Radiomics Modeling of Catastrophic Proximal Sesamoid Bone Fractures in Thoroughbred Racehorses Using μCT
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Image Datasets and Segmentations
2.2. Image Biomarker Calculations
2.3. Feature Selection
2.4. Supervised Machine Learning Models
3. Results
3.1. Top 20 Features
3.2. Model Performance Using Decision Tree and Wrapper Method Features
3.3. Model Performance with Variable Voxel Resampling Dimensions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riggs, C.M. Fractures—A preventable hazard of racing thoroughbreds? Vet. J. Lond. Engl. 2002, 163, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Crawford, K.L.; Finnane, A.; Greer, R.M.; Phillips, C.J.C.; Woldeyohannes, S.M.; Perkins, N.R.; Ahern, B.J. Appraising the Welfare of Thoroughbred Racehorses in Training in Queensland, Australia: The Incidence and Type of Musculoskeletal Injuries Vary between Two-Year-Old and Older Thoroughbred Racehorses. Animals 2020, 10, 2046. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.J.; Stover, S.M.; Daft, B.M.; Kinde, H.; Read, D.H.; Barr, B.C.; Anderson, M.; Moore, J.; Woods, L.; Stoltz, J.; et al. Causes of death in racehorses over a 2 year period. Equine Vet. J. 1994, 26, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Hanada, M.; Oikawa, M.-A. Epidemiology of racing injuries in Thoroughbred racehorses with special reference to bone fractures: Japanese experience from the 1980s to 2000s. J. Equine Sci. 2016, 27, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Hitchens, P.; Morrice-West, A.; Stevenson, M.; Whitton, R. Meta-analysis of risk factors for racehorse catastrophic musculoskeletal injury in flat racing. Veter. J. 2019, 245, 29–40. [Google Scholar] [CrossRef]
- Wang, D.; Shi, L.; Griffith, J.F.; Qin, L.; Yew, D.T.W.; Riggs, C.M. Comprehensive surface-based morphometry reveals the association of fracture risk and bone geometry. J. Orthop. Res. 2012, 30, 1277–1284. [Google Scholar] [CrossRef]
- Brounts, S.H.; Lund, J.R.; Whitton, R.C.; Ergun, D.L.; Muir, P. Use of a novel helical fan beam imaging system for computed tomography of the distal limb in sedated standing horses: 167 cases (2019–2020). J. Am. Vet. Med. Assoc. 2022, 260, 1351–1360. [Google Scholar] [CrossRef]
- Spriet, M.; Espinosa-Mur, P.; Cissell, D.D.; Phillips, K.L.; Arino-Estrada, G.; Beylin, D.; Stepanov, P.; Katzman, S.A.; Galuppo, L.D.; Garcia-Nolen, T.; et al. 18F-sodium fluoride positron emission tomography of the racing Thoroughbred fetlock: Validation and comparison with other imaging modalities in nine horses. Equine Vet. J. 2019, 51, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Mizobe, F.; Nomura, M.; Kanai, K.; Ishikawa, Y.; Yamada, K. Standing magnetic resonance imaging of distal phalanx fractures in 6 cases of Thoroughbred racehorse. J. Veter. Med. Sci. 2019, 81, 689–693. [Google Scholar] [CrossRef] [Green Version]
- Cresswell, E.N.; McDonough, S.P.; Palmer, S.E.; Hernandez, C.J.; Reesink, H.L. Can quantitative computed tomography detect bone morphological changes associated with catastrophic proximal sesamoid bone fracture in Thoroughbred racehorses? Equine Vet. J. 2019, 51, 123–130. [Google Scholar] [CrossRef]
- Ayodele, B.A.; Hitchens, P.L.; Wong, A.S.M.; Mackie, E.J.; Whitton, R.C. Microstructural properties of the proximal sesamoid bones of Thoroughbred racehorses in training. Equine Vet. J. 2020, 53, 1169–1177. Available online: https://beva.onlinelibrary.wiley.com/doi/abs/10.1111/evj.13394 (accessed on 15 March 2021). [CrossRef] [PubMed]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basran, P.S.; Porter, I.R. Radiomics in veterinary medicine: Overview, methods, and applications. Vet. Radiol. Ultrasound 2021. [Google Scholar]
- Duron, L.; Balvay, D.; Perre, S.V.; Bouchouicha, A.; Savatovsky, J.; Sadik, J.-C.; Thomassin-Naggara, I.; Fournier, L.; Lecler, A. Gray-level discretization impacts reproducible MRI radiomics texture features. PLoS ONE 2019, 14, e0213459. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405136/ (accessed on 29 April 2020). [CrossRef] [PubMed]
- Appleby, R.B.; Basran, P.S. Artificial intelligence in veterinary medicine. J. Am. Vet. Med Assoc. 2022, 260, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Noorbakhsh-Sabet, N.; Zand, R.; Zhang, Y.; Abedi, V. Artificial Intelligence Transforms the Future of Healthcare. Am. J. Med. 2019, 132, 795–801. [Google Scholar] [CrossRef]
- Borstelmann, S.M. Machine Learning Principles for Radiology Investigators. Acad. Radiol. 2020, 27, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Hosni, M.; Abnane, I.; Idri, A.; de Gea, J.M.C.; Alemán, J.L.F. Reviewing ensemble classification methods in breast cancer. Comput. Methods Programs Biomed. 2019, 177, 89–112. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef] [Green Version]
- Basran, P.S.; Gao, J.; Palmer SReesink, H.L. A radiomics platform for computing imaging features from µCT images of Thoroughbred racehorse proximal sesamoid bones: Benchmark performance and evaluation. Equine Vet. J. 2021, 53, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Daniel. Region Growing (2D/3D Grayscale); MATLAB Central File Exchange. 2022. Available online: https://www.mathworks.com/matlabcentral/fileexchange/32532-region-growing-2d-3d-grayscale (accessed on 18 October 2022).
