Relationships between the Mini-InDel Variants within the Goat CFAP43 Gene and Body Traits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collecting Animal Samples, Recording Phenotypes, Isolating DNA
2.2. Primer Design, PCR Amplification, and InDel Detection
2.3. Statistical Analysis and Cluster Analysis
3. Results
3.1. InDel Variants of the Goat CFAP43 Gene
3.2. Gene Frequencies, Allele Frequencies, and Genetic Parameters
3.3. Association between Genotypes and Body Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rachev, E.; Schuster-Gossler, K.; Fuhl, F.; Ott, T.; Tveriakhina, L.; Beckers, A.; Hegermann, J.; Boldt, K.; Mai, M.; Kremmer, E.; et al. CFAP43 modulates ciliary beating in mouse and Xenopus. Dev. Biol. 2020, 459, 109–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, M.; Hirano, M.; Izumi, T.; Mori, Y.; Ito, K.; Saitoh, Y.; Terada, N.; Sato, T.; Sukegawa, J. Cytoskeletal Protein 4.1G Is Essential for the Primary Ciliogenesis and Osteoblast Differentiation in Bone Formation. Int. J. Mol. Sci. 2022, 23, 2094. [Google Scholar] [CrossRef] [PubMed]
- Chinipardaz, Z.; Liu, M.; Graves, D.; Yang, S. Diabetes Impairs Fracture Healing Through Disruption Of Cilia Formation In Osteoblasts. Bone 2021, 153, 116176. [Google Scholar] [CrossRef] [PubMed]
- Dillinger, C.; Nama, N.; Ahmed, D. Ultrasound-activated ciliary bands for microrobotic systems inspired by starfish. Nat Commun. 2021, 12, 6455. [Google Scholar] [CrossRef]
- Alhassen, W.; Kobayashi, Y.; Su, J.; Robbins, B.; Nguyen, H.; Myint, T.; Yu, M.; Nauli, S.M.; Saito, Y.; Alachkar, A. Regulation of Brain Primary Cilia Length by MCH Signaling: Evidence from Pharmacological, Genetic, Optogenetic, and Chemogenic Manipulations. Mol. Neurobiol. 2021, 59, 245–265. [Google Scholar] [CrossRef]
- Seon-Ae, J.; Ji-Hyun, L.; Dong, W.K.; Je-Yoel, C. E3-ubiquitin ligase NEDD4 enhances bone formation by removing TGFβ1-induced pSMAD1 in immature osteoblast. Bone 2018, 116, 248–258. [Google Scholar]
- Yuqing, C.; Guiqiong, L.; Shishay, G.; Xunping, J. Novel mutations in the signal transducer and activator of transcription 3 gene are associated with sheep body weight and fatness traits. Mamm. Genome 2021, 32, 38–49. [Google Scholar]
- Hu, R.; Jiang, X.; Liu, G.; Chi, S. Polygenic co-expression changes the testis growth, hormone secretion and spermatogenesis to prompt puberty in Hu sheep. Theriogenology 2022, 194, 116–125. [Google Scholar] [CrossRef]
- Wang, Z.; Pan, Y.; He, L.; Song, X.; Chen, H.; Pan, C.; Qu, L.; Zhu, H.; Lan, X. Multiple morphological abnormalities of the sperm flagella (MMAF)-associated genes: The relationships between genetic variation and litter size in goats. Gene 2020, 753, 144778. [Google Scholar]
- Wang, R.; Wang, Z.; Wang, X.; Li, Y.; Qu, L.; Lan, X. A novel 4-bp insertion within the goat CFAP43 gene and its association with litter size. Small Rumin. Res. 2021, 202, 106456. [Google Scholar] [CrossRef]
