
Citation: Luo, W.; Huang, Y.; Qiu, X.;

Zhuo, W.; Tao, Y.; Wang, S.; Li, H.;

Shen, J.; Zhao, L.; Zhang, L.; et al.

Growth-Promoting Effects of Zhenqi

Granules on Finishing Pigs. Animals

2022, 12, 3521. https://doi.org/

10.3390/ani12243521

Academic Editor: Young Dal Jang

Received: 30 October 2022

Accepted: 10 December 2022

Published: 13 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

animals

Article

Growth-Promoting Effects of Zhenqi Granules on Finishing Pigs
Wentao Luo 1 , Yaxue Huang 1, Xiuxiu Qiu 1, Wenxiao Zhuo 1, Yujun Tao 1, Shuaiyang Wang 1, Huaixia Li 1,
Jing Shen 1, Lelin Zhao 1, Lijun Zhang 1, Shuo Li 2, Jie Liu 2, Qi Huang 1,* and Rui Zhou 1,*

1 State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig
Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China

2 Hubei Provincial Veterinary Drug Research Center, HVSEN Biotech, Wuhan 430042, China
* Correspondence: qhuang@mail.hzau.edu.cn (Q.H.); rzhou@mail.hzau.edu.cn (R.Z.); Tel.: +86-27-87281878 (R.Z.)

Simple Summary: With the ban on using antibiotics as animal growth promoters in many countries,
developing alternative growth promoters is of urgent need. In this study, we investigated the growth-
promoting efficacy of a traditional Chinese medicine (TCM) formula Zhenqi granules (ZQ) in pigs.
We show that ZQ has a significant growth-promoting effect in pigs, especially during the finishing
stage. To further explore the possible mechanisms of growth promotion, transcriptomics analysis
with liver and skeletal muscle tissues are performed that reveals that genes involved in collagen
biosynthesis and lipid biosynthetic processes are differentially expressed in the pigs administrated
with ZQ. We report for the first time that a TCM formula ZQ has significant growth promotion
efficacy in pigs and reveals that it may promote animal growth by regulating skeletal myogenesis
and fat deposition.

Abstract: Developing nonantibiotic livestock growth promoters attracts intensive interest in the
post-antibiotic era. In this study, we investigated the growth-promoting efficacy of Zhenqi granules
(ZQ) in pigs and further explored the possible mechanisms by transcriptomics analysis. Weaned
piglets (52 days old with an average body weight of 17.92 kg) were fed with diets supplemented
with different doses of ZQ (0 g/kg, 1 g/kg, and 2 g/kg) for 30 days and continued observations
for an additional 32 days after removing ZQ from the diets. Compared with the control group, the
average daily gain, carcass weight, average back fat thickness, and fat meat percentage of the group
supplemented with 1 g/kg of ZQ showed a significant increase, and the feed/gain ratio was lower.
The group supplemented with 2 g/kg of ZQ also showed a significant increase in average daily gain
and average backfat thickness. A transcriptomics analysis revealed that the supplementation of ZQ
at 1 g/kg upregulated the expression of genes related to collagen biosynthesis and lipid biosynthesis
in skeletal muscle and liver. This effect was primarily through upregulating the mRNA levels
of structural proteins and lipid-related enzymes. This study demonstrates the growth-promoting
efficacy of ZQ and provides some insights of the mechanism of growth promotion.

Keywords: Zhenqi granules; growth promotion; carcass traits; transcriptomics; finishing pigs

1. Introduction

The demand for food products of animal origin is still increasing today with the
growing global population. Thus, improving livestock performance is still an important
need for intensive farming [1,2]. Previously, the application of subtherapeutic antibiotics
as growth promoters in animal feed has made great achievements [3–6]. However, this
also leads to a variety of serious antibiotic resistance problems around the world [7–9]. To
address this threat, the use of antibiotics as growth promoters in food animal production
has been forbidden in several countries [2], including China [10]. Due to high demand, in
recent years, it has become a hot research topic to develop antibiotic alternatives as growth
promoters. These include, but are not limited to, phytochemicals, acidifiers, probiotics,
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prebiotics, synbiotics, enzymes, bacteriophages, and antimicrobial peptides and probiotics,
as well as probiotics, prebiotics, postbiotics, and parabiotics [2,11].

