. Livestock does not appear to
affect habitat use by the pheasant but changes its behavioural patterns. In addition, pheasants in
areas with livestock foraged mostly during the early morning, while in areas without livestock, they
foraged at dusk. Therefore, the study concludes that livestock intensity in nature reserves may have
reduced pheasant suitability through altered patterns of vigilance and foraging behaviour.

Keywords: anthropogenic disturbances; sympatric distribution; activity rhythm; adaptation; nature
reserve; occupancy model

1. Introduction

Globally, the rapidly growing livestock sector is one of the most important drivers of
land-use change [1]. Livestock farming exacerbates habitat loss and degradation, pollution,
invasive species spread, and disease transmission [1–3]. Moreover, livestock can compete
with wildlife for limited food and space, thereby threatening their survival [4,5]. Under-
standing the interactions between livestock and wild animals is essential to improving
human well-being and maintaining wild animal populations and habitats [6].

Although livestock grazing is often considered to be low-level human disturbance [7],
the impacts of livestock grazing on wildlife are usually negative [8,9]. Recently, livestock in
protected areas worldwide has increased, especially in forest landscapes, possibly affecting
the predator abundance, breeding success, and habitats of wild animals [8,10,11]. Therefore,
livestock can have a knock-on effect on ground-nesting and insectivorous birds that depend
on forest resources [11–13].

To understand the effect of livestock grazing on wildlife, previous studies have com-
pared the effect of different levels of livestock grazing intensity on the abundance of wildlife
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and resources at a spatial scale [11,12,14]. Camera traps can be useful for investigating
the interactions between livestock and wildlife at a temporal scale [15]. Recently, camera
trapping has increasingly provided a non-invasive way to detect elusive species [16]. A
growing number of studies have used camera trapping data to study the effects of livestock
on spatial and temporal patterns of wildlife [17,18]. In general, wild animals can shift their
dietary activity patterns to effectively reduce competition with livestock [9,19]. For exam-
ple, in the presence of livestock, Javan deer Rusa timorensis and wild boar Sus scrofa switch
from a diurnal to a nocturnal activity pattern [17]. In fact, livestock can influence not only
species richness and occupancy probability [12,14,20] but also the daily activity patterns
and behaviour of animals, particularly foraging and anti-predatory behaviour [9,21].

Reeves’s Pheasant is a large terrestrial forest bird that was once widely distributed in
the mountains of central China. A recent study has shown that pheasant has disappeared
from 46% of the sites surveyed and its population size is declining throughout most of their
distribution [22]. Reeves’s Pheasant is timid and difficult to observe, but its population
dynamics are a barometer of habitat change [23]. Over the last 20 years, its habitats have
been at risk of degradation and fragmentation [24]. There is a possible negative correlation
between livestock grazing and the population size of Reeves’s Pheasant [25]. Given the
ever-increasing contact zone with livestock, it is important to understand how Reeves’s
Pheasant responds to livestock impacts and the mechanisms that govern those responses,
which is important in conservation planning [26]. However, few studies have evaluated the
impact of human disturbance on Reeves’s Pheasant at a fine spatial scale (<1 km) [22,27],
and little information is available on the behaviour of Reeves’s Pheasant in the wild.

The aim of our study was to provide science-based conservation strategies for a
regional landscape-scale recovery plan for Reeves’s Pheasant to resolve human-wildlife
conflicts. We used 12-month camera trapping data from two nature reserves in central
China to analyse the spatio-temporal distribution patterns and behaviour of Reeves’s
Pheasant and the ecological impact of livestock. We explored three questions. First, do
livestock influence the spatio-temporal distribution patterns of Reeves’s pheasant? Second,
do livestock change the behavioural patterns of pheasants on a spatio-temporal scale?
Third, are there seasonal differences in the impact of livestock on pheasants? We expect
the impact of livestock on the spatio-temporal distribution patterns of Reeves’s pheasant
to be more obvious during the breeding season, because incubating birds are bound to
their ground nests during this period, and livestock presence raises pheasant vigilance and
reduces their foraging.

