Unravelling the Role of Metabolites for Detecting Physiological State of Wild Animals: European Rabbit’s (Oryctolagus cuniculus) Case
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sampling
2.2. Chemical Analysis of Blood Nutritional Metabolites
2.3. Statistical Analysis
3. Results
3.1. Effects of Age and Sex
3.2. Effects of Reproductive Stage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delibes-Mateos, M.; Ferreras, P.; Villafuerte, R. Rabbit Populations and Game Management: The Situation after 15 Years of Rabbit Haemorrhagic Disease in Central-Southern Spain. Biodivers. Conserv. 2008, 17, 559–574. [Google Scholar] [CrossRef]
- Moreno, S.; Villafuerte, R. Traditional Management of Scrubland for the Conservation of Rabbits Oryctolagus cuniculus and Their Predators in Doñana National Park, Spain. Biol. Conserv. 1995, 73, 81–85. [Google Scholar] [CrossRef]
- Villafuerte, R.; Calvete, C.; Gortázar, C.; Moreno, S. First Epizootic of Rabbit Hemorrhagic Disease in Free Living Populations of Oryctolagus cuniculus at Doñana National Park, Spain. J. Wildl. Dis. 1994, 30, 176–179. [Google Scholar] [CrossRef] [Green Version]
- The IUCN Red List of Threatened Species. Version 2022-1. Available online: https://www.iucnredlist.org/species/41291/170619657 (accessed on 20 October 2022).
- Cortés-Avizanda, A.; Colomer, M.À.; Margalida, A.; Ceballos, O.; Donázar, J.A. Modeling the Consequences of the Demise and Potential Recovery of a Keystone-Species: Wild Rabbits and Avian Scavengers in Mediterranean Landscapes. Sci. Rep. 2015, 5, 17033. [Google Scholar] [CrossRef] [Green Version]
- Malo, J.E.; Jimenez, B.; Suarez, F. Seed Bank Build-up in Small Disturbances in a Mediterranean Pasture: The Contribution of Endozoochorous Dispersal by Rabbits. Ecography 1995, 18, 73–82. [Google Scholar] [CrossRef]
- Palomares, F.; Delibes, M.; Revilla, E.; Calzada, J.; Fedriani, J.M. Spatial Ecology of Iberian Lynx and Abundance of European Rabbits in Southwestern Spain. Wildl. Monogr. 2001, 148, 1–36. [Google Scholar]
- Aronson, J.; Floret, C.; Floc’h, E.; Ovalle, C.; Pontanier, R. Restoration and Rehabilitation of Degraded Ecosystems in Arid and Semi-Arid Lands. I. A View from the South. Restor. Ecol. 1993, 1, 8–17. [Google Scholar] [CrossRef]
- Ferreira, C.; Alves, P.C. Influence of Habitat Management on the Abundance and Diet of Wild Rabbit (Oryctolagus cuniculus algirus) Populations in Mediterranean Ecosystems. Eur. J. Wildl. Res. 2009, 55, 487–496. [Google Scholar] [CrossRef]
- Villafuerte, R.; Lazo, A.; Moreno, S. Influence of Food Abundance and Quality on Rabbit Fluctuations: Conservation and Management Implications in Doñana National Park (SW Spain). Rev. Ecol. 1997, 52, 345–356. [Google Scholar]
- Parker, K.L. Advances in the Nutritional Ecology of Cervids at Different Scales. Écoscience 2003, 10, 395–411. [Google Scholar] [CrossRef]
- Raubenheimer, D.; Simpson, S.J.; Mayntz, D. Nutrition, Ecology and Nutritional Ecology: Toward an Integrated Framework. Funct. Ecol. 2009, 23, 4–16. [Google Scholar] [CrossRef]
- Simpson, S.J.; Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity; Princeton University Press: Princeton, NJ, USA, 2012; ISBN 978-1-4008-4280-3. [Google Scholar]
- Raubenheimer, D.; Simpson, S.J.; Tait, A.H. Match and Mismatch: Conservation Physiology, Nutritional Ecology and the Timescales of Biological Adaptation. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1628–1646. [Google Scholar] [CrossRef]
- Whilde, J.; Martindale, M.Q.; Duffy, D.J. Precision Wildlife Medicine: Applications of the Human-Centred Precision Medicine Revolution to Species Conservation. Glob. Chang. Biol. 2017, 23, 1792–1805. [Google Scholar] [CrossRef]
- Chaousis, S.; Leusch, F.D.L.; van de Merwe, J.P. Charting a Path towards Non-Destructive Biomarkers in Threatened Wildlife: A Systematic Quantitative Literature Review. Environ. Pollut. 2018, 234, 59–70. [Google Scholar] [CrossRef]
- Rezzi, S.; Ramadan, Z.; Fay, L.B.; Kochhar, S. Nutritional Metabonomics: Applications and Perspectives. J. Proteome Res. 2007, 6, 513–525. [Google Scholar] [CrossRef]
- Larsen, T.; Fernández, C. Enzymatic-Fluorometric Analyses for Glutamine, Glutamate and Free Amino Groups in Protein-Free Plasma and Milk. J. Dairy Res. 2017, 84, 32–35. [Google Scholar] [CrossRef]
- SAS/STAT® 9.2 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2009.
