Effects of Dietary Rapeseed (Brassica napus), Hemp (Cannabis sativa) and Camelina (Camelina sativa) Seed Cakes Supplementation on Yolk and Albumen Colour and Nutritional Value of Yolk Lipids in Estonian Quail Eggs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Material, Design and Diets
2.2. pH and Colour Measurements
2.3. Proximate Composition of Egg Yolk
2.4. Fatty Acid Profiles
2.5. Lipid Quality Indices
2.6. Statistical Analysis
3. Results and Discussion
3.1. Weight of Eggs Used for Evaluation
3.2. pH and Colour
3.3. Proximate Composition of Yolk
3.4. Fatty Acid Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Adabi, S.G.; Ahbab, M.; Fani, A.R.; Hajbabaei, A.; Ceylan, N.; Cooper, R.G. Egg yolk fatty acid profile of avian species—Influence on human nutrition. J. Anim. Physiol. Anim. Nutr. 2013, 97, 27–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolik, D.; Polawska, E.; Charuta, A.; Nowaczewski, S.; Cooper, R. Characteristics of Egg Parts, Chemical composition and nutritive value of Japanese quail eggs—A Review. Folia Biol. 2014, 62, 287–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinanoglou, V.J.; Strati, I.F.; Miniadis-Meimaroglou, S. Lipid, fatty acid and carotenoid content of edible egg yolks from avian species: A comparative study. Food Chem. 2011, 124, 971–977. [Google Scholar] [CrossRef]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The golden egg: Nutritional value, bioactivities, and emerging benefits for human health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; El-Hack, M.E.A.; Khafaga, A.F.; Taha, A.E.; Tiwari, R.; Yatoo, M.I.; Bhatt, P.; Khurana, S.K.; et al. Omega-3 and Omega-6 fatty acids in poultry nutrition: Effect on production performance and health. Animals 2019, 9, 573. [Google Scholar] [CrossRef] [Green Version]
- Arthur, J.; Bejaei, M. Quail Eggs. In Egg Innovations and Strategies for Improvements; Hester, P.Y., Ed.; Academic Press Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 13–21. [Google Scholar] [CrossRef]
- Göçmen, R.; Kanbur, G.; Cufadar, Y. The use of different fat sources on performance, egg quality and egg yolk fatty acids content in laying quails. Turk. J. Agric.-Food Sci. Technol. 2021, 9, 1413–1418. [Google Scholar] [CrossRef]
- Thomas, K.S.; Jagatheesan, P.N.R.; Reetha, T.L.; Rajendran, D. Nutrient composition of Japanese quail eggs. Int. J. Sci. Environ. Technol. 2016, 5, 1293–1295. [Google Scholar]
- Da Silva, W.J.; Gouveia, A.B.V.S.; De Sousa, F.E.; dos Santos, F.R.; Minafra-Rezende, C.S.; Silva, J.M.S.; Minafra, C.S. Turmeric and sorghum for egg-laying quails. Ital. J. Anim. Sci. 2018, 17, 368–376. [Google Scholar] [CrossRef] [Green Version]
- Minvielle, F. The future of Japanese quail for research and production. World’s Poult. Sci. J. 2004, 60, 500–507. [Google Scholar] [CrossRef]