Traditional Chinese medicine (TCM) is a promising alternative to antibiotics with the
characteristics of resource-rich, few side effects, multitargets, and multifunctional [12]. A
few TCMs are demonstrated to be effective in promoting the growth of livestock [13–15].
For example, a study showed that dietary supplementation of Bazhen could significantly
improve average daily gain (ADG) and feed efficiency (FE) by 4.73% and 17.9%, respectively,
as well as decrease the average daily feed intake (ADFI) by 14.10% [16]. In addition, studies
have suggested that extract [17], polysaccharides [18,19], and essential oils [20] of TCM
also have a growth-promoting effect in pigs.

Zhenqi Granules (ZQ), a TCM formula, is composed of two TCMs, including Huangqi
(Astragalus membranaceus (Fisch.)) and Nvzhenzi (Fructus ligustri lucidi). Modern pharmaco-
logic studies have demonstrated that Astragalus membranaceus has immunomodulatory [21]
and antiaging effects [22]. It has been proven that Astragalus polysaccharides (APS), the
main ingredient of Huangqi, has the potential to improve livestock growth [23–26]. Fructus
ligustri lucidi is a well-known invigorator, which contains several chemically active con-
stituents, such as ursolic acid, oleanolic acids, oleanolic acid, and salidroside [27]. It has
many pharmacological effects including hepatoprotective effect [28], antioxidant action [29],
immunomodulatory effect [30], and therapeutic antiosteoporosis action [31].

Our previous results suggest that supplementation of ZQ in feed significantly reduced
the feed to gain ratio (F/G) in finishing pigs [32]. However, it is still unknown whether
supplemented with 1 (ZQ-1 g) and 2 g/kg of ZQ (ZQ-2 g) also has a growth-promoting
efficacy for pigs in the early stage of farming. Moreover, the underlying mechanism of how
ZQ promotes the growth of pigs remains largely unknown. Therefore, in this study, the
growth-promoting efficacy was investigated by monitoring the growth performance of
pigs supplemented with two doses of ZQ in the feed. Transcriptomics analysis was further
carried out with liver and skeletal muscle tissues to compare the transcription changes by
supplementation of ZQ.

2. Materials and Methods
2.1. Zhenqi Granules and Experimental Diets

Zhenqi Granules was provided by HVSEN Biotech Co., Ltd., Wuhan, China, of which
1 g of granules is equivalent to 0.5 g of the raw herbs. The animals were fed twice daily
with standard commercial pig feed (Q/HJ 002-2020, Hubei Jinxinnong Feed Co., Ltd.,
Wuhan, China). The main ingredients of the experimental diets include corn, soybean meal,
flour, whey powder, fish meal, soybean oil, vitamin A, vitamin D3, vitamin E, vitamin B2,
choline chloride, manganese sulfate, copper sulfate, ferrous sulfate, zinc chloride, calcium
hydrogen phosphate, stone powder, sodium chloride, and L-lysine hydrochloride. The
ingredients and nutrient compositions of the diets are provided in Table 1.

Table 1. Ingredients and nutrient levels of the experimental diets.

Ingredients Content (%)

Corn 51.35
Soybean meal 11.80

Soybean 10.00
Flour 7.00

Broken rice 5.00
Fish meal 3.00

Soybean oil 1.20
Vitamins, minerals and amino acids 5.00

Whey powder 2.50
Glucose 2.50

1 Nutrient levels
Crude protein ≥17.00

Crude fiber ≤4.00
Coarse ash ≤7.00

Calcium 0.50–1.00
Total phosphorus ≥0.60
Sodium chloride 0.30–1.00

2 Lysine ≥1.25

Note: 1 Nutrient levels are analyzed values. 2 Lysine level is the total basis.
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2.2. Animals, Housing, and Experimental Design