- Migdał, W.; Kawęcka, A.; Sikora, J.; Migdał, A. Meat Quality of the Native Carpathian Goat Breed in Comparison with the Saanen Breed. Animals 2021, 11, 2220. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Pei, J.; Wu, X.; Bao, P.; Ding, X.; Xiong, L.; Chu, M.; Lan, X.; Yan, P. Detection of InDel and CNV of SPAG17 gene and their associations with bovine growth traits. Anim. Biotechnol. 2022, 33, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jin, Y.; Jiang, F.; Cheng, H.; Wang, Y.; Lan, X.; Song, E. Relationship between an indel mutation within the SIRT4 gene and growth traits in Chinese cattle. Anim. Biotechnol. 2019, 30, 352–357. [Google Scholar] [CrossRef]
- Liu, H.; Xu, H.; Lan, X.; Cao, X.; Pan, C. The InDel variants of sheep IGF2BP1 gene are associated with growth traits. Anim. Biotechnol. 2021, 32, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, M.; Wu, H.; Akhatayeva, Z.; Lan, X.; Fei, P.; Mao, C.; Jiang, F. Indel mutations of sheep PLAG1 gene and their associations with growth traits. Anim. Biotechnol. 2021, 32, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Chen, Y.; Xin, D.; Liu, T.; He, L.; Kang, Y.; Pan, C.; Shen, W.; Lan, X.; Liu, M. Effect of indel variants within the sorting nexin 29 (SNX29) gene on growth traits of goats. Anim. Biotechnol. 2020, 31, 1–6. [Google Scholar] [CrossRef]
- Gao, J.; Song, X.; Wu, H.; Tang, Q.; Wei, Z.; Wang, X.; Lan, X.; Zhang, B. Detection of rs665862918 (15-bp Indel) of the HIAT1 Gene and its Strong Genetic Effects on Growth Traits in Goats. Animals 2020, 10, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, W.; Liu, N.; Zhang, X.; Zhang, Y.; Qu, L.; Yan, H.; Lan, X.; Dong, W.; Pan, C. A 20-bp insertion/deletion (indel) polymorphism within the CDC25A gene and its associations with growth traits in goat. Arch. Anim. Breed. 2019, 62, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, S.; Yuan, T.; Sun, X. Genetic effects of FTO gene insertion/deletion (InDel) on fat-tail measurements and growth traits in Tong sheep. Anim. Biotechnol. 2021, 32, 229–239. [Google Scholar] [CrossRef]
- Li, W.Y.; Liu, Y.; Gao, C.F.; Lan, X.Y.; Wu, X.F. A novel duplicated insertion/deletion (InDel) of the CPT1a gene and its effects on growth traits in goat. Anim. Biotechnol. 2021, 32, 343–351. [Google Scholar] [CrossRef]
- Mohammadi, K.; Beigi, N.M.T.; Rahmatnejad, E.; Abdollahi-Arpanahi, R.; Hossaini, S.M.R.; Hagh, N.S. Genetic correlations between growth and reproductive traits in Zandi sheep. Trop. Anim. Health Prod. 2014, 46, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Sihuan, Z.; Enhui, J.; Ke, W.; Yu, Z.; Hailong, Y.; Lei, Q.; Hong, C.; Xianyong, L.; Chuanying, P. Two Insertion/Deletion Variants within SPAG17 Gene Are Associated with Goat Body Measurement Traits. Animals 2019, 9, 379. [Google Scholar]
- Mingyue, C.; Hailong, Y.; Ke, W.; Yang, C.; Rui, C.; Jinwang, L.; Haijing, Z.; Lei, Q.; Chuanying, P. Goat SPEF2: Expression profile, indel variants identification and association analysis with litter size. Theriogenology 2019, 139, 147–155. [Google Scholar]