- Gładkowski, W.; Kiełbowicz, G.; Chojnacka, A.; Bobak, Ł.; Spychaj, R.; Dobrzański, Z.; Trziszka, T.; Wawrzeńczyk, C. The effect of feed supplementation with dietary sources of n-3 polyunsaturated fatty acids, flaxseed and algae Schizochytrium sp., on their incorporation into lipid fractions of Japanese quail eggs. Int. J. Food Sci. Technol. 2014, 49, 1876–1885. [Google Scholar] [CrossRef]
- Englmaierová, M.; Skřivan, M.; Bubancová, I. A comparison of lutein, spray-dried Chlorella, and synthetic carotenoids effects on yolk colour, oxidative stability, and reproductive performance of laying hens. Czech J. Anim. Sci. 2013, 58, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Grashorn, M. Feed additives for influencing chicken meat and egg yolk color. In Handbook on Natural Pigments in Food and Beverages; Carle, R., Schweiggert, R., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition: Oxford, UK, 2016; pp. 283–302. [Google Scholar] [CrossRef]
- Sünder, A.; Wilkens, M.; Böhm, V.; Liebert, F. Egg yolk colour in organic production as affected by feeding—Consequences for farmers and consumers. Food Chem. 2022, 382, 131854. [Google Scholar] [CrossRef]
- Beardsworth, P.M.; Hernandez, J.-M. Yolk colour—An important egg quality attribute. Int. Poult. Prod. 2004, 12, 17–18. [Google Scholar]
- Pliego, A.B.; Tavakoli, M.; Khusro, A.; Seidavi, A.; Elghandour, M.M.M.Y.; Salem, A.Z.M.; Márquez-Molina, O.; Rivas-Caceres, R.R. Beneficial and adverse effects of medicinal plants as feed supplements in poultry nutrition: A review. Anim. Biotechnol. 2022, 33, 369–391. [Google Scholar] [CrossRef]
- Sahin, N.; Akdemir, F.; Orhan, C.; Kucuk, O.; Hayirli, A.; Sahin, K. Lycopene-enriched quail egg as functional food for humans. Food Res. Int. 2008, 41, 295–300. [Google Scholar] [CrossRef]
- Mnisi, C.M.; Oyeagu, C.E.; Ruzvidzo, O. Mopane worm (Gonimbrasia belina Westwood) meal as a potential protein source for sustainable quail production: A review. Sustainability 2022, 14, 5511. [Google Scholar] [CrossRef]
- Lokaewmanee, K.; Yamauchi, K.-E.; Komori, T.; Saito, K. Effects on egg yolk colour of paprika or paprika combined with marigold flower extracts. Ital. J. Anim. Sci. 2010, 9, e67. [Google Scholar] [CrossRef]
- Yalcin, H.; Konca, Y.; Durmuscelebi, F. Effect of dietary supplementation of hemp seed (Cannabis sativa L.) on meat quality and egg fatty acid composition of Japanese quail (Coturnix coturnix japonica). J. Anim. Physiol. Anim. Nutr. 2018, 102, 131–141. [Google Scholar] [CrossRef]
- Göçmen, R.; Kanbur, G. A comparative study on the effects of use of hemp seed oil substitute to soybean oil in growing quail diets. Turk. J. Agric.-Food Sci. Technol. 2021, 9, 1390–1394. [Google Scholar] [CrossRef]
- Cufadar, Y.; Göçmen, R.; Kanbur, G.; Parlat, S. Effect of hempseed meal on performance, egg quality and egg yolk fatty acids content in laying quails. J. Hellenic Vet. Med. Soc. 2022, 72, 3427–3434. [Google Scholar] [CrossRef]