A total of 24 healthy castrated male Large White piglets (46 days old, A46) weighing
17.923 ± 2.462 kg were purchased from Tianzhong Animal Husbandry Co., Ltd., Wuhan,
China. After adaptive feeding for a week (A53), the pigs were randomly distributed
into 3 groups with 8 pigs in each. The two treatment groups were fed with basal diets
supplemented with 1 (ZQ-1 g) and 2 g/kg of ZQ (ZQ-2 g), respectively, for 30 days. The pigs
of the control group were just fed with basal diets. The experimental design is illustrated in
Figure 1.
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Figure 1. Schematic overview of the experimental design of the study. ZQ, Zhenqi granules. ZQ-1 g,
1 kg standard diet supplemented with 1 g ZQ. ZQ-2 g, 1 kg standard diet supplemented with 2 g
ZQ. d, day from the beginning of the experiment. In the following, we use Day to indicate the days
of the experiment. A, age of the pigs.

Pigs were housed in groups with 8 pigs in a pen. The temperature of pig houses was kept
at 20–25 ◦C with rubber mats and heat lamps. The pens were cleaned once daily. The clinical
health of the pigs was assessed daily. Two of the pigs showed stagnant growth at the early
stage of the experiment for unknown reasons, so they were culled on Day 17. The experiment
was carried out in the Experimental Pig Farm at the Breeding Swine Quality Supervision and
Testing Center (Ministry of Agriculture and Rural Affairs) in Wuhan, China.

2.3. Samples and Data Collection

During the experiment, the feed intake was recorded daily. Meanwhile, the pigs were
weighed, and blood samples were collected from the inferior vena cava on Day 0 (A53),
Day 17 (A70), Day 30 (A83), Day 43 (A96), Day 57 (A110), and Day 62 (A115). The serum
was separated from the blood by centrifugation at 1000× g for 20 min at room temperature
and then stored at −80 ◦C to avoid repeated freezing and thawing until use.

2.4. Carcass and Meat Quality Traits

One month after the last administration (Day 62), five pigs from each group were
slaughtered following fasting for 24 h and subjected to carcass and meat quality traits
measurement. The carcass and meat quality traits analyzed in this study included live
weight, carcass weight, dressing percentage, carcass length, average backfat thickness,
loin eye area, leg percentage, skin percentage, fat meat percentage, lean meat percentage,
bone percentage, meat marbling score, and intramuscular fat. All traits were measured
by the Breeding Swine Quality Supervision and Testing Center according to the national
profession standards (No. NY/T 821-2019, NY/T 1180-2006, NY/T 825-2004).

2.5. Serum GH and IGF-I

Serum GH and IGF-I were measured by enzyme-linked immunosorbent assay (ELISA)
(Pig GH ELISA Kit, CSB-E06813p, Cusabio; Pig IGF-1 ELISA Kit, CSB-E06829p, Cusabio)
according to the manufacturer’s instructions. Briefly, isolated swine serum, bio-antibody,
and streptavidin-HRP were added into 96-well plates precoated with antibody and incu-
bated at 37 ◦C, respectively. After 1 h, liquid was discarded and washed completely. Next,
substrate solution was added into to each well incubated for 30 min at 37 ◦C in the dark.
Finally, stop solution was added to each well, and absorbance was measured at 450 nm.
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2.6. Biochemical Indexes of Blood

The serum biochemical indexes were detected by an automatic blood biochemical
analyzer (BS-240; Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China).
Creatinine (CREA) (lot#:141121008), glucose (GLU) (lot#:1415210016), alanine transam-
inase (ALT) (lot#:1401221003), aspartate aminotransferase (AST) (lot#:140220013), albu-
min (ALB) (lot#:148321001), triglyceride (TG) (lot#:141720010), total cholesterol (TCHO)
(lot#:141621002), carbamide (UREA) (lot#:141321002), and total protein (TP) (lot#:140820006)
assay kits were purchased from Shenzhen Mindray Bio-Medical Electronics Co., Ltd.

