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Simple Summary: In this study we compare the impact of cryopreservation with dextran and
egg yolk on motility, morphology, and DNA integrity of spermatozoa of dogs of different ages
(Chinese Crested breed). We found that the concentration, total number, and motility of fresh
spermatozoa decreased, whereas the damage of the DNA increased in dogs older than 7 years. The
cryopreservation of spermatozoa using extenders with egg yolk or dextran led to a decrease in these
parameters in the oldest age group in an equal manner. However, taking into account the possibility
of standardizing the composition of the freezing media and excluding foreign proteins from it, the
use of dextran for freezing dog spermatozoa is preferable. The cryopreservation of dog spermatozoa,
especially of the Chinese Crested breed, should be carried out in the young and middle aged dogs
due to the age-related decrease of the cryotolerance of the cells.

Abstract: Egg yolk is a very common supplement of extenders aimed to protect sperm from cryoin-
jury, but due to their biological risks and difficulties with media standardization, there is a search for
alternative. In addition, sperm cryoresistance can be affected by the initial decrease of their functional
characteristics caused by age. The aim of this work was to evaluate the efficiency of using dextran
(molecular weight 500 kDa) in the extenders instead of egg yolk for the cryopreservation of sperma-
tozoa of dogs (Chinese Crested breed) of different ages. The obtained ejaculates were divided into
three groups depending on the animal’s age: 1–3, 4–6 and 7–10 years old. Sperm was cryopreserved
by using 7% glycerol and 20% egg yolk, or 20% dextran. The cryoresistance of spermatozoa of the
oldest age category was dramatically decreased, which was manifested in their morphology, motility,
and DNA fragmentation rate. There were no differences between the cryoprotectant effect of the
dextran-based extender on spermatozoa and the egg yolk-based extender in all age categories of dogs.
However, given the benefits of dextran-containing media, its use for the cryopreservation of canine
spermatozoa has potential benefits that need to be confirmed by sperm fertilization outcomes.

Keywords: cryopreservation; spermatozoa; Chinese Crested; dog; canine; motility; DNA fragmentation

1. Introduction

The artificial insemination of animals is a highly effective method for improving the
pedigree qualities of animals as well as enhancing their productivity. It is not widespread
in breeding work with dogs, although in recent years, cases of artificial insemination using
cryopreserved dog semen have become more frequent in many countries in the world for
medical and/or breeding management reasons [1]. Another benefit of cryopreservation is
the ability to use cryobanked sperm from outstanding sires to support genetic diversity [2].
In addition, cryopreservation protocols for dog semen cryopreservation may be used to
preserve the semen from threatened wild Canid species [3]. However, cryopreservation
induces a decrease in morphological and functional characteristics of spermatozoa due to
oxidative stress, which can also cause lipid peroxidation and DNA fragmentation [4–6].
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The degree of cryopreservation damage can be determined by the initial morphological
and functional states of spermatozoa. Taking into account that the morphology and
motility of spermatozoa decline as the dog’s age increases, it can adversely affect the
sperm’s cryotolerance [7,8]. The degree of cryopreservation damage also depends on
cooling-thawing rates and freezing medium composition determining their protective
properties [9,10]. Cryoprotectant media for many animal species, including dogs, most
often include glycerol and egg yolk [11–13]. Egg yolk amino acids are widely known to
have cryoprotectant and antioxidant effects on dog spermatozoa, however, it is difficult to
standardize by compounds composition, which varies with bird diets [14]. Moreover, the
use of chicken yolk always carries the risk of cross-contamination of samples with various
infectious agents and has possibility to change spermatozoa membrane properties while
acting with foreign egg yolk proteins [15]. In this regard, the search for substances that can
replace the yolk in the composition of the cryoprotectant medium is relevant. The presence
of polysaccharides in the cryoprotectant media lowers the crystallization temperature,
which facilitates the deep cooling of cells [16]. In this regard, the use of dextran as a
non-penetrating cryoprotectant with glycerol is likely to be able to perform the protective
role instead of egg yolk. It was noted that dextran forms a layer around membrane
phospholipids due to the formation of bonds between the hydrogen of phosphate groups
and the -OH group of dextran [17,18]. In addition, the ability to bind dextran through
weak hydrogen bonds and Van der Waals interaction was shown [19]. Thanks to these
connections between dextran and the sperm surface, the formation of large ice crystals is
reduced, and, thus, mechanical damage to the cells is reduced [20].

The aim of this work was to evaluate the cryotolerance (morphology, motility, and
DNA integrity) of spermatozoa of dogs of different ages after freezing with dextran-
(molecular weight 500 kDa) or egg yolk-based media.