- Zhang, D.; Xu, J.; Yang, P.; Wen, Y.; He, H.; Li, J.; Liang, J.; Zheng, Y.; Zhang, Z.; Wang, X.; et al. Genetic variant of SPARC gene and its association with growth traits in Chinese cattle. Arch. Anim. Breed. 2020, 63, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aljanabi, S.M.; Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 1997, 25, 4692–4693. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Bai, Y.; Yang, H.; Yan, H.; Liu, J.; Shi, L.; Song, X.; Li, L.; Dong, S.; et al. Relationship between SNPs of POU1F1 Gene and Litter Size and Growth Traits in Shaanbei White Cashmere Goats. Animals 2019, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.Y.; Cheng, G.; Cheng, Z.; Bao, C.; Yamada, T.; Cao, G.; Bao, S.; Schreurs, N.M.; Zan, L.; Tong, B. Association of variants in FABP4, FASN, SCD, SREBP1 and TCAP genes with intramuscular fat, carcass traits and body size in Chinese Qinchuan cattle. Meat Sci. 2022, 192, 114. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar]
- Coutton, C.; Vargas, A.S.; Amiri-Yekta, A.; Kherraf, Z.E.; Ben, M.S.; Le Tanno, P.; Wambergue-Legrand, C.; Karaouzene, T.; Martinez, G.; Crouzy, S.; et al. Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nat. Commun. 2018, 9, 686. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, H.; Kitami, M.; Uchima, K.K.H.; He, L.; Wang, J.; Lagor, W.R.; Perrien, D.S.; Komatsu, Y. Temporospatial regulation of intraflagellar transport is required for the endochondral ossification in mice. Dev. Biol. 2021, 48, 91–100. [Google Scholar] [CrossRef]
- Staci, E.E.; Ruchi, B.; Patrick, J.A.; Nicolas, F.B. Cilia signaling and obesity. Semin. Cell Dev. Biol. 2020, 110, 43–50. [Google Scholar]
- Bernard, A.A.; Naharros, I.O.; Guglielmetti, F.B.; Yue, X.; Vaisse, C. OR04-01 MRAP2 Regulates Energy Homeostasis by Promoting Primary Cilia Localization of MC4R. J. Endocr. Soc. 2020, 4, OR04-01. [Google Scholar] [CrossRef]
- Ren, X.Y.; Jia, S.T.; Gao, B.Q.; Zhou, Q.S.; Xu, Y.; Liu, P.; Li, J. Application of proteomics and metabolomics to assess ammonia stress response and tolerance mechanisms of juvenile ornate rock lobster Panulirus ornatus. Sci. Total Environ. 2022, 837, 155751. [Google Scholar] [CrossRef] [PubMed]
- Xin, D.; Bai, Y.; Bi, Y.; He, L.; Kang, Y.; Pan, C.; Zhu, H.; Chen, H.; Qu, L.; Lan, X. Insertion/deletion variants within the IGF2BP2 gene identified in reported genome-wide selective sweep analysis reveal a correlation with goat litter size. J. Zhejiang Univ. Sci. B 2021, 22, 757–766. [Google Scholar] [CrossRef]
- Yanghai, Z.; Wenbo, C.; Han, Y.; Min, W.; Hailong, Y.; Haijing, Z.; Jinwang, L.; Lei, Q.; Xianyong, L.; Chuanying, P. A novel missense mutation (L280V) within POU1F1 gene strongly affects litter size and growth traits in goat. Theriogenology 2019, 135, 198–203. [Google Scholar]
- Hailong, Y.; Enhui, J.; Haijing, Z.; Linyong, H.; Jinwang, L.; Lei, Q. The novel 22 bp insertion mutation in a promoter region of the PITX2 gene is associated with litter size and growth traits in goats. Arch. Anim. Breed. 2018, 61, 329–336. [Google Scholar]
- Jiang, E.; Kang, Z.; Wang, X.; Liu, Y.; Liu, X.; Wang, Z.; Li, X.; Lan, X. Detection of insertions/deletions (InDels) within the goat Runx2 gene and their association with litter size and growth traits. Anim. Biotechnol. 2019, 30, 169–177. [Google Scholar] [CrossRef]