2. Materials and Methods
2.1. Study Area

We conducted fieldwork in two nature reserves in the Dabie Mountains, China. The
Liankangshan National Nature Reserve (114◦45′–114◦52′ E, 31◦30′–31◦42′ N, hereafter
‘LKS’) is a national nature reserve (105.80 km2) in Xin County, Henan province (Figure 1)
with over 600 wild Reeves’s Pheasants [22]. The reserve contains broadleaved forests
and coniferous mixed forests at elevations of 100 to 700 m. The Zhonghuashan Birds
Provincial Nature Reserve (113◦54′–113◦59′ E, 31◦37′–31◦44′ N, hereafter ‘ZHS’) is located
in Guangshui City, Hubei province (Figure 1). ZHS is one of the smallest provincial nature
reserves (78.20 km2) with over 800 wild Reeves’s Pheasants [22]. The reserve contains
subtropical evergreen broad-leaved forests and deciduous broad-leaved mixed forests at
elevations of 150 to 810 m. LKS and ZHS are located approximately 100 km apart, sharing
a similar latitude and climate.
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in China.

2.2. Camera Trapping

We deployed camera traps (Ltl Acorn 6310 WMC, Zhuhai, China) at 35 sites in LKS
and 37 sites in ZHS from July 2018 to July 2019 (Figure 1). Based on previous line transects
conducted in the two nature reserves [28], these camera traps covered a large part of the
suitable habitat for Reeves’s Pheasant. Camera traps were installed on animal trails at a
height of 30 cm in the forest. The distance between any two camera traps was greater than
0.4 km [27]. Latitude and longitude coordinates, vegetation, and altitude of each camera
trap station were recorded. Cameras were set to operate 24 h per day and were programmed
to take up to 3 photos once triggered, followed by a 10 s video, with a 30 s interval to trigger
the next photograph (Table S1). Batteries and memory cards were replaced every 3 months.
Camera traps were replaced if lost.

For each photo and video taken by camera traps, the location (camera number),
date, and time were recorded. We identified and recorded each captured entity as an
animal species, human, or livestock. Image records were screened to identify ‘independent
photographic events’ based on a temporal separation criterion of more than 0.5 h between
consecutive images of the same species [16,29] to avoid repeated counting of a single
individual during a transitory stay close to the camera trap [29]. We divided camera
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trapping data into two periods, the breeding season (March to July) and the non-breeding
season [30]. We collected data from 31 and 28 camera traps during the breeding season
and non-breeding season, respectively, in LKS, and from 36 and 32 camera traps during
the breeding season and non-breeding season, respectively, in ZHS. We calculated camera
trap days (CTDs, the actual number of days each camera worked during the survey) as
the average CTDs and standard error of the camera trap in each reserve and compared
the average CTDs of each reserve during the breeding season, non-breeding season, and
throughout the whole year using two-tailed unpaired two-sample Wilcoxon tests.

2.3. Environmental Variables

We tested a set of natural (including vegetation type, elevation, and distance from
the nearest river) and anthropogenic (including distance from the nearest road, distance
from the nearest settlement, distance from the nearest cultivated land, livestock encounter
rates, and human encounter rates) variables that could affect the distribution of Reeves’s
Pheasant [25,27,28,31]. The variables listed were assessed at the respective camera-trap lo-
cations either directly or downloaded from loaded open access sources (Table 1). Before the
installation of camera traps, we conducted forest surveys and human footprint surveys in
the study area and surrounding area. In addition to the coordinates of wildlife activity and
human presence, we recorded the locations of human disturbances (including resident set-
tlement, impervious roads, and agricultural land) and rivers, using portable GPS receivers
(eXplorist 610). We measured the distance from each camera trap station to the nearest
resident settlement, impervious road, river, and cultivated land using ArcGIS 10.4. Habitat
types around camera trap stations were classified as broadleaf forests, conifer-broadleaf
mixed forests, and coniferous forests. The elevation of each camera trap station was also
recorded by a portable GPS receiver. Livestock encounters at each camera trap station were
expressed as the number of detections per 100 CTDs [16,29].

Table 1. Sources of variables used for model analysis.