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Solorio-Fernández, S.; Carrasco-Ochoa, J.A.; Martínez-Trinidad, J.F. A review of unsupervised feature selection methods. Artif. Intell. Rev. 2019, 53, 907–948. [Google Scholar] [CrossRef]
- Shafiq-Ul-Hassan, M.; Latifi, K.; Zhang, G.; Ullah, G.; Gillies, R.; Moros, E. Voxel size and gray level normalization of CT radiomic features in lung cancer. Sci. Rep. 2018, 8, 10545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafiq-Ul-Hassan, M.; Zhang, G.G.; Latifi, K.; Ullah, G.; Hunt, D.C.; Balagurunathan, Y.; Abdalah, M.A.; Schabath, M.B.; Goldgof, D.G.; Mackin, D.; et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med. Phys. 2017, 44, 1050–1062. [Google Scholar] [CrossRef] [Green Version]
- Schnabel, L.V.; Redding, W.R. Diagnosis and management of proximal sesamoid bone fractures in the horse. Equine Vet. Educ. 2016, 30, 450–455. [Google Scholar] [CrossRef] [Green Version]
- Naemi, A.; Schmidt, T.; Mansourvar, M.; Naghavi-Behzad, M.; Ebrahimi, A.; Wiil, U.K. Machine learning techniques for mortality prediction in emergency departments: A systematic review. BMJ Open 2021, 11, e052663. [Google Scholar] [CrossRef]
- Pease, A.; Marr, C. Letter to the Editor: Can quantitative computed tomography detect bone morphological changes associated with catastrophic proximal sesamoid bone fracture in Thoroughbred racehorses? Equine Vet. J. 2019, 51, 706–707. [Google Scholar] [CrossRef]
- Reesink, H.L.; Palmer, S.E. Letter to the Editor: Selection of appropriate controls for studying fatal musculoskeletal injury in racehorses. Equine Vet. J. 2019, 51, 559–560. [Google Scholar] [CrossRef]
- McIlwraith, C.W.; Kawcak, C.E.; Frisbie, D.D.; Little, C.B.; Clegg, P.D.; Peffers, M.J.; Karsdal, M.A.; Ekman, S.; Laverty, S.; Slayden, R.A.; et al. Biomarkers for equine joint injury and osteoarthritis. J. Orthop. Res. 2018, 36, 823–831. [Google Scholar] [CrossRef]
- Johnston, G.C.A.; Ahern, B.J.; Palmieri, C.; Young, A.C. Imaging and Gross Pathological Appearance of Changes in the Parasagittal Grooves of Thoroughbred Racehorses. Animals 2021, 11, 3366. [Google Scholar] [CrossRef] [PubMed]
- Spriet, M.; Arndt, S.; Pige, C.; Pye, J.; O’Brion, J.; Carpenter, R.; Blea, J.; Dowd, J.P. Comparison of skeletal scintigraphy and standing 18 F-NaF positron emission tomography for imaging of the fetlock in 33 Thoroughbred racehorses. Vet. Radiol. Ultrasound 2022. [Google Scholar] [CrossRef] [PubMed]
- Clarke, E.J.; Lima, C.; Anderson, J.R.; Castanheira, C.; Beckett, A.; James, V.; Hyett, J.; Goodacre, R.; Peffers, M.J. Optical photothermal infrared spectroscopy can differentiate equine osteoarthritic plasma extracellular vesicles from healthy controls. Anal. Methods 2022, 14, 3661–3670. [Google Scholar] [CrossRef] [PubMed]
- Witkowska-Piłaszewicz, O.; Maśko, M.; Domino, M.; Winnicka, A. Infrared Thermography Correlates with Lactate Concentration in Blood during Race Training in Horses. Animals 2020, 10, 2072. [Google Scholar] [CrossRef] [PubMed]
Feature Family | Feature Calculated |
---|---|
Morphology Shape (18) | Elongation, Flatness, Least Axis, Major Axis, Maximum 2&3D Diameter, Maximum 2D Row, Maximum 2DSlice, Mesh and Voxel Volume, Minor Axis Length, Sphericity, Surface Area, Surface to Volume Ratio |