- Bi, Y.; Luo, B.; Zhang, S.; Li, J.; Yang, Y.; Lan, X.; Pan, C. Investigation of Genetic Effects of Nucleotide Variants Within the Goat PRNT Gene on Growth Performance. Anim. Biotechnol. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Shi, D.; Komatsu, K.; Uemura, T.; Fujimori, T. Analysis of ciliary beat frequency and ovum transport ability in the mouse oviduct. Genes Cells Devoted Mol. Cell. Mech. 2011, 16, 169–177. [Google Scholar] [CrossRef]
- Ev, R.; Karin, S.; Franziska, F.; Tim, O.; Lena, T.; Anja, B.; Jan, H.; Karsten, B.; Michaela, M.; Elisabeth, K.; et al. CFAP43 modulates ciliary beating in mouse and Xenopus. Dev. Biol. 2020, 459, 109–125. [Google Scholar]
- Sherrill-Mix, S.; Ocwieja, K.E.; Bushman, F.D. Gene activity in primary T cells infected with HIV89.6: Intron retention and induction of genomic repeats. Retrovirology 2015, 12, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fingerhut, J.M.; Yamashita, Y.M. The regulation and potential functions of intronic satellite DNA. Semin. Cell Dev. Biol. 2022, 128, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Neininger, K.; Marschall, T.; Helms, V. SNP and indel frequencies at transcription start sites and at canonical and alternative translation initiation sites in the human genome. PLoS ONE 2019, 14, e0214816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Yuan, R.; Luo, Y.; Kang, Z.; Zhu, H.; Qu, L.; Lan, X.; Song, X. Exploration of Genetic Variants within the Goat A-Kinase Anchoring Protein 12 (AKAP12) Gene and Their Effects on Growth Traits. Animals 2021, 11, 2090. [Google Scholar] [CrossRef] [PubMed]
Primers | Sequences (5′-3′) | Loci | Length (bp) |
---|---|---|---|
L-13 | F: GGGTCCTTGTTGGTGGTAAACA R: GGATTGTTTTTACTTTCTGCCTCG | intron variant | 157/153 |
L-16 | F: TGCAATGGACTACCTCTTTCTACA R: TGCTTTCTCCAAGATCATCATCAC | intron variant | 169/173 |
L-19 | F: GGACAGAGAGACAGAGTTTCAGGT R: CAGACTCCCCTATCTTCAGATTA | intron variant | 168/162 |
Rs Number | Location | NP | NT | Polymorphism | Citations |
---|---|---|---|---|---|
rs637928228 | g.26924232_26924254del | P1 | L1 | No polymorphism | [9] |
rs645605968 | g.26927779_26927789del | P8 | L2 | No polymorphism | [9] |
rs640647799 | g.26935998_26936011del | P2 | L3 | No polymorphism | [9] |
rs660531175 | g.26936406_26936419del | P3 | L4 | No polymorphism | [9] |
rs670883772 | g.26936813_26936814ins | P9 | L5 | No polymorphism | [9] |
rs649997325 | g.26942655_26942656ins | P10 | L6 | No polymorphism | [9] |
rs637959012 | g.26949228_26949229ins | P11 | L7 | No polymorphism | [9] |
rs669535680 | g.26955481_26955486del | P12 | L8 | No polymorphism | [9] |
rs638243880 | g.26956800_26956804del | P13 | L9 | No polymorphism | [9] |
rs660347164 | g.26961949_26961955del | P14 | L10 | No polymorphism | [9] |
rs646148976 | g.26962608_26962611del | CFAP43-P1 | L11 | No polymorphism | [10] |
rs639683881 | g.26966821_26966830del | P15 | L12 | No polymorphism | [9] |
rs663035021 | g.26978960_26978963del | CFAP43-P2 | L-13 | Polymorphism | [10] |
rs646466463 | g.26989558_26989563del | P16 | L14 | No polymorphism | [9] |
rs667434652 | g.26995455_26995460dup | P17 | L15 | No polymorphism | [9] |