Covariates Assessment Description Source

Vegetation type Field measurements Categorical
Elevation Field measurements Numeric

Distance from
nearest river ArcGIS 10.4 Numeric (m) http://glovis.usgs.gov/

(accessed on 15 June 2019)
Distance from the

nearest road ArcGIS 10.4 Numeric (m) http://glovis.usgs.gov/
(accessed on 15 June 2019)

Distance from the
nearest settlement ArcGIS 10.4 Numeric (m) http://glovis.usgs.gov/

(accessed on 15 June 2019)
Distance from the nearest

cultivated land ArcGIS 10.4 Numeric (m) http://glovis.usgs.gov/
(accessed on 15 June 2019)

Livestock encounter rates camera trap data Numeric
Human encounter rates camera trap data Numeric

We calculated the variance inflation factor (VIF) for all covariates to measure mul-
ticollinearity among these variables, and variables with a VIF < 5 were retained in the
model (Table S2). Furthermore, Pearson’s correlation coefficients were used to check for
collinearity, and variables with r > 0.7 were not used in the model [32]. All covariates were
retained as no collinearity was detected (VIF < 5.0 and r < 0.7) (Table S2 and Figure S1).

2.4. Data Analysis
2.4.1. Occupancy Models

To analyse the habitat use of Reeves’s Pheasant during the breeding and non-breeding
seasons, we fit single-species single-season occupancy models using the unmarked pack-
age [33]. These models estimated the occupancy probability (ψ) and detection probability
(p) of a species for each camera trap station [34]. When the home range of a target species is
larger than the effective monitoring area, the parameter ψ, usually referred to as occupancy

http://glovis.usgs.gov/
http://glovis.usgs.gov/
http://glovis.usgs.gov/
http://glovis.usgs.gov/
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probability, can be more accurately interpreted as the probability that the species use the
area [18,35]. The detection probability (p) is estimated using the pattern of repeated visits
of a target species to a site. The time frame visit occurrences are defined as a sampling occa-
sion [36]. For this analysis, the sampling occasions were grouped by 3 days, and we divided
the breeding season into up to 50 successive sampling occasions and the non-breeding
season into up to 72 successive sampling occasions.

We evaluated the effects of natural and anthropogenic variables on ψ and p. We
evaluated the effect of eight variables on the ψ of Reeves’s Pheasant. To assess the impact
of human activity on ψ, we measured the distance from each camera trap site to the nearest
settlement, road, and agricultural land. We predicted that Reeves’s Pheasant would avoid
settlements and roads to avoid humans, and it would stay close to agricultural land for
foraging. To assess the effect of natural environmental factors on Reeves’s Pheasant, we
assessed the effect of distance from the nearest river, vegetation type, and elevation on ψ.
Rivers are an important resource for wildlife to maintain normal activities, and differences
in vegetation type and elevation have been reported to have important effects on the habitat
use of target species [27,28]. Therefore, we predicted that ψ would decrease with increasing
distance from water. In addition to the eight variables described above, we selected CTDs
and the nature reserve where cameras were located to assess their effect on p. We predicted
that the effect of natural and anthropogenic variables on p would be similar to that on ψ.
We also predicted that CTDs and different study sites would have no effect on p, suggesting
compliance with the closure hypothesis.

Models were ranked based on the Akaike Information Criterion (AIC) and all models
with ∆AIC ≤ 2 were considered equally plausible [37]. We evaluated the relative impor-
tance of variables and computed average predictions and 95% confidence intervals using
the MuMIn package (version 1.43.17) [38]. We created capture histories of Reeves’s Pheas-
ant and livestock by collapsing individual days into 3-day periods to improve temporal
independence and model convergence [39,40]. From each simulation, we calculated the
sum of squared residuals (SSRs) as a measure of the model fit and compared the distri-
bution of 1000 expected SSEs drawn from the simulation with observed SSEs calculated
from fitting the predictions of the global model to our observations. A significant lack of
fit would be indicated by observed SSRs being greater than 95% (i.e., p < 0.05) of the 1000
simulated values.