- Saki, A.A.; Goudarzi, S.M.; Ranjbaran, M.; Ahmadi, A.; Khoramabadi, V. Evaluation of biochemical parameters and productive performance of Japanese quail in response to the replacement of soybean meal with canola meal. Acta Sci. 2017, 39, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, N.; Sabic, E.; Abu-Taleb, A.; Abdel-Moneim, A. Effect of dietary supplementation of full-fat Canola seeds on productive performance, blood metabolites and antioxidant status of laying Japanese quails. Braz. J. Poultry Sci. 2020, 22, 001–010. [Google Scholar] [CrossRef]
- Elangovan, A.V.; Verma, S.V.S.; Sastry, V.R.B.; Singh, S.D. Effect of feeding high glucosinolate rapeseed meal to laying Japanese quail. Asian-Australas. J. Anim. Sci. 2001, 14, 1304–1307. [Google Scholar] [CrossRef]
- Malik, K.; Lone, K.P. Effect of feeding rapeseed meal on the growth of Japanese quail. Int. J. Cell Mol. Biol. 2011, 2, 720–724. [Google Scholar]
- Bulbul, T.; Ulutas, E. The effects of dietary supplementation of false flax (Camelina sativa L.) meal on performance, egg quality traits, and lipid peroxidation in laying quails. Eurasian J. Vet. Sci. 2015, 31, 8–15. [Google Scholar] [CrossRef]
- Nunome, M.; Nakano, M.; Tadano, R.; Kawahara-Miki, R.; Kono, T.; Takahashi, S.; Kawashima, T.; Fujiwara, A.; Nirasawa, K.; Mizutani, M.; et al. Genetic divergence in domestic Japanese quail inferred from mitochondrial DNA D-loop and microsatellite markers. PLoS ONE 2017, 12, e0169978. [Google Scholar] [CrossRef] [Green Version]
- Tikk, V.; Tikk, H. The quail industry of Estonia. World Poult. Sci. J. 1993, 49, 65–68. [Google Scholar] [CrossRef]
- Tikk, H.; Lember, A.; Tikk, V.; Piirsalu, M. Egg performance dynamics of Estonian Quail in 1987–2010. Agraarteadus 2011, 22, 71–78. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC; Association of Official Analytical Chemists: Arlington, TX, USA, 1990. [Google Scholar]
- Zhang, R.-Z.; Li, L.; Liu, S.-T.; Chen, R.-M.; Rao, P.-F. An improved method of cholesterol determination in egg yolk by HPLC. J. Food Biochem. 1999, 23, 351–361. [Google Scholar] [CrossRef]
- Folch, J.; Less, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Christopherson, S.W.; Glass, R.L. Preparation of milk fat methyl esters by alcoholysis in an essentially non-alcoholic solution. J. Dairy Sci. 1969, 52, 1289–1290. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary disease seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Fernández, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; de la Hoz, L. Fatty acid composition of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. 2007, 101, 107–112. [Google Scholar] [CrossRef]
- Du, C.; Sato, A.; Watanabe, S.; Wu, C.-Z.; Ikemoto, A.; Ando, K.; Kikugawa, K.; Fujii, Y.; Okuyama, H. Cholesterol synthesis in mice is suppressed but lipofuscin formation is not affected by long-term feeding of n-3 fatty acid-enriched oils compared with lard and n-6 fatty acid-enriched oils. Biol. Pharm. Bull. 2003, 26, 766–770. [Google Scholar] [CrossRef] [Green Version]