2.7. Transcriptome

The liver and skeletal muscle (longissimus dorsi) tissue samples were collected from
3 randomly chosen pigs from ZQ-1 g group and control group, respectively. The tissues
were immediately frozen in liquid nitrogen and stored at −80 ◦C until use. The total
RNA was extracted from the tissue using TRIzol® Reagent (Invitrogen, Waltham, MA,
USA). mRNA was isolated according to polyA selection method by oligo(dT) beads and
reversely transcribed to cDNA by using a SuperScript double-stranded cDNA synthesis
kit (Invitrogen, Waltham, MA, USA) with random hexamer primers (Illumina, San Diego,
CA, USA). The samples were then subjected to high throughput sequencing using the
Illumina HiSeq xten/NovaSeq 6000 (Illumina, San Diego, CA, USA) sequencer (2 × 150 bp
read length) platform. The data were analyzed using the Majorbio Cloud Platform (www.
majorbio.com) (accessed on 1 October 2022) [33].

2.8. Statistical Analysis

Statistical analysis was performed using SPSS software 16.0 (SPSS, Inc., Chicago, IL,
USA). One-way ANOVA followed by LSD was used to compared the statistical differences
among the three groups. Graphs were made using GraphPad Prism 9 (San Diego, CA, USA).
All data were expressed as means ± standard deviation (SD). Differences with p < 0.05 and
p < 0.01 were considered as significant and indicated as * and **, respectively.

3. Results
3.1. Dietary Supplementation with ZQ Increases the Growth Performance of Pigs

In order to test the growth-promoting efficacy of ZQ, the body weight of pigs in
each group was monitored. It was shown in Figure 2 that the initial average body weight
was similar between each group without statistical significance. At the end of ZQ treat-
ment (Day 30), there was still no significant difference in average body weight between
ZQ-treated and control groups. Afterward, all three groups were fed normally without
supplementation of ZQ. It was shown that the average body weight of ZQ-1 g group was
significantly higher than that of the control group (p < 0.05) on Day 62. Although the ZQ-2
g group had a higher average body weight compared to the control group, it did not reach
statistical significance (p = 0.056) (Figure 2, Table S1). Meanwhile, the ADG values of pigs in
the two ZQ-treated groups over time during the experiment were both significantly higher
than that of the control group (p < 0.05) (Figure 3a). A numerically smaller F/G was also
observed for the ZQ-treated groups than for the control group (Table S2).

The growing phase, which is usually from 70 days old (body weight of 30 kg), is the
fastest growth phase across the life stages of pigs. Therefore, the growth performance of
pigs was assessed from Day 17 (70 days old) to Day 62 (115 days old). The results revealed
a significant increase in ADG of pigs in the ZQ-1 g group between 17 and 43 d compared
to the control (p < 0.01). Similarly, the ADG in ZQ-1 g and ZQ-2 g pigs between 17 and
57 d was also significantly higher than that in the control (p < 0.05), and it showed a highly
significant difference between Day 17 and Day 62 (p < 0.01) (Figure 3b). At this finishing
phase, the F/G was lower in the ZQ-treated groups than that in the control group (Table 2).
These data suggest that the addition of ZQ in the pig diets in the transition of the nursery
pigs to the finishing pigs can effectively promote the growth of pigs.

www.majorbio.com
www.majorbio.com
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Table 2. Growth performance at the finishing phase.

Group Initial Body Weight-17 d (kg) Final Body Weight-62 d (kg) ADG (kg/d) ADFI (kg/d) F/G

control (N = 8) 30.68 ± 2.85 62.38 ± 6.22 0.70 ± 0.11 1.48 2.10
ZQ-1 g (N = 6) 31.00 ± 2.42 71.92 ± 4.72 0.91 ± 0.13 ** 1.48 1.63
ZQ-2 g (N = 8) 30.10 ± 5.53 70.08 ± 10.06 0.89 ± 0.11 ** 1.589 1.79

Note: N indicates the number of pigs included in each group; ** indicates p < 0.01 between the treatment group
(ZQ-1 g or ZQ-2 g) and the control group.