2.4.2. Influence of Livestock on the Temporal Pattern of Reeves’s Pheasant Activity and
Behaviour

We used the date and time of each Reeves’s Pheasant and livestock detection event
to assess the temporal patterns of Reeves’s Pheasant–livestock interactions during the
breeding and non-breeding seasons. Random samples from the continuous temporal
distribution reflected the probability of the events being recorded at any interval during
the day [41]. Based on the time of the independent photographic events, we estimated the
diel activity pattern of each behaviour and individual in different seasons using kernel
density estimation according to the approach proposed by Ridout and Linkie [42] with
the “overlap” package (version 0.3.3) in R software [43]. Then, we used the coefficient of
overlap, ∆, ranging from 0 (no overlap) to 1 (complete overlap), to measure the overlap
between the distribution of Reeves’s Pheasant and livestock. The coefficient was obtained
from the area under the curve of the minimum of two density functions at each time point.
We estimated ∆ using the ∆4 method because all samples were greater than 75 [44]. The
95 % confidence interval was obtained using 1000 bootstrap samples. Statistical analyses
were performed using the overlap package, which provides a way to describe the overlap
in activity rhythms while not providing a threshold to verify the differences in activity
rhythms between species. We used the activity package (version 1.3.1) to verify whether
two sets of circular observations came from the same distribution.
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2.4.3. Influence of Livestock on Spatial of Reeves’s Pheasant Behaviour

During surveys in LKS and ZHS, we analysed the behaviour of Reeves’s Pheasant.
Behavioural analysis was conducted for each individual per event (3 photos, 10 s video)
if an adult individual was clearly visible. For each detection event (16 s), we used the
sampling method of “behaviour sampling” and the recording method of time sampling
and one-zero sampling [45,46]. All Reeves’s Pheasants were observed as one group and
each behavioural element (Table S3) was marked as 1 if it occurred and 0 if it did not occur
during a sampling interval. This method is increasingly popular in wildlife behaviour
studies, especially studies with sampling periods of less than 20 s [45,46]. Such objective
scoring is easy to achieve, but at the cost of key behavioural information discarding [45].
For example, such scores will not accurately indicate the frequency or proportion of time
spent on a behaviour [45]. Instead, the scores for the various behaviours in this study can be
interpreted as the proportional chance of these behaviours occurring on a given occasion.

We focused on the effects of livestock on the foraging, vigilance, and locomotion
behaviour of Reeves’s Pheasant as these three behaviours are often used as a proxy for
risk perception [47]. We tested the effects of the nine variables described above (excluding
CTDs) on Reeves’s Pheasant’s vigilance (proportion of vigilance behaviours per camera
point) using GLMMs with binomial distributions and logit link functions. Considering
the spatial (camera traps station and study area) non-independence of sites, camera ID
(nested within the study area) was added as a random factor. The best models were selected
according to AIC values, and model averaging was performed with the dredge function of
the MuMIn package. However, the distribution of these data did not lend themselves to
any of the available generalized linear models and links [48], and the discrepancy in sample
sizes between study areas did not lend the data to linear mixed-effect models [49]. After
inspecting the data, we formulated a tentative hypothesis that these data were represented
by two distributions in the dataset, indicating two linear relationships between response
and predictor variables. In plain terms, we suspect that livestock activity influences
behavioural variation in pheasants, and that the insufficient sample of high livestock
activity stations does not capture this relationship. We tested this ad hoc hypothesis with a
piecewise (or segmented) regression analysis, in the R package SiZer [50]. Using the same
method, we analysed the effects of livestock and other covariates on the locomotion and
foraging behaviour of Reeves’s Pheasant. We used Mann–Whitney U tests to compare the
mean occurrence probabilities of the three main behaviours in the presence or absence of
livestock. All statistical analyses were carried out in R (version 4.0.5) [43]. For all statistical
tests, p < 0.05 was considered significant.

Data collected from 69 camera trap stations yielded 18,263 CTDs and 705 independent
photographic events of Reeves’s Pheasant and 702 independent photographic events of
livestock (Figure S1). The average sampling effort per camera trap station over the entire
survey period was 259.97 ± 90.53 CTDs in LKS and 268.76 ± 90.79 CTDs in ZHS. During
the breeding season, we collected 114.16 ± 46.71 CTDs per camera trap station in LKS and
116.83 ± 49.52 CTDs per camera trap station in ZHS. During the non-breeding season, we
collected 170.71 ± 50.60 CTDs per camera trap station in LKS and 179.31 ± 42.49 CTDs per
camera trap station in ZHS. There were no significant differences in average CTDs between
the two reserves during the breeding season, the non-breeding season or the whole year
(Table S4).