- Dudusola, I.O. Comparative evaluation of internal and external qualities of eggs from quail and guinea fowl. Global J. Food Agrobus. Man. 2011, 2, 1–4. [Google Scholar]
- Song, K.T.; Choi, H.S.; Oh, H.R. A comparison of egg quality of pheasant, chukar, quail and guinea fowl. Asian-Australas. J. Anim. Sci. 2000, 13, 986–990. [Google Scholar] [CrossRef]
- Razmaitė, V.; Pileckas, V.; Bliznikas, S.; Šiukščius, A. Fatty Acid Composition of Cannabis sativa, Linum usitatissimum and Camelina sativa Seeds Harvested in Lithuania for Food Use. Foods 2021, 10, 1902. [Google Scholar] [CrossRef]
- Franek, D.; Kasprowicz-Potocka, M.; Zaworska-Zakrzewska, A. The chemical composition, nutritional value, and potential use of Cannabis sativa L. seeds in animal nutrition. Anim. Sci. Genet. 2020, 18, 33–44. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Zhao, J.; Wang, W.; Griffin, J.; Li, Y.; Bean, S.; Tilley, M.; Wang, D. Hempseed as a nutritious and healthy human food or animal feed source: A review. Int. J. Food Sci. Tech. 2021, 56, 530–543. [Google Scholar] [CrossRef]
- Stastnik, O.; Pavlata, L.; Mrkvicova, E. The milk thistle seed cakes and hempseed cakes are potential feed for poultry. Animals 2020, 10, 1384. [Google Scholar] [CrossRef]
- Aygün, A.; Olgun, O. Comparison of egg quality, yolk cholesterol and fatty acid contents of chicken, quail, partridge and pheasant eggs. Akademik Ziraat Dergisi 2019, 8, 323–328. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.W. Colour measurements by computer vision for food quality control. A review. Trends Food Sci Tech. 2013, 29, 5–20. [Google Scholar] [CrossRef]
- Tapp, W.N.; Yancey, J.W.S.; Apple, J.K. How is the instrumental color of meat measured? Meat Sci. 2011, 89, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Genchev, A. Quality and composition of Japanese quail eggs (Coturnix Japonica). Trakia J. Sci. 2012, 10, 91–101. [Google Scholar]
- Prelipcean, A.; Prelipcean, A.A.; Teuşan, V. Investigations on the structure, chemical composition and caloricity of the quail eggs, deposited at the plateau phase of the laying period. Lucr. Ştiinţifice-Ser. Zooteh. 2012, 57, 113–120. [Google Scholar]
- Al-Obaidi, F.A.; Al-Shadeedi, S.M.J. Comparison some native fowls (Chicken, Mallard Ducks Quail and Turkey) in components and chemical composition of the eggs in Iraq. Al-Anbar J. Vet. Sci. 2017, 10, 65–69. [Google Scholar]
- Bragagnolo, N.; Rodriguez-Amaya, D.B. Comparison of the cholesterol content of Brazilian chicken and quail eggs. J. Food Compos. Anal. 2003, 16, 147–153. [Google Scholar] [CrossRef]
- Kaźmierska, M.; Korzeniowska, M.; Trziszka, T.; Jarosz, B. Effect of fodder enrichment with pufas on quail eggs. Pol. J. Food Nutr. Sci. 2007, 57, 281–284. [Google Scholar]