Statistics and Histogram First Order (18) | 10th & 90th percentile, Energy, Entropy, Interquartile Range, Kurtosis, Maximum, Mean Absolute Deviation, Mean, Median, Minimum, Range, Robust Mean Absolute Deviation, Root Mean Squared, Skewness, Total Energy, Uniformity, Variance |
Gray Level Co-occurrence Matrix GLCM Texture (24) | Autocorrelation, Cluster Prominence, Cluster Shade, Cluster Tendency, Contrast, Correlation, Difference Average, Difference Entropy, Difference Variance, LD, LDM, LDMN, LMC1, LMC2, Inverse Variance, Joint Average, Joint Entropy, Joint Energy, MCC, Maximum Probability, Sum Average, Sum Entropy, Sum Squares |
Gray Level Difference Matrix GLDM Texture (14) | Dependence Entropy, Dependence Non-Uniformity +/− Normalized, Dependence Variance, Gray Level Non-Uniformity, Gray Level Variance, Large Dependence High/Low Gray Level Emphasis, Low Gray Level Emphasis, Small Dependence High/Low Gray Emphasis |
Gray Level Run Length Matrix GLRLM Texture (16) | Gray level Non-Uniformity +/− Normalized, Gray level variance, High Gray Level Run Emphasis, Long Run Emphasis, Long Run High/Low Gray Level Emphasis, Run Entropy, Run Length Non-Uniformity +/− Normalized, Run Percentage, Run Variance, Short Run Emphasis, Short Run High Gray Level Emphasis |
Gray Level Size Zone Matrix GLSZM Texture (16) | Short Run Low Gray Level Emphasis, Gray Level Non-Uniformity +/− Normalized, Gray Level Variance, High Gray Level Zone Emphasis, Large Area Emphasis, Large Area High/Low Gray Level Emphasis, Low Gray Level Zone Emphasis, Size Zone Non Uniformity +/− Normalized, Zone Entropy, Zone Percentage, Zone Variance |
Model | Description and Model Settings |
---|---|
Logistic Regression (LR) | Conventional logistic regression model |
Support Vector Machine (SVM) | Quadratic kernel, box constraint = 1, kernel scaling “auto” |
K-nearest neighbor (KNN) | Medium Size, Number of Neighbors = 10, distance metric = Euclidean, Distance Weight = Equal |
Ensemble—Bagged Trees (BT) | Learner Type: Decision Tree, maximum number of splits = 133, number of learners = 30 |
Ensemble—RUSBoosted Trees (RUS) | Learner Type: Decision Tree, maximum number of splits = 20, number of learners = 30, learning rate =0.1 |
Medium Neural Network (NN) | Number of layers = 1, First layer size = 25, Activation = ReLU, Iteration Limit = 1000, Regularization = off |
Decision Trees (DT). | Wrapper Methods (WR) |
---|---|
Shape—Sphericity * | Shape—Sphericity * |
Shape—Surface Volume Ratio | GLCM—Correlation * |
GLSZM—Zone Entropy | GLSZM—Large Area Emphasis |
SHAPE—Surface Area | First order—Mean Absolute Deviation |
GLCM—Correlation * | First order—Variance |
GLCM—Cluster Shade * | GLCM—Id |
Shape—Flatness | First order—Maximum |
GLCM—Imc1 * | GLCM—Idm |
GLCM—Cluster Prominence | GLCM—Cluster Shade * |
GLCM—Idmn | GLCM—Imc1 * |
GLCM—Idn | GLCM—Inverse Variance |
GLCM—Imc2 | GLCM—Difference Entropy |
GLSZM—Gray Level Variance | First order—90Percentile |
First order—Skewness | GLRLM—Long Run Emphasis |
GLSZM—Small Area Emphasis | GLRLM—Run Length Non-Uniformity Normalized |
First order—RootMeanSquared | GLRLM—Run Percentage |