rs642797226 | g.26995509_26995512dup | CFAP43-P3 | L-16 | Polymorphism | [10] |
rs652206372 | g.27003007_27003016del | P18 | L17 | No polymorphism | [9] |
rs638859240 | g.27005906_27005910del | P19 | L18 | No polymorphism | [9] |
rs640685693 | g.27012990_27012996dup | P20 | L-19 | Polymorphism | [9] |
rs669411788 | g.27016234_27016239del | P21 | L20 | No polymorphism | [9] |
rs642762371 | g.27034710_27034711ins | P22 | L21 | No polymorphism | [9] |
rs640237668 | g.27039504_27039505ins | P4 | L22 | No polymorphism | [9] |
rs644941577 | g.27047056_27047079del | P5 | L23 | No polymorphism | [9] |
rs655570881 | g.27056053_27056058dup | P23 | L24 | No polymorphism | [9] |
rs667953078 | g.27063791_27063805dup | P6 | L25 | No polymorphism | [9] |
rs666915769 | g.27064156_27064174del | P7 | L26 | No polymorphism | [9] |
Loci | Body Traits (cm) | II | ID | DD | p-Values |
---|---|---|---|---|---|
L-13 | Chest Depth | 27.62 ± 0.15 (n = 269) | 25.91 ± 0.93 (n = 11) | - | 0.031 |
L-16 | Body Length | 64.39 ± 2.74 a (n = 9) | 64.84 ± 0.36 ab (n = 268) | 65.89 ± 0.30 b (n = 376) | 0.026 |
Chest Width | 15.94 ± 0.85 a (n = 9) | 17.65 ± 0.15 b (n = 269) | 17.78 ± 0.12 b (n = 378) | 0.026 | |
Cannon Circumference | 7.69 ± 0.13 a (n = 9) | 7.92 ± 0.06 a (n = 270) | 8.11 ± 0.04 b (n = 375) | 0.016 | |
Back Height | 53.87 ± 1.78 a (n = 4) | 58.66 ± 0.34 b (n = 157) | 58.29 ± 0.3 b (n = 157) | 0.023 | |
L-19 | Body Length | 64.28 ± 0.85 a (n = 69) | 66.33 ± 0.32 b (n = 351) | 66.70 ± 0.29 b (n = 417) | 0.010 |
Chest Circumference | 86.85 ± 1.29 a (n = 69) | 89.50 ± 0.47 b (n = 351) | 89.92 ± 0.43 b (n = 417) | 0.031 | |
Cannon Circumference | 7.81 ± 0.12 a (n = 69) | 8.22 ± 0.47 b (n = 352) | 8.28 ± 0.04 b (n = 416) | 0.001 |
Loci; Litter | Body Traits (cm) | Observed Genotypes (Mean ± SE) | p-Values | ||
---|---|---|---|---|---|
II | ID | DD | |||
L-16; single lamb | Chest Width | 14.30 ± 0.17 a (n = 5) | 17.05 ± 0.2 b (n = 155) | 17.33 ± 0.2 b (n = 176) | 0.038 |
L-16; twin lamb | Cannon Circumference | 7.55 ± 0.16 a (n = 4) | 8.46 ± 0.07 b (n = 109) | 8.50 ± 0.05 b (n = 198) | 0.021 |
L-19; triple lamb | Body Height | 65.00 ± 1.18 (n = 7) | 57.75 ± 1.31 (n = 4) | - | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mi, F.; Wu, X.; Wang, Z.; Wang, R.; Lan, X. Relationships between the Mini-InDel Variants within the Goat CFAP43 Gene and Body Traits. Animals 2022, 12, 3447. https://doi.org/10.3390/ani12243447
Mi F, Wu X, Wang Z, Wang R, Lan X. Relationships between the Mini-InDel Variants within the Goat CFAP43 Gene and Body Traits. Animals. 2022; 12(24):3447. https://doi.org/10.3390/ani12243447
Chicago/Turabian StyleMi, Fang, Xianfeng Wu, Zhen Wang, Ruolan Wang, and Xianyong Lan. 2022. "Relationships between the Mini-InDel Variants within the Goat CFAP43 Gene and Body Traits" Animals 12, no. 24: 3447. https://doi.org/10.3390/ani12243447
APA StyleMi, F., Wu, X., Wang, Z., Wang, R., & Lan, X. (2022). Relationships between the Mini-InDel Variants within the Goat CFAP43 Gene and Body Traits. Animals, 12(24), 3447. https://doi.org/10.3390/ani12243447