2. Materials and Methods

The procedures involving dogs were approved by the Ethical Committee for Animal
Experimentation of the Institute for Problems of Cryobiology and Cryomedicine of the
National Academy of Sciences of Ukraine. (ECAE-IPCC; #15.2018). Written informed
consent was obtained from the owners before their animals participated in the study.

2.1. Semen Collection and Analysis

The ejaculates of 9 male Chinese Crested dogs aged between 1 and 10 years old (3 dogs
in each age group) from a private breading centre were used in the research. Weekly, the
semen was collected manually (three times for each dog) in the presence of a female in
the period of oestrus. Immediately after that, the second fraction from each ejaculate was
placed in a water bath at 37 ◦C and transported to the laboratory in 1 h and then analyzed.

Concentrations of spermatozoa were determined by cytometric method in a hemo-
cytometer. Sperm viability was assessed in smears stained with eosin-nigrosin (Magapor,
Spain) under a light microscope with a magnification of ×400. The morphological vio-
lations index describes the percentages of head, midpiece, and tail abnormalities. The
percentage of total motile spermatozoa (TMOT), progressive motile spermatozoa (PMOT),
sperm velocity parameters curvilinear velocity (VCL), average path velocity (VAP), straight
line velocity (VSL), amplitude of lateral head displacement (ALH), and straightness (STR)
were determined by computer-assisted sperm analysis (CASA; SpermVision, Minitube), as
described previously [21]. Dogs whose semen had total motile sperm higher than 80% and
normal morphology, and sperm counts higher than 200 × 106 sperm cells per 1 mL were
considered fertile.

2.2. Sperm Preparation and Cryopreservation

Ejaculates obtained from dogs were divided into groups depending on the age of
the animals: group 1—age 1–3 years, group 2—4–6 years, group 3—7–10 years (Figure 1).
Then, the samples were diluted with Tris-citric acid-fructose (TCF) extender in a ratio of
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1:1 and centrifuged at 700× g for 5 min (room temperature). TCF composition: 249 mM
Trizma base (Sigma-Aldrich, St. Louis, MO, USA), 80 mM citric acid, 69 mM fructose,
supplemented with 0.1g penicillin, 0.1g streptomycin sulfate. Sperm pellets were re-
suspended in TCF at a concentration of 200 × 106 spermatozoa/mL. Canine sperm freezing
was performed as described by Rodenas et al. with our modifications [22]. Diluted
spermatozoa in a tube were plunged into a 250 mL glass beaker containing 200 mL of water
at 4 ◦C for 1 h. Then, samples were diluted slowly by adding an equal volume of freezing
extender 1 (14% glycerol, 40% of egg yolk in TCF) or freezing extender 2 (14% glycerol,
40% dextran (Sigma-Aldrich, USA) in TCF) that was pre-cooled up to 4 ◦C, resulting in a
final concentration of 100 × 106 spermatozoa/mL. After 30 min of equilibration with the
freezing extender, the sperm was packed into 0.25 mL plastic straws (Minitube, Tiefenbach,
Germany) that were placed horizontally on a rack 4 cm above the surface of liquid nitrogen
(LN2) for 15 min. Then, they were plunged into the LN2 and kept in it for at least 1 week
before being thawed for evaluation. The straws were thawed in a water bath at 38 ◦C for
30 s. The content of each straw was diluted in a stepwise manner with TCF, and after
centrifugation the pellets were diluted with TCF. After that, we assessed motility, viability,
and DNA fragmentation rate.
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Figure 1. Experimental design for semen collection, data processing, and analysis.

2.3. Sperm DNA Fragmentation Assessment

Determination of the DNA fragmentation rate was carried out using the Halosperm
kit (Halotech, Spain) according to the protocol specified by the manufacturer. The principle
of determining the specified indicator is based on the SCD (sperm chromatin dispersion)
method—determination of sperm chromatin dispersion [23]. Sperm were immobilized
in an agarose gel on a glass slide, treated with an acid solution for DNA denaturation,
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and then membranes and proteins were lysed with a buffer. Next, after fixation in an
ethanol solution, the samples were stained with a solution of eosin and thiazine to visualize
dispersed DNA loops. Sperm with fragmented DNA had very small or no dispersion
halos, whereas sperm with low levels of fragmentation released DNA loops that form large
halos. The preparations were visualized under an “AmScope B120C” light microscope
(AmScope, Irvine, CA, USA), and the 200 spermatozoa were assessed per one smear by
two researchers independently.