3.2. Dietary Supplementation with ZQ Increases Carcass Weight and Fat Content of Pigs

To further confirm the effect of ZQ on growth performance, we determined the carcass
and meat quality traits. As presented in Figure 4, pigs of ZQ-1 g group showed signifi-
cantly higher live weight (Figure 4a), carcass weight (Figure 4b), average backfat thickness
(Figure 4d), and fat meat percentage (Figure 4f) than the control group (p < 0.05). However,
the lean meat percentage of ZQ-1 g group was lower (p < 0.05) (Figure 4g). Meanwhile,
compared with the control group, the pigs in ZQ-2 g group also had a significant increase
in live weight (Figure 4a) and average back fat thickness (p < 0.01) (Figure 4d) but had a
significant decrease in the leg percentage (p < 0.05) (Figure 4e). There were no significant
effects on carcass length (Figure 4c) and bone percentage (Figure 4h) due to the ZQ addition.
These data indicate that ZQ may increase the fat and muscle content of finishing pigs.
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3.3. Effects of ZQ on Serum Hormones and Biochemical Indexes

We tested the indicators related to growth in pig serum. The concentrations of GH and
IGF-I in serum were measured at the end of the experiment (Day 62), and the results showed
that these hormones had similar levels in the ZQ-treated pigs and the control pigs (Table S3).
After 30 days of feed supplementation with ZQ (Day 30), compared to the control group,
UREA values of pigs in the ZQ-1 g were significantly increased (p < 0.05), and TG values in
ZQ-2 g were significantly increased (p < 0.01). At the end of the experiment (Day 62), the
levels of AST, TG, and CREA in the ZQ-1 g group were significantly lower than those in the
control group (p < 0.05), but UREA was increased significantly (p < 0.05). The levels of Glu,
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TG, and CREA in the ZQ-2 g group were significantly lower than those in the control group
(p < 0.05), but UREA was increased significantly (p < 0.01). However, it was worth noting that
all the measured serum biochemical indices were in the normal range for all groups (Table 3).
Therefore, the data suggest that ZQ does not exert growth promotion efficacy by directly
increasing the level of growth hormones but possibly through metabolism regulation.

Table 3. Effects of ZQ on the biochemical indices of blood.

Days of the
Experiment Indexes Control (N = 8) ZQ-1 g (N = 6) ZQ-2 g (N = 8)

30 d

TP (g/L) 62.50 ± 3.12 61.52 ± 2.73 63.91 ± 3.16
ALB (g/L) 36.99 ± 2.89 36.75 ± 1.52 39.01 ± 4.27

Glu (mmol/L) 5.00 ± 0.86 5.52 ± 1.45 5.38 ± 0.86
ALT (U/L) 86.29 ± 12.05 84.85 ± 16.81 101.19 ± 30.22
AST (U/L) 52.79 ± 15.01 59.15 ± 19.77 45.69 ± 13.31

TG (mmol/L) 0.58 ± 0.25 0.74 ± 0.24 0.92 ± 0.18 **
TC (mmol/L) 2.75 ± 0.37 2.86 ± 0.22 2.88 ± 0.40

CREA (µmol/L) 94.48 ± 11.29 95.03 ± 13.12 95.14 ± 6.66
UREA (mmol/L) 1.93 ± 0.58 3.10 ± 1.01 * 2.39 ± 0.83

62 d

TP (g/L) 58.89 ± 2.98 59.47 ± 6.46 58.10 ± 3.07
ALB (g/L) 35.11 ± 3.48 36.68 ± 3.91 36.75 ± 3.69

Glu (mmol/L) 3.70 ± 0.58 3.43 ± 0.40 2.95 ± 0.49 **
ALT (U/L) 79.91 ± 14.13 85.38 ± 9.96 82.16 ± 22.69
AST (U/L) 172.11 ± 128.72 93.68 ± 21.25 * 120.75 ± 57.83