3. Results
3.1. Spatial Distribution of Reeves’s Pheasant and Livestock

During the breeding season, model averaging showed that Reeves’s Pheasant was
more likely to be found in areas far from roads and close to settlements. The occupancy esti-
mation model included both location and livestock encounter rates, but the 95% confidence
interval for the estimated parameter (β) included 0 (Table S5). There was no significant
correlation between the occupation probability of the pheasant and the variables. During
the non-breeding season, model averaging results included more parameters, and the occu-
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pancy probability in ZHS was higher than that in LKS. The detection probability estimation
model included the vegetation type, elevation, distance from the nearest settlement, and
livestock encounter rates, but none were significant. Distance from the nearest impermeable
road is positively correlated with the detection probability of pheasants, while the distance
from settlements is negatively correlated with its detection probability. Livestock activity
did not appear to affect the spatial distribution of pheasants (Table 2).

Table 2. Effect of β-coefficients and standard errors (SE) based on model averaging to assess occu-
pancy and detectability of Reeves’s Pheasant.

Life History Model Component Covariates β SE p

Nonbreeding Occupancy (ψ) Intercept 1.60 0.55 0.004 **
season Distance to the nearest impervious road −0.28 0.38 0.458

Detection (p) Intercept −3.93 0.47 <0.001 ***
Location 0.91 0.19 <0.001 ***

Vegetation type 0.77 0.47 0.103
Elevation 0.02 0.06 0.720

Distance to the nearest settlement −0.18 0.41 0.665
livestock encounter rates 0.08 0.49 0.869

Breeding Occupancy (ψ) Intercept 1.55 0.46 <0.001 ***
season Location 0.52 0.72 0.470

Livestock encounter rates 1.13 1.27 0.373
Detection (p) Intercept −1.80 0.06 <0.001 ***

Distance to the nearest impervious roads 0.36 0.10 0.004 **
Distance to the nearest settlement −0.28 0.09 0.002 **

Significance codes: *** p < 0.001, ** p < 0.01.

3.2. Behavioural Patterns of Reeves’s Pheasant

When comparing the proportion of five behaviours observed in LKS and ZHS, we
found that locomotion accounted for approximately 40% of the observations, followed
by vigilance and foraging (Figure S3). The three behaviours related to risk perception
accounted for more than 90% of the observations. Comfort behaviours and other behaviours
accounted for less than 5% of the observations. The mean proportion of vigilance behaviour
of the pheasant at sites with livestock absence was 28.88%, increasing to over 40% when
livestock grazing intensity reached 30, as suggested by the piecewise linear model (Figure 2).
The effect of livestock on pheasant vigilance behaviour appeared to diminish at livestock
activity intensities greater than 30 (Figure 2). The probability of vigilance behaviour for
Reeves’s Pheasant was significantly higher in areas with livestock than in areas without
livestock (Mann–Whitney U test: U = 189.5, n = 59, p < 0.05) (Figure 3). Compared with
livestock presence, the foraging behaviour and locomotion behaviour showed a downward
trend in livestock absence. There was no significant effect of livestock on foraging and
locomotion behaviour.