2.4. Statistical Analysis

Statistical comparisons were made using GraphPad Prism software (version 9.3.1;
Graphpad Software Inc., San Diego, CA, USA). Comparisons of the semen volume and
sperm concentration with age groups were made using the Kruskal–Wallis test with multi-
ple comparisons to test for significance of mean differences. Comparisons of progressive
motility, morphologically abnormal spermatozoa, and DNA fragmentation rates with
time (pre-freeze and post-thaw) as within age groups were made using two-way ANOVA
multiple comparisons. There were considered to be mean differences when there was a
p-value < 0.05. Results in figures are depicted as scatterplots as individual ejaculate and
median values.

3. Results

Volume of the sperm-rich ejaculate fraction increased with the dogs’ age until 6–7 years
and was the biggest in dogs in the oldest group (7–10 years old; p < 0.05) (Table 1). Sperm
concentration decreased with age and differed significantly between the study groups;
p < 0.05. There were no significant differences in total sperm count per ejaculate between
groups 1 and 2, whereas the lowest value was in group 3 (p < 0.05).

Table 1. Volume of the sperm-rich fraction of ejaculate, sperm concentration, and total sperm count
in ejaculates collected from dogs of different age groups (values are means ± SD).

Age Group Group 1 Group 2 Group 3

Semen volume, mL 0.99 ± 0.23 a 1.66 ± 0.27 a 2.87 ± 0.88 b

Sperm concentration, ×106 cell/mL 523.3 ± 120.4 a 274.4 ± 21.86 b 73.89 ± 32.86 c

Total sperm count, ×106 cell 498.4 ± 78.45 a 453.0 ± 69.93 a 201.4 ± 77.75 b

Within a row, different superscripts indicate significant differences (p < 0.05).

The number of morphological abnormal spermatozoa increased with age and were
statistically different between all groups (p < 0.05 and p < 0.0001, respectively for group 1 vs.
group 2 and group 2 vs. group 3) (Figure 2). Cryopreservation in extender with either egg
yolk or dextran resulted in an increase in the number of sperm with abnormal morphology
in group 3 up to 51.6 ± 10.2. A slight suppressive effect on the morphological characteristics
of spermatozoa was observed after cryopreservation in age group 2 (25.3 ± 5.1) compared
to group 1 (14.3 ± 3.1; p < 0.05). However, there were no significant differences of this
group 2 indicator between egg yolk and dextran extenders (p > 0.05).

Abnormalities of the head, midpiece, and tail of spermatozoa as well as multiple ab-
normalities increased with the age of the animals (Table 2). There were more spermatozoa
detected with tail pathology in group 2, multiple abnormalities in group 3, and fewer mid-
piece abnormalities in group 3 after cryopreservation in the egg yolk extender, compared
with similar age groups after using the dextran-based extender. However, it should be
noted that these differences in the number of certain morphological abnormalities forms
did not lead to significant changes in the total number of abnormal sperm morphologies
between the used extenders.
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Table 2. Percentage of spermatozoa with various morphological abnormalities depending on the age
of the dog and the type of extender.

Group
Morphology Abnormalities

Head, % Midpiece, % Tail, % Multiple
Abnormalities, %

Fr
es

h

1 1.7 ± 0.4 a 1.8 ± 0.9 a 1.5 ± 0.7 a 4.9 ± 0.5 a

2 3.7 ± 0.9 b 3.3 ± 0.6 b 3.4 ± 0.5 b 11.11 ± 1.5 b

3 9.1 ± 1.1 c 8.9 ± 0.7 c 6.3 ± 0.7 c 21.3 ± 2.1 cd
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1 2.3 ± 0.3 a 2.5 ± 0.5 ab 3.8 ± 0.4 b 5.9 ± 1.0 a

2 3.9 ± 0.7 b 4.2 ± 0.3 b 7.4 ± 0.9 c 10.1 ± 0.9 b

3 10.0 ± 1.2 c 9.1 ± 0.5 c 9.3 ± 1.0 c 22.9 ± 1.9 d

C
ry
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w
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h

de
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n 1 2.1 ± 0.4 a 2.3 ± 0.4 a 3.7 ± 0.2 b 6.3 ± 0.7 a

2 4.3 ± 0.4 b 4.1 ± 0.7 b 5.3 ± 0.4 b 12.2 ± 1.0 b

3 12.2 ±1.1 c 12.2 ± 1.2 d 11.8 ± 1.1 c 17.6 ± 1.5 c

Within a column, different superscripts indicate significant differences (p < 0.05).