TG (mmol/L) 0.45 ± 0.12 0.29 ± 0.04 * 0.31 ± 0.11 *
TC (mmol/L) 2.65 ± 0.24 2.45 ± 0.13 2.49 ± 0.32

CREA (µmol/L) 116.10 ± 10.51 95.53 ± 9.70 ** 103.96 ± 6.90 *
UREA (mmol/L) 2.70 ± 0.86 4.04 ± 0.69 ** 3.91 ± 0.64 **

ALP (U/L) 266.81 ± 66.94 255.92 ± 27.39 252.11 ± 31.09
Note: TP, total protein; ALB, albumin; Glu, glucose; ALT, alanine transaminase; AST, aspartate aminotransferase;
TG, triglyceride; TC, total cholesterol; CREA, creatinine; UREA, carbamide; ALP, alkaline phosphatase. * indicates
p < 0.05, ** indicates p < 0.01 and NS indicates no significant differences (p > 0.05).

3.4. Transcriptome Analysis of Liver Tissues

As the liver is the key organ for metabolism, a transcriptome analysis was carried out with
liver tissues to explore the molecular mechanisms underlying the phenotype. As illustrated in
Figure 5a, 350 differentially expressed genes (DEGs) were found with 219 genes upregulated
and 131 downregulated in liver tissues of pigs in the ZQ-1 g group compared with the control
pigs (Figure 5a, Table S4). The KEGG pathway enrichment results revealed that the top-
ranked pathways were protein digestion and absorption (Figure 5c, Table S6). In addition, GO
enrichment showed that categories with collagen biosynthesis and the extracellular matrix
(ECM), including collagen trimer, collagen-containing extracellular matrix, and extracellular
matrix organization, were the most enriched ones (Figure 5b, Table S5).

The biosynthesis of collagen is an extremely complex process [34] (Figure 6). First
of all, the collagen mRNA was translated into nascent in the rough endoplasmic reticu-
lum (rER). Next, the nascent collagen polypeptide chain is modified by glycosylation and
prolyl-3-hydroxylation and folding of the C- and N-terminal propeptides. The mRNA of
P3H3 which is an enzyme for post-translational modifications in the above process was
upregulated in the ZQ-1 g group (Table 4). Then, the nascent collagen polypeptide chains
assemble into triple helix formation in a zipper-like fashion and is dependent on SER-
PINH1(HSP47) which is a collagen chaperone, and the PPIases (peptidyl-prolyl isomerases)
FKBP10 play critical roles in the linear prolongation of the triple helix. Interestingly, both
the mRNA of SERPINH1 and FKBP10 were upregulated in the ZQ-1 g group (Table 4).
Immediately following this, the collagen helices are secreted into the extracellular space via
the trans-Golgi network. Extracellular processing and maturation of collagen are primarily
related to ADAMTS protease family, and the mRNA of ADAMTS2 was also significantly
upregulated after ZQ treatment (Table 4). Finally, collagen fibrils are stabilized by crosslink-
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ing depending on enzymes of LOX family in the extracellular space, and the collagen fibril
is a major component of ECM. Similarly, the levels of LOX mRNA were also upregulated
in the ZQ group (Table 4). The above evidence illustrates a complex mechanism of ZQ
supplementation in promoting collagen biosynthesis. Moreover, ACSL4, SREBF1, FABP2,
LEPR, and MMP3 were enriched in lipid biosynthesis. Transcriptomic analysis of the liver
tissue indicated that dietary supplementation with ZQ can affect growth by influencing
protein synthesis and fat metabolism.
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Table 4. DEGs in the liver of the ZQ-1 g pigs in comparison to the control pigs.