3.3. Temporal Overlap

There was a high degree of overlap between the daily activity patterns of birds and
livestock, and there were significant differences in the timing of daily activity patterns
throughout the year (mean ∆ = 0.77 [0.71–0.79], p < 0.03) (Figure 4a). Reeves’s Pheasant
tended to be more active in the early morning (6:30) and late afternoon (18:00), whereas the
activity peak of livestock occurred around 15:00. When comparing the degree of overlap
between the temporal distribution patterns of pheasants in areas where livestock were
present and absent throughout the year (Figure 4b), we found high levels of overlap and
no difference in the timing of daily activity patterns between two scenarios (mean ∆ = 0.87
[0.83–0.94], p > 0.09). However, in areas where livestock were present, pheasants were more
active in the morning. In contrast, in areas where livestock were absent, pheasants were
more active at dusk. The general trend of the temporal distribution pattern of pheasants
and livestock in the breeding season (mean ∆ = 0.82 [0.74–0.86], p > 0.09) and non-breeding
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season (mean ∆ = 0.70 [0.60–0.73], p < 0.001) was the same as that found over the whole
year, but the degree of overlap between pheasants and livestock during the non-breeding
season was relatively low (Figure 4d). Reeves’s Pheasant was more likely to forage in the
morning in areas where livestock were present than in areas where livestock were absent
(mean ∆ =0.77 [0.66–0.88], p < 0.001, Figure 4e). We also found that Reeves’s Pheasant
showed high vigilance throughout the day in areas where livestock were present, while
they displayed high vigilance only in the morning and evening in areas where livestock
were absent (mean ∆ = 0.83 [0.78–0.95], p > 0.10, Figure 4f).
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Figure 4. Activity pattern of Reeves’s Pheasant and livestock. Probability density distribution and
overlap throughout the day for breeding season or nonbreeding season or the year in LKS and ZHS.
Black silhouettes with long tails refer to Reeves’s Pheasant, and another to livestock. (a) Overlap
in diel activity patterns of Reeves’s Pheasant and livestock throughout the year. The influence of
livestock presence on the diel activity patterns of Reeves’s Pheasant (b). (c,d) The overlap of daily
activity patterns of livestock and Reeves’s Pheasant in breeding season and non-breeding season,
respectively. (e,f) The influence of livestock presence on foraging behaviour and vigilant behaviour
pattern of Reeves’s Pheasant.

4. Discussion

The effects of livestock grazing have generated extensive discussions [51,52]. The
economic and socio-environmental benefits have been widely recognized [53]. However,
many natural terrestrial areas are being altered by livestock, and livestock–wildlife conflict
has become an increasingly widespread problem worldwide [8,54]. Our study provides
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insight into the effects of livestock on the spatial and temporal distribution patterns and
behaviour of Reeves’s Pheasant. We tested the effects of anthropogenic disturbances and
various natural environmental factors on the spatial and temporal distribution patterns
of Reeves’s Pheasant at a fine spatial and temporal scale over one year. We found that
the detection probability of Reeves’s Pheasant during the breeding season was positively
correlated with distance from the nearest impervious road and negatively correlated with
distance from the nearest settlement, while this trend did not occur during the non-breeding
season. One possible explanation is that pheasants are more sensitive to human disturbance
during the breeding season [22]. Some studies have also shown that wildlife will approach
infrastructure to avoid natural predators [55] and move away from roads to avoid road-
kill [56]. Reeves’s Pheasant did not avoid livestock as we expected. Instead, our analysis
revealed a high degree of spatio-temporal overlap between livestock and Reeves’s Pheasant
during both the breeding and non-breeding seasons, which is more likely due to their
similar habitat preferences and possibly because the behavioural patterns of this bird were
altered by livestock. Our results illustrate that integrating spatial and temporal patterns of
wildlife distribution with behavioural observations can reveal important information on
how wildlife responds to livestock grazing. Considering the potential negative impacts
of livestock in nature reserves on wildlife, monitoring the effects of livestock activities on
target species is essential for identifying potential short-term disturbances and medium-
and long-term consequences [17,21].

Reeves’s Pheasant is an elusive species that is often difficult to observe in the wild [30].
Earlier studies have investigated habitat and population abundance mainly by using neck-
lace radio transmitters or line transect sampling [22,27]. These studies describe the habitat
selection and distribution of Reeves’s Pheasant. However, using necklace radio transmit-
ters is expensive and invasive, and line transect sampling data contain little information.
This study demonstrates the feasibility of using camera traps to study the habitat use of
Reeves’s Pheasant.

The detection probability of Reeves’s Pheasant during the breeding season was higher
in areas far from roads, which is in line with previous findings that road construction has
a negative impact on wildlife at a large geographical scale [57,58]. At small geographical
scales, roads severely affect survival [59] and gene exchange [60]. Although some studies
suggest that high traffic volumes may be beneficial for the survival and reproduction of
wildlife living in cities close to roads [61,62], in the forest, the negative impact of road
networks on wildlife often outweighs the benefits [63] and influences the survival and
habitat selection of wild animals [57]. Our results support the conclusions of previous
studies [57,64].