First order—Median | GLRLM—Run Variance |
First order—Mean | GLRLM—Short Run Emphasis |
First order—Total Energy | GLSZM—Zone Percentage |
Shape—Least Axis Length | GLRLM—Gray Level Variance |
Decision Tree Feature Model Accuracy | ||||
---|---|---|---|---|
N = 3 | N = 5 | N = 10 | N = 20 | |
LR | 0.793 | 0.856 | 0.847 | 0.903 |
SVM | 0.681 | 0.702 | 0.734 | 0.797 |
KNN | 0.674 | 0.686 | 0.787 | 0.792 |
BT | 0.733 | 0.808 | 0.845 | 0.808 |
RUS | 0.733 | 0.738 | 0.808 | 0.834 |
NN | 0.680 | 0.749 | 0.792 | 0.787 |
Wrapper Method Feature Model Accuracy | ||||
N = 3 | N = 5 | N = 10 | N = 20 | |
LR | 0.793 | 0.837 | 0.839 | 0.833 |
SVM | 0.702 | 0.723 | 0.750 | 0.765 |
KNN | 0.712 | 0.643 | 0.717 | 0.819 |
BT | 0.734 | 0.734 | 0.712 | 0.701 |
RUS | 0.728 | 0.717 | 0.728 | 0.669 |
NN | 0.685 | 0.674 | 0.728 | 0.680 |
Number Features | Feature Selection | Model | Resampling Dimension [mm] | ||||
---|---|---|---|---|---|---|---|
0.075 | 0.10 | 0.50 | 1.00 | 2.00 | |||
3 | DT | SVM | 0.829 | 0.850 | 0.872 | 0.858 | 0.829 |
RUS | 0.699 | 0.763 | 0.835 | 0.783 | 0.675 | ||
KNN | 0.733 | 0.756 | 0.821 | 0.779 | 0.746 | ||
WR | SVM | 0.842 | 0.854 | 0.870 | 0.851 | 0.806 | |
LR | 0.713 | 0.750 | 0.733 | 0.683 | 0.619 | ||
RUS | 0.715 | 0.757 | 0.786 | 0.716 | 0.677 | ||
5 | DT | BT | 0.844 | 0.857 | 0.870 | 0.859 | 0.832 |
LR | 0.682 | 0.726 | 0.807 | 0.767 | 0.662 | ||
RUS | 0.681 | 0.703 | 0.805 | 0.743 | 0.692 | ||
WR | SVM | 0.843 | 0.853 | 0.869 | 0.857 | 0.817 | |
LR | 0.711 | 0.732 | 0.768 | 0.731 | 0.695 | ||
RUS | 0.658 | 0.719 | 0.759 | 0.688 | 0.660 | ||
10 | DT | SVM | 0.880 | 0.897 | 0.892 | 0.858 | 0.805 |
BT | 0.834 | 0.850 | 0.844 | 0.775 | 0.739 | ||
NN | 0.718 | 0.772 | 0.839 | 0.781 | 0.684 | ||
WR | SVM | 0.849 | 0.857 | 0.867 | 0.861 | 0.837 | |
LR | 0.747 | 0.768 | 0.775 | 0.753 | 0.711 | ||
RUS | 0.720 | 0.746 | 0.792 | 0.731 | 0.602 | ||
20 | DT | SVM | 0.899 | 0.916 | 0.901 | 0.863 | 0.808 |
LR | 0.784 | 0.811 | 0.908 | 0.898 | 0.787 | ||
RUS | 0.763 | 0.806 | 0.849 | 0.813 | 0.673 | ||
WR | LR | 0.849 | 0.856 | 0.867 | 0.864 | 0.838 | |
SVM | 0.827 | 0.858 | 0.844 | 0.767 | 0.697 | ||
NN | 0.758 | 0.774 | 0.771 | 0.753 | 0.685 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basran, P.S.; McDonough, S.; Palmer, S.; Reesink, H.L. Radiomics Modeling of Catastrophic Proximal Sesamoid Bone Fractures in Thoroughbred Racehorses Using μCT. Animals 2022, 12, 3033. https://doi.org/10.3390/ani12213033
Basran PS, McDonough S, Palmer S, Reesink HL. Radiomics Modeling of Catastrophic Proximal Sesamoid Bone Fractures in Thoroughbred Racehorses Using μCT. Animals. 2022; 12(21):3033. https://doi.org/10.3390/ani12213033
Chicago/Turabian StyleBasran, Parminder S., Sean McDonough, Scott Palmer, and Heidi L. Reesink. 2022. "Radiomics Modeling of Catastrophic Proximal Sesamoid Bone Fractures in Thoroughbred Racehorses Using μCT" Animals 12, no. 21: 3033. https://doi.org/10.3390/ani12213033
APA StyleBasran, P. S., McDonough, S., Palmer, S., & Reesink, H. L. (2022). Radiomics Modeling of Catastrophic Proximal Sesamoid Bone Fractures in Thoroughbred Racehorses Using μCT. Animals, 12(21), 3033. https://doi.org/10.3390/ani12213033