- Da Silva, W.A.; Elias, A.H.N.; Aricetti, J.A.; Sakamoto, M.I.; Murakami, A.E.; Gomes, S.T.M.; Visentainer, J.V.; de Souza, N.E.; Matsushita, M. Quail egg yolk (Coturnix coturnix japonica) enriched with omega-3 fatty acids. LWT-Food Sci. Technol. 2009, 42, 660–663. [Google Scholar] [CrossRef]
- Baker, E.J.; Miles, E.A.; Burdge, G.C.; Yaqoob, P.; Calder, P.C. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog. Lipid Res. 2016, 64, 30–56. [Google Scholar] [CrossRef]
- Chilton, F.H.; Dutta, R.; Reynolds, L.M.; Sergeant, S.; Mathias, R.A.; Seeds, M.C. Precision nutrition and Omega-3 polyunsaturated fatty acids: A Case for personalized supplementation approaches for the prevention and management of human diseases. Nutrients 2017, 9, 1165. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Very long chain omega-3 (n-3) fatty acids and human health. Eur. J. Lipid Sci. Technol. 2014, 116, 1280–1300. [Google Scholar] [CrossRef]
- Calder, P.C. Very long-chain n-3 fatty acids and human health: Fact, fiction and the future. Plenary Lecture 3 n-3 PUFA and health: Fact, fiction and the future. Conference on ‘The future of animal products in the human diet: Health and environmental concerns’. The Nutrition Society Summer Meeting 2015 held at the University of Nottingham, Nottingham on 6–9 July 2015. Proc. Nutr. Soc. 2018, 77, 52–72. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Scaioli, E.; Elisa Liverani, E.; Belluzzi, A. The Imbalance between n-6/n-3 polyunsaturated fatty acids and inflammatory bowel disease: A comprehensive review and future therapeutic perspectives. Int. J. Mol. Sci. 2017, 18, 2619. [Google Scholar] [CrossRef] [Green Version]
- Liput, K.P.; Lepczyński, A.; Ogłuszka, M.; Nawrocka, A.; Poławska, E.; Grzesiak, A.; Ślaska, B.; Pareek, C.S.; Czarnik, U.; Pierzchała, M. Effects of dietary n-3 and n-6 polyunsaturated fatty acids in inflammation and cancerogenesis. Int. J. Mol. Sci. 2021, 22, 6965. [Google Scholar] [CrossRef]
- Simopoulos, A.P.; Bourne, P.G.; Faergeman, O. Bellagio report on healthy agriculture, healthy nutrition, healthy people. Nutrients 2013, 5, 411–423. [Google Scholar] [CrossRef]
- Usturoi, M.G.; Ratu, R.N.; Radu-Rusu, R.M.; Ivancia, M.; Usturoi, A. Fatty acid profile in eggs and eggs products. Sci. Pap. Ser. D Anim. Sci. 2021, 64, 399–403. [Google Scholar]
Ingredients | Feeding Group | ||
---|---|---|---|
Rapeseed | Hemp | Camelina | |
Wheat,% | 29.36 | 27.47 | 30.33 |
Barley, % | 6.00 | 6.00 | 6.00 |
Maize, % | 20.00 | 20.00 | 20.00 |
Peas, % | 12.00 | 12.00 | 12.00 |
Sunflower meal, % | 13.01 | 14.99 | 12.04 |
Sunflower oil, % | 1.00 | 1.00 | 1.00 |
Rape cake, % | 10.00 | - | - |
Hemp cake, % | - | 10.00 | - |
Camelina cake, % | - | - | 10.00 |
Brewers’ yeast, % | 5.00 | 5.00 | 5.00 |
Oyster shell, % | 0.50 | 0.50 | 0.50 |
Fodder chalk % | 1.25 | 1.44 | 1.27 |
Premix “Calvet”, % | 1.00 | 1.00 | 1.00 |
Fodder salt, % | 0.10 | 0.10 | 0.10 |