The percentages of total motile spermatozoa decreased with age and differed signifi-
cantly for groups 1 vs. 2 and 2 vs. 3 (p < 0.05 and p < 0.0001, respectively) (Figure 3). The
most dramatic changes in cell motility after cryopreservation were observed in group 3
(33.9 ± 8.4) (p < 0.0001) compared to other age groups. In addition, cryopreservation with
both types of extenders led to a decrease in the studied indicator in relation to fresh cells
(p < 0.0001).
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The percentage of progressive motile spermatozoa decreased in dogs of group 2 and
declined dramatically after cryopreservation of spermatozoa of group 3 regardless of the
use of an extender (Table 3). VCL, VAP, and VSL decreased in fresh sperm of dogs older
than 7 years and in cryopreserved sperm of dogs older than 3 years regardless of the
use of an extender. The parameters of ALH and STR did not change significantly in all
study groups.

Table 3. Parameters of sperm motility measured by CASA.

Group
Motility Parameters

TMOT, % PMOT, % VCL, µm/s VAP, µm/s VSL, µm/s ALH, µm STR

Fr
es

h

1 84.4 ± 6.3 a 67.9 ± 6.1 a 175.3 ± 7.0 a 140.5 ± 2.7 a 112.8 ± 3.2 a 2.2 ± 0.3 82.2 ± 0.8

2 73.3 ± 7.9 b 55.3 ± 6.1 b 171.8 ± 8.1 a 136.6 ± 3.7 a 99.7 ± 5.6 a 2.1 ± 0.2 81.5 ± 1.2

3 53.9 ± 9.6 c 25.7 ± 3.9 d 155.8 ± 6.9 b 112.9 ±3.2 b 91 ± 5.1 b 2.0 ± 0.3 80.1 ± 0.9

C
ry

o
w

it
h

EY

1 75.1 ± 5.3 b 42.1 ± 3.7 c 164.3 ± 5.7 a 129.8 ± 3.2 a 108.4 ± 4.1 a 2.1 ± 0.4 79.8 ± 1.1

2 65.6 ± 6.2 c 34.1 ± 5.0 d 155.9 ± 7.2 b 110.7 ± 3.5 b 94.6 ± 3.2 b 2.0 ± 0.5 78.9 ± 1.5

3 33.9 ± 8.9 d 18.6 ± 3.4 e 148 ± 6.6 b 103 ± 4.7 b 87.9 ± 3.6 b 1.9 ± 0.2 77.8 ± 0.9

C
ry
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w
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1 74.8 ± 4.5 b 40.6 ± 4.5 c 166.1 ±7.2 a 127.6 ± 3.2 a 106.9 ± 4.9 a 2.1 ± 0.2 80.1 ± 0.9

2 64.2 ± 5.0 c 37.0 ± 3.6 d 151.2 ± 7.2 b 115.6 ± 4.3 b 92.7 ± 3.9 b 1.9 ± 0.4 77.9 ± 0.7

3 33.3 ± 8.03 d 17.8 ± 4.3 e 146.7 ± 5.3 b 109 ± 3.2 b 88.2 ± 3.5 b 1.8 ± 0.3 79.3 ± 1.1

Within a column, different superscripts indicate significant differences (p < 0.05).

The analysis of the DNA integrity also showed that the number of cells with frag-
mented DNA increases with age (Figure 4). Thus, in fresh spermatozoa of dogs older than
7 years, the level of DNA fragmentation increased significantly (21.2 ± 2.3) in relation
to young individuals of 1–3 years of age (7.7 ± 2.5; p < 0.0001). After cryopreservation
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using both extenders, a decrease in DNA integrity was observed in all age groups, but
the highest index was in group 3 (39.4 ± 7.8; p < 0.0001). It should also be noted that
significant differences in the level of the studied indicator when using two extenders were
not observed in samples of all age animals (p > 0.05).
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Figure 4. DNA fragmentation rate of dogs of different ages after cryopreservation with two different
extenders. *—p < 0.05, **—p < 0.005, ***—p < 0.0005, ****—p < 0.0001.