- Calvete, C.; Angulo, E.; Estrada, R.; Moreno, S.; Villafuerte, R. Quarantine length and survival of translocated european wild rabbits. J. Wildl. Manag. 2005, 69, 1063–1072. [Google Scholar] [CrossRef]
- Bellier, R.; Gidenne, T.; Vernay, M.; Colin, M. In Vivo Study of Circadian Variations of the Cecal Fermentation Pattern in Postweaned and Adult Rabbits. J. Anim. Sci. 1995, 73, 128–135. [Google Scholar] [CrossRef]
- Prud’Hon, M.; Chérubin, M.; Goussopoulos, J.; Carles, Y. Évolution, au cours de la croissance, des caractéristiques de la consommation d’aliments solide et liquide du lapin domestique nourri ad libitum. Anim. Res. 1975, 24, 289–298. [Google Scholar] [CrossRef]
- Blas, C.; de Wiseman, J. (Eds.) Nutrition of the Rabbit, 2nd ed.; CABI: Wallingford, UK, 2010; ISBN 978-1-84593-669-3. [Google Scholar]
- Marín-García, P.J.; Ródenas, L.; Martínez-Paredes, E.; Cambra-López, M.; Blas, E.; Pascual, J.J. A Moderate Protein Diet Does Not Cover the Requirements of Growing Rabbits with High Growth Rate. Anim. Feed Sci. Technol. 2020, 264, 114495. [Google Scholar] [CrossRef]
- Joseph, D.R. The relation of the weight of the contents of stomach and cecum to the body-weight in rabbits. J. Exp. Med. 1909, 11, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Cooke, B.D. Daily Food Intake of Free-Ranging Wild Rabbits in Semiarid South Australia. Wildl. Res. 2014, 41, 141–148. [Google Scholar] [CrossRef]
- Gonçalves, H.; Alves, P.C.; Rocha, A. Seasonal Variation in the Reproductive Activity of the Wild Rabbit (Oryctolagus cuniculus algirus) in a Mediterranean Ecosystem. Wildl. Res. 2002, 29, 165–173. [Google Scholar] [CrossRef]
- Wade, G.N.; Schneider, J.E. Metabolic Fuels and Reproduction in Female Mammals. Neurosci. Biobehav. Rev. 1992, 16, 235–272. [Google Scholar] [CrossRef]
- Marín-García, P.J.; López-Luján, M.C.; Ródenas, L.; Martínez-Paredes, E.M.; Blas, E.; Pascual, J.J. Plasmatic Urea Nitrogen in Growing Rabbits with Different Combinations of Dietary Levels of Lysine, Sulphur Amino Acids and Threonine. Animals 2020, 10, 946. [Google Scholar] [CrossRef]
- Eggum, B.O. Blood Urea Measurement as a Technique for Assessing Protein Quality. Br. J. Nutr. 1970, 24, 983–988. [Google Scholar] [CrossRef] [Green Version]
- Bronson, F.H. Mammalian Reproductive Biology; University of Chicago Press: Chicago, IL, USA, 1989. [Google Scholar]
- Bronson, F.H. Mammalian Reproduction: An Ecological Perspective. Biol. Reprod. 1985, 32, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Xiccato, G.; Trocino, A.; Boiti, C.; Brecchia, G. Reproductive Rhythm and Litter Weaning Age as They Affect Rabbit Doe Performance and Body Energy Balance. Anim. Sci. 2005, 81, 289–296. [Google Scholar] [CrossRef]
- Marín-García, P.J.; López-Luján, M.C.; Ródenas, L.; Martínez-Paredes, E.; Cambra-López, M.; Blas, E.; Pascual, J.J. Do Growing Rabbits with a High Growth Rate Require Diets with High Levels of Essential Amino Acids? A Choice-Feeding Trial. Animals 2021, 11, 824. [Google Scholar] [CrossRef]
- Houseknecht, K.L.; Spurlock, M.E. Leptin Regulation of Lipid Homeostasis: Dietary and Metabolic Implications. Nutr. Res. Rev. 2003, 16, 83. [Google Scholar] [CrossRef]
- Fortun-Lamothe, L. Energy Balance and Reproductive Performance in Rabbit Does. Anim. Reprod. Sci. 2006, 93, 1–15. [Google Scholar] [CrossRef]
- Gross, J.; van Dorland, H.A.; Bruckmaier, R.M.; Schwarz, F.J. Performance and Metabolic Profile of Dairy Cows during a Lactational and Deliberately Induced Negative Energy Balance with Subsequent Realimentation. J. Dairy Sci. 2011, 94, 1820–1830. [Google Scholar] [CrossRef]