Monocalcium phosphate, % | 0.78 | 0.50 | 0.76 |
Calculated nutritional value of feed mixture | |||
Dry matter, kg/kg | 0.87 | 0.87 | 0.87 |
Metabolizable energy (ME), MJ/kg | 11.07 | 11.26 | 11.19 |
Crude protein, g/kg | 190.04 | 190.04 | 190.05 |
Lysine, g/kg | 8.95 | 8.41 | 8.68 |
Methionine, g/kg | 6.24 | 6.41 | 6.52 |
Fat, g/kg | 43.59 | 37.59 | 38.15 |
Fiber, g/kg | 58.14 | 76.17 | 58.54 |
Ca, g/kg | 12.40 | 12.40 | 12.41 |
P, g/kg | 7.30 | 7.30 | 7.29 |
Groups and Ratio of Fatty Acids | Feed Group | ||
---|---|---|---|
Rapeseed | Hemp | Camelina | |
SFAs | 12.68 | 12.40 | 13.29 |
MUFAs | 19.23 | 17.76 | 21.08 |
PUFAs | 68.09 | 69.84 | 65.63 |
n-6 PUFAs | 64.24 | 65.06 | 51.99 |
n-3 PUFAs | 3.85 | 4.78 | 13.64 |
ALA (C18:3n-3) | 3.82 | 4.77 | 13.25 |
n-6/n-3 PUFAs | 16.69 | 13.61 | 3.81 |
Variables | Feeding Group | SED | p-Value | ||
---|---|---|---|---|---|
Rapeseed n = 15 | Hemp n = 15 | Camelina n = 15 | |||
Weight of egg, g | 10.40 A | 9.20 a | 10.14 | 0.498 | 0.047 |
Weight of yolk, g | 3.96 | 3.66 | 4.03 | 0.372 | 0.567 |
Yolk, % | 37.99 | 39.52 | 39.72 | 3.038 | 0.825 |
Variables | Feeding Group | SED | p-Value | |||
---|---|---|---|---|---|---|
Rapeseed n = 15 | Hemp n = 15 | Camelina n = 15 | ||||
pH | Yolk | 7.10 | 7.19 | 7.07 | 0.087 | 0.365 |
Albumen | 9.38 C,B | 9.17 c | 9.24 b | 0.048 | 0.000 | |
Colour L* | Yolk | 81.17 B | 78.74 b,A | 80.48 a | 0.690 | 0.005 |
Albumen | 65.68 B | 64.35 | 63.15 b | 0.639 | 0.002 | |
a* | Yolk | −7.88 C | −5.77 c | −8.64 C | 0.450 | 0.000 |
Albumen | −5.57 | −5.98 | −4.94 | 1.028 | 0.601 | |
b* | Yolk | 45.45 | 47.16 | 45.45 | 1.736 | 0.531 |
Albumen | 6.31 C | 8.59 c | 9.21 c | 0.463 | 0.000 | |
C | Yolk | 46.24 | 47.52 | 46.37 | 1.710 | 0.717 |
Albumen | 8.43 C | 10.47 c | 11.10 c | 0.424 | 0.000 | |
h | Yolk | 99.77 C | 96.98 c | 100.75 C | 0.514 | 0.000 |
Albumen | 131.97 C | 125.01 c | 124.07 c | 1.401 | 0.000 |
Variables | Feeding Group | SED | p-Value | ||
---|---|---|---|---|---|
Rapeseed n = 15 | Hemp n = 15 | Camelina n = 15 | |||
Dry matter, % | 49.50 B | 48.17 b | 49.54 B | 0.410 | 0.003 |
Protein, % | 14.05 | 13.07 B | 14.66 b | 0.557 | 0.026 |
Lipids, % | 31.38 | 30.42 | 31.32 | 2.085 | 0.122 |
Ash, % | 1.86 | 1.81 | 1.78 | 0.062 | 0.436 |
Cholesterol, mg/g | 10.61 A,B | 12.94 a | 13.18 b | 0.853 | 0.010 |
Fatty Acids | Feeding group | SED | p-Value | ||
---|---|---|---|---|---|
Rapeseed n = 15 | Hemp n = 15 | Camelina n = 15 | |||
C14:0 | 0.38 B | 0.48 b | 0.45 b | 0.039 | 0.027 |
C15:0 | 0.01 | 0.01 | 0.02 | 0.008 | 0.373 |
C16:0 | 22.78 A,B | 25.28 b | 24.73 a | 0.832 | 0.014 |
C17:0 | 0.08 | 0.10 | 0.11 | 0.013 | 0.110 |
C18:0 | 8.22 | 8.17 | 8.40 | 0.396 | 0.826 |
C22:0 | 0.12 | 0.08 | 0.07 | 0.032 | 0.213 |
SFAs | 31.58 B | 34.11 b | 33.77 B | 0.789 | 0.007 |
C14:1n-7 | 0.08 B | 0.14 b | 0.10 | 0.021 | 0.030 |
C16:1n-9 | 0.87 C,A | 0.54 c | 0.69 a | 0.075 | 0.001 |
C16:1n-7 | 4.21 B | 6.02 b | 5.11 | 0.627 | 0.026 |