Gene ID Gene Name Gene Description Log2-FC

KEGG: Protein digestion and absorption
ENSSSCG00000038877 SLC36A3 solute carrier family 36 member 3 3.68
ENSSSCG00000033641 COL8A2 collagen type VIII alpha 2 chain 2.41
ENSSSCG00000036135 COL1A1 collagen type I alpha 1 chain 1.57
ENSSSCG00000015326 COL1A2 collagen type I alpha 2 chain 1.21
ENSSSCG00000016034 COL3A1 collagen type III alpha 1 chain 1.16
ENSSSCG00000027331 COL6A3 collagen type VI alpha 3 chain 1.11
ENSSSCG00000005751 COL5A1 collagen type V alpha 1 chain 1.11
ENSSSCG00000005380 COL15A1 collagen type XV alpha 1 chain 1.02

GO: Collagen/Extracellular matrix (ECM)
ENSSSCG00000017422 FKBP10 FKBP prolyl isomerase 10 1.42
ENSSSCG00000001914 LOXL1 lysyl oxidase like 1 1.37
ENSSSCG00000000681 P3H3 prolyl 3-hydroxylase 3 1.25
ENSSSCG00000026425 ADAMTSL2 ADAMTS like 2 1.24

ENSSSCG00000024043 ADAMTS2 ADAM metallopeptidase with thrombospondin
type 1 motif 2 1.21

ENSSSCG00000017082 SPARC secreted protein acidic and cysteine rich 1.17
ENSSSCG00000014232 LOX lysyl oxidase 1.15
ENSSSCG00000033608 LOXL2 lysyl oxidase like 2 1.06
ENSSSCG00000016233 SERPINE2 serpin family E member 2 1.05
ENSSSCG00000039468 SERPINH1 serpin family H member 1 1.00

GO: Lipid biosynthesis
ENSSSCG00000012583 ACSL4 acyl-CoA synthetase long chain family member 4 1.25

ENSSSCG00000033626 SREBF1 sterol regulatory element binding transcription
factor 1 1.01

ENSSSCG00000037272 FABP2 fatty acid binding protein 2 −1.71
ENSSSCG00000025188 LEPR leptin receptor −2.19
ENSSSCG00000014985 MMP3 matrix metallopeptidase 3 −2.91

3.5. Transcriptomic Analysis of Skeletal Muscle

Meanwhile, the transcriptomic analysis of the skeletal muscle tissue yielded 190 DEGs
of which 117 were upregulated and 73 downregulated (Figure 7a, Table S5). The KEGG
enrichment analysis indicated that the terms are highly enriched, such as fat digestion
and absorption, fatty acid biosynthesis, and protein digestion and absorption (Figure 7c,
Table S9). Likewise, the GO enrichment analysis of the DEGs also identified significant
enrichment of the genes associated with the lipid biosynthetic process (Figure 7b, Table S8).

In lipogenesis, upon glucose entry into the cell, it is converted into citrate through
the tricarboxylic acid (TCA) cycle (Figure 8). Cytosolic acetyl-CoA is generated primarily
from citrate by ACLY. Next, acetyl CoA is carboxylated into malonyl-CoA by ACACA,
and malonyl CoA is subsequently converted to palmitate by FASN. Thereafter, SCD and
ELOVL6 are responsible for creating long-chain fatty acids. The free FA is an essential
substrate for the synthesis of TG, phospholipid (PL), and cholesterol esters (CE) [35,36].
Therefore, ACACA plays a critical role in cellular energy storage and lipid synthesis,
SCD is essential for porcine adipocyte differentiation and the FASN gene is a promising
marker for subcutaneous fat tissue accumulation [37]. The enrichment analysis results
of skeletal muscle tissues showed that the mRNA expression of ACLY, ACACA, FASN,
SCD, and ELOVL6 were upregulated in pigs supplemented with 1 g/kg of ZQ (Table 5). In
addition, the mRNA levels of COL22A1 and SLC36A2, which are closely related to protein
digestion and absorption were upregulated in the skeletal muscle of ZQ-1 g pigs (Table 5).
Transcriptomic analysis of skeletal muscle (longissimus dorsi) tissues indicated that dietary
supplementation with ZQ could affect the de novo lipogenesis in the cell.
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Table 5. DEGs in the skeletal muscle of the ZQ-1 g pigs in comparison to the control pigs.