- Calle, E.W.; García, M.L.; Blasco, A.; Argente, M.J. Relationship between Body Condition and Energy Mobilization in Rabbit Does. World Rabbit Sci. 2017, 25, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Marín-García, P.J.; Llobat, L. What Are the Keys to the Adaptive Success of European Wild Rabbit (Oryctolagus cuniculus) in the Iberian Peninsula? Animals 2021, 11, 2453. [Google Scholar] [CrossRef]
- Llobat, L.; Marín-García, P.J. Application of Protein Nutrition in Natural Ecosystem Management for European Rabbit (Oryctolagus cuniculus) Conservation. Biodivers. Conserv. 2022, 31, 1435–1444. [Google Scholar] [CrossRef]
- Bahamonde, P.A.; Feswick, A.; Isaacs, M.A.; Munkittrick, K.R.; Martyniuk, C.J. Defining the Role of Omics in Assessing Ecosystem Health: Perspectives from the Canadian Environmental Monitoring Program: Omics for Ecosystem Health. Environ. Toxicol. Chem. 2016, 35, 20–35. [Google Scholar] [CrossRef]
- Melvin, S.D.; March, D.T.; Marshall, K.; Carroll, A.R.; van de Merwe, J.P. Improving Rehabilitation Outcomes Using Metabolomics: Health, Recovery and Biomarkers of Mortality in Sick and Injured Green Turtles (Chelonia mydas). Biol. Conserv. 2021, 254, 108943. [Google Scholar] [CrossRef]
- Marín-García, P.J.; Llobat, L.; Rouco, C.; Aguayo-Adán, J.A.; Larsen, T.; Cambra-López, M.; Blas, E.; Pascual, J.J. Nutritional Metabolites as Biomarkers of Previous Feed Intake in European Rabbit (Oryctolagus cuniculus): Applications on Conservation. Animals 2022, 12, 2608. [Google Scholar] [CrossRef]
Metabolites Analyzed 1 | Range | Values | Coefficient of Variation (%) |
---|---|---|---|
PUN (mg/dL) | 12.95–40.00 | 20.5 ± 0.63 | 26.0 |
NEFA (µ eqv./L) | 105–3600 | 1272 ± 99.6 | 64.6 |
Glucose (mM) | 2.16–30.8 | 8.16 ± 0.64 | 63.3 |
Albumin (g/L) | 25.2–57.1 | 41.5 ± 1.21 | 16.6 |
Total protein (g/L) | 42.7–71.3 | 56.3 ± 1.41 | 14.2 |
Glutamate (microM) | 74–589 | 323 ± 38.6 | 38.6 |
Full stomach contents weight (g) | 2.17–109.8 | 39.2 ± 2.78 | 59.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-García, P.J.; Llobat, L.; Rouco, C.; Aguayo-Adán, J.A.; Larsen, T.; Cambra-López, M.; Blas, E.; Pascual Amorós, J.J. Unravelling the Role of Metabolites for Detecting Physiological State of Wild Animals: European Rabbit’s (Oryctolagus cuniculus) Case. Animals 2022, 12, 3225. https://doi.org/10.3390/ani12223225
Marín-García PJ, Llobat L, Rouco C, Aguayo-Adán JA, Larsen T, Cambra-López M, Blas E, Pascual Amorós JJ. Unravelling the Role of Metabolites for Detecting Physiological State of Wild Animals: European Rabbit’s (Oryctolagus cuniculus) Case. Animals. 2022; 12(22):3225. https://doi.org/10.3390/ani12223225
Chicago/Turabian StyleMarín-García, Pablo Jesús, Lola Llobat, Carlos Rouco, Juan Antonio Aguayo-Adán, Torben Larsen, Maria Cambra-López, Enrique Blas, and Juan José Pascual Amorós. 2022. "Unravelling the Role of Metabolites for Detecting Physiological State of Wild Animals: European Rabbit’s (Oryctolagus cuniculus) Case" Animals 12, no. 22: 3225. https://doi.org/10.3390/ani12223225
APA StyleMarín-García, P. J., Llobat, L., Rouco, C., Aguayo-Adán, J. A., Larsen, T., Cambra-López, M., Blas, E., & Pascual Amorós, J. J. (2022). Unravelling the Role of Metabolites for Detecting Physiological State of Wild Animals: European Rabbit’s (Oryctolagus cuniculus) Case. Animals, 12(22), 3225. https://doi.org/10.3390/ani12223225