C17:1n-9 | 0.06 A | 0.07 | 0.08 a | 0.009 | 0.042 |
C18:1n-9trans | 0.14 | 0.13 | 0.13 | 0.010 | 0.307 |
C18:1n-9 | 44.99 C | 38.83 c,B | 42.93 b | 1.432 | 0.001 |
C18:1n-7 | 2.59 | 2.40 | 2.37 | 0.186 | 0.452 |
C20:1n-9 | 0.15 B | 0.15 B | 0.20 b | 0.018 | 0.009 |
MUFAs | 53.08 B | 48.28 b,A | 51.62 a | 1.220 | 0.002 |
C18:2 n-6t,c | 0.08 | 0.07 | 0.07 | 0.006 | 0.192 |
C18:2 n-6 | 10.92 | 12.67 B | 9.76 b | 0.991 | 0.023 |
C18:3 n-6 | 0.20 C | 0.27 c | 0.17 C | 0.016 | 0.000 |
C18:3 n-3 | 0.23 C,B | 0.38 C,b | 0.64 c | 0.039 | 0.000 |
C20:2 n-6 | 0.05 A | 0.08 a | 0.07 | 0.010 | 0.036 |
C20:3 n-6 | 0.15 | 0.21 | 0.17 | 0.027 | 0.095 |
C20:4 n-6 | 2.63 C | 2.49 C | 1.94 c | 0.126 | 0.000 |
C20:5 n-3 | 0.00 | 0.02 | 0.09 | 0.010 | 0.000 |
C22:4 n-6 | 0.10 B,A | 0.14 b,C | 0.07 a,c | 0.013 | 0.000 |
C22:5 n-3 | 0.10 C,B | 0.15 c | 0.21 c,b | 0.016 | 0.000 |
C22:6 n-3 | 0.52 A,C | 0.68 a,C | 1.10 c | 0.058 | 0.000 |
PUFAs | 14.98 | 17.15 A | 14.28 a | 1.071 | 0.032 |
TFAs | 0.22 | 0.20 | 0.19 | 0.012 | 0.137 |
UFA | 0.39 A | 0.47 a,B | 0.34 b | 0.041 | 0.011 |
Variables | Feeding Group | SED | p-Value | ||
---|---|---|---|---|---|
Rapeseed n = 15 | Hemp n = 15 | Camelina n = 15 | |||
PUFAs/SFAs | 0.47 | 0.51 A | 0.42 a | 0.038 | 0.105 |
n-6/n-3 | 16.59 C | 13.09 c,C’ | 6.04 c,c’ | 0.655 | 0.001 |
AI | 0.36 B,A | 0.42 b | 0.40 a | 0.018 | 0.008 |
TI | 0.87 A | 0.95 a | 0.88 A | 0.032 | 0.038 |
h/H | 2.72 B,A | 2.28 b | 2.38 a | 0.126 | 0.004 |
PI | 29.24 A | 32.71 a | 31.78 | 1.440 | 0.060 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razmaitė, V.; Šiukščius, A.; Leikus, R. Effects of Dietary Rapeseed (Brassica napus), Hemp (Cannabis sativa) and Camelina (Camelina sativa) Seed Cakes Supplementation on Yolk and Albumen Colour and Nutritional Value of Yolk Lipids in Estonian Quail Eggs. Animals 2022, 12, 3110. https://doi.org/10.3390/ani12223110
Razmaitė V, Šiukščius A, Leikus R. Effects of Dietary Rapeseed (Brassica napus), Hemp (Cannabis sativa) and Camelina (Camelina sativa) Seed Cakes Supplementation on Yolk and Albumen Colour and Nutritional Value of Yolk Lipids in Estonian Quail Eggs. Animals. 2022; 12(22):3110. https://doi.org/10.3390/ani12223110
Chicago/Turabian StyleRazmaitė, Violeta, Artūras Šiukščius, and Raimondas Leikus. 2022. "Effects of Dietary Rapeseed (Brassica napus), Hemp (Cannabis sativa) and Camelina (Camelina sativa) Seed Cakes Supplementation on Yolk and Albumen Colour and Nutritional Value of Yolk Lipids in Estonian Quail Eggs" Animals 12, no. 22: 3110. https://doi.org/10.3390/ani12223110
APA StyleRazmaitė, V., Šiukščius, A., & Leikus, R. (2022). Effects of Dietary Rapeseed (Brassica napus), Hemp (Cannabis sativa) and Camelina (Camelina sativa) Seed Cakes Supplementation on Yolk and Albumen Colour and Nutritional Value of Yolk Lipids in Estonian Quail Eggs. Animals, 12(22), 3110. https://doi.org/10.3390/ani12223110