4. Discussion
4.1. Age-Related Cryotolerance of Canin Spermatozoa

It has been shown in many species of animals and some breeds of dogs that the
cryotolerance of spermatozoa decreases with age [8,24,25]. The results of our study have
shown that Chinese Crested dogs experience changes with age that affect the total volume
of ejaculate and the number of spermatozoa, along with their morphological characteristics
and motility and the integrity of the DNA structure. These changes already begin in middle
age (4–6 years) and progress the most after 7 years. These data are confirmed by the results
of other authors, who showed the appearance of subfertile groups starting from middle age
and the absence of such in young dogs of the Labrador Retriever breed [7]. Another recently
published study noted a decrease in normal sperm morphology, membrane integrity, and
cell motility in dogs older than 10 years of age [8]. However, there was no distribution by
breed in that study, therefore, it is possible that certain discrepancies with our data are due
to the peculiarities of the onset of age changes in representatives of the Chinese Crested
breed in our case and in Labrador Retrievers, which were reported by other authors [7]. An
interesting feature of the Chinese Crested breed is its exterior, namely the presence of fur
only in certain minor areas of the body. As is known, this occurs due to a mutation in the
FOXI3 gene, which causes the development of ectodermal dysplasia, and individuals with
a mutant FOXI3 gene demonstrate hairlessness and are heterozygotes for this mutation [26].
However, powderpuff representatives of this breed are completely covered with fur and
are not a carrier of this mutation. In our study, all dogs had a hairless exterior, that is, they
had one dominant mutant allele of the FOXI3 gene in their genotype. FOXI3 belongs to
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forkhead box (FOX) family transcription factors and plays essential roles in development,
tissue homeostasis, and diseases [27]. It is shown that knockout of another gene of this
FOXO3 family induces premature aging [28]. Therefore, it is likely that individuals who
carry a mutant allele of the FOXI3 gene are also prone to earlier aging, which ultimately
affects the spermatogenesis of animals. Age characteristics, in turn, lead to a change in the
cryosensitivity of cells to cryopreservation factors that cause their damage [8]. Therefore,
special attention is paid to additives to the cryopreservation medium affecting sperm
freezing outcomes.

4.2. Using Dextran Instead of Egg Yolk as a Component of Cryoprotectant Media

It is believed that egg yolk as a component of extender hasit’s the ability to reduce the
osmotic stress of spermatozoa at various stages of cryopreservation [29]. It realizes its effects
due to its participation in the regulation of sperm volume during osmotic fluctuations
and changes in the properties of the phospholipids of their membrane [30,31]. It is known
that the addition of various di- and polysaccharides to the composition of cryoprotectant
media containing penetrating cryoprotectants also helps to regulate the volume of cells
during osmotic changes that occur at various stages of cryopreservation and increase the
glass transition temperature of the freezing extender and the difference in heat capacity
associated with the glass transition [32,33]. Therefore, we hypothesized that the use of
dextran in a canine sperm freezing extender may be equivalent to an egg yolk extender.
Since dextran is a natural polysaccharide with a molecular weight of up to 20,000 kDa
and exhibits the properties of an extracellular cryoprotectant, it has successfully been
used for freezing mesenchymal stem cells [34] and blood cells [35]. The use of dextran
for the cryopreservation of epididymal spermatozoa of goat [36], turkey [20], and more
recently for the preservation of rabbit spermatozoa [37] and boar [17] has been reported.
Dextran can protect membrane phospholipids from the negative impact of reactive oxygen
species arising in the process of cryopreservation, and thus, like egg yolks, perform an
antioxidant function as part of the extender [38]. Taking into account that cryopreservation
induces reactive oxygen species production that can also impact on the DNA integrity, we
evaluated this index after using dextran- and egg yolk-based cryoprotectant media. Our
studies showed any significant differences in the number of spermatozoa with intact DNA
between the extenders used. The greatest decrease in these indicators was observed after
cryopreservation in the older age group, which indicates a decrease in cryoresistance to the
action of cryopreservation factors, regardless of the composition of the medium used. Thus,
the broken DNA integrity of gametes and their motility caused by age-related changes may
still have latent damage, which is especially clearly manifested after cryopreservation. The
same effect of two types of extenders on the motility of spermatozoa of dogs of different
ages was observed after thawing. Therefore, the replacement of the egg yolk volume in the
extender with an equivalent volume of dextran (m.w. 500 kDa) does not lead to an increase
in spermatozoa damage that can impact motility and DNA structure.

5. Conclusions

It should be noted that while consulting the owners of particular Chinese Crested
dogs, it was found that the quality of fresh and frozen spermatozoa can decrease starting
from middle age and thereby affect the results of both natural and artificial insemination.
The spermatozoa cryotolerance after cryopreservation either with dextran- or egg yolk-
based media showed no difference in all age categories. However, given the benefits of
cryoprotective media containing dextran, its use for cryopreservation of canine spermatozoa
has potential benefits that need to be confirmed by sperm fertilization outcomes.
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