Animals’ daily activity patterns are regulated by endogenous rhythms, which are
shaped by external environment cues that change over a 24-h period [65]. We observed a
consistent bimodal diel activity pattern of Reeves’s Pheasant across seasons. The activity
pattern of Reeves’s Pheasant showed no response to livestock presence during the breeding
season, non-breeding season, or all year round. The activity peak of Reeves’s Pheasant
occurred in the morning and evening during both the breeding and non-breeding seasons.
Reeves’s Pheasant changed their foraging time when livestock were present. Mammals
are also known to change their foraging times to avoid livestock activity [17,18]. Livestock
activity was most intense in the afternoon. Pheasants tend to feed in the morning at camera
trap sites where livestock are present. In contrast, when livestock are absent, Reeves’
pheasants tend to forage in the evening. The foraging behaviour of pheasants seems to
evade livestock in temporal. Changes in the timing of activity are often detrimental to
animals [66,67]. These contrasting activity patterns suggest that livestock presence may
create a “fearful” environment [18], reducing birds’ foraging efficiency [68].

Animals adjust their behaviour and choose different habitats to improve their sur-
vival, reproduction, and fitness [46,69]. At the spatial scale, our findings suggest that
livestock presence changed the behavioural patterns of Reeves’s Pheasant to varying de-
grees. Reeves’s Pheasant showed high vigilance even under natural conditions, probably
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due to their nervous nature [30]. It is important to emphasize that livestock presence further
increases the vigilance of Reeves’s Pheasant and may have implications for the survival
and reproduction of these birds.

Increased vigilance can help wildlife avoid predators and improve their chances
of survival [70,71]. However, livestock are not predators of pheasants. Therefore, in-
creased vigilance may result from a mismatch between risk perception and behavioural
response [72]. Even where human activity is non-lethal, the impacts of human distur-
bance can be analogous to the effects of predation risk [72]. Disturbance can induce costly
anti-predator behaviours [46,73,74] that can compromise individual fitness and influence
population dynamics in other predator–prey systems, with implications for entire ecosys-
tems [75,76]. Animals perceive and respond to risks associated with human activity and
infrastructure, even in the absence of a true threat [77,78]. Livestock not only compete
with wildlife for resources but also modify the environment (e.g., through grazing and
trampling) and affect the habitat conditions of wildlife [18,79]. Our study provides further
evidence that livestock grazing increases the vigilance behaviour of Reeves’s Pheasant. We
found that the pheasant vigilance levels appeared to be decreasing when livestock grazing
intensity was greater than 30. This may be the result of an insufficient sample size. There
is therefore a need for further research into the ecological consequences of high livestock
grazing intensities. In many ecosystems, livestock compete with wildlife species for limited
food [4] and space [80] and destroy bird eggs [25], which threatens their survival [7,81].
Many studies have shown that wild animals are forced to adjust their spatial distribution,
circadian rhythms [17,52], and behaviour to adapt to livestock grazing [21], which may
result largely from a fear response to livestock, although this has yet to be demonstrated
experimentally [82]. The impacts of fear are typically mediated by changes in individual
behaviour [47], which may vary spatially or temporally with changes in the risk perception
of wildlife [47,73]. More research is needed to quantify the relative contribution of livestock
to creating a ‘landscape of fear’.

5. Conclusions

Although wildlife responds to livestock grazing in complex ways, the direct and indi-
rect negative impacts of extensive livestock grazing on nature have been well documented.
Our study showed that livestock presence altered the behavioural patterns of Reeves’s
Pheasant but had no significant influences on its distribution patterns at spatial or temporal
scales. Livestock have a negative impact on this bird, such as reduced foraging efficiency
and increased vigilance. As a result, their growth rate decreases, which is not conducive to
population stability and recovery. Where habitat modification is unavoidable, we recom-
mend the integration of behavioural ecological principles into nature reserve conservation
plans to facilitate animal behavioural adaptations, resource acquisition, reproduction, and
dispersal. Reducing negative anthropogenic impacts on animal behaviour will be key to
biodiversity conservation in an increasingly human-dominated world.
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