Gene ID Gene Name Gene Description Log2-FC

KEGG: Protein digestion and absorption
ENSSSCG00000005938 COL22A1 collagen type XXII alpha 1 chain 2.53
ENSSSCG00000017086 SLC36A2 solute carrier family 36 member 2 2.40

GO BP: Lipid biosynthetic process
ENSSSCG00000014861 MOGAT2 monoacylglycerol O-acyltransferase 2 4.73
ENSSSCG00000010554 SCD stearoyl-CoA desaturase 3.91
ENSSSCG00000029944 FASN fatty acid synthase 2.22
ENSSSCG00000025578 ALDH1A2 aldehyde dehydrogenase 1 family member A2 2.07
ENSSSCG00000036236 ELOVL6 ELOVL fatty acid elongase 6 2.06
ENSSSCG00000040689 APOA4 apolipoprotein A4 2.05
ENSSSCG00000017421 ACLY ATP citrate lyase 1.47
ENSSSCG00000017694 ACACA acetyl-CoA carboxylase alpha 1.36
ENSSSCG00000009152 SGMS2 sphingomyelin synthase 2 1.15
ENSSSCG00000010483 PLCE1 phospholipase C epsilon 1 1.06

ENSSSCG00000000436 PIP4K2C phosphatidylinositol-5-phosphate 4-kinase type
2 gamma 1.02

ENSSSCG00000035539 ST8SIA4 ST8 alpha-N-acetyl-neuraminide
alpha-2,8-sialyltransferase 4 −1.13

ENSSSCG00000040581 CISH cytokine inducible SH2 containing protein −1.16

ENSSSCG00000032481 DPM2 dolichyl-phosphate mannosyltransferase
subunit 2, regulatory −1.28

4. Discussion

Developing nonantibiotic livestock growth promoters attracts intensive research inter-
ests in the post-antibiotic era. Traditional Chinese medicine is an important substitute for
antibiotics with great development potential. Our preliminary results suggested that ZQ
could significantly reduce the F/G of finishing pig after administration for 30 days under
field conditions (20 pigs per group), and the F/G of ZQ-1 g/kg was the lowest [32]. In this
study, we investigated the growth-promoting efficacy of ZQ in pigs in a more standard
experimental condition, and further explored the possible mechanisms by association
analysis between growth-promoting traits and transcriptomics data.

Our results showed that, after 30 days administration of ZQ at 1 g/kg or 2 g/kg,
the body weight did not show significant difference compared with the control group.
It could be because the pigs are in the stage transition from nursery to finishing. At the
nursery stage, which is from the weaning stage to 10 weeks and body weight of less than
30 kg [38], energy is mainly used to eliminate negative effects caused by weaning stress
and to complete the immune system. Thus, the growth of the nursery pigs is slow [39,40].
Therefore, we continued to monitor the growth for an extra month. On Day 62, the ZQ-1 g
group showed a significantly higher body weight and lower F/G compared with the control
group. The slaughter performance further revealed higher carcass weight, average back
fat thickness, and fat meat percentage. It is worth mentioning that, at the early stage of
the experiment, two pigs in the ZQ-1 g group showed obvious stagnant growth, which
were then culled. The reason of the stagnant growth was not yet known. Moreover, we
performed the slaughter performance measurement at Day 62 (115 days old), since, at
this time point, statistical growth difference was observed, and we wanted to carry out
the transcriptomic analysis to determine the underlying mechanism of growth promotion.
However, it was still a bit early to end the experiment. Normally, slaughter was carried out
at 5.5 to 6 months.

This study also found that both doses of ZQ significantly increased the ADG compared
with that of the control group. However, the supplementation of ZQ at 2 g/kg did not
reveal a better effect on growth promotion than the supplementation at 1 g/kg. Therefore,
two-fold supplementation level is not needed when used in practice. This is probably
due to the interactions of complex components from TCM [41]. Similar results have been
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reported in other studies. For example, it was reported that no dose-dependent effect was
observed for Phyllanthus amarus (PA) extract in protecting the rodents from LPS-induced
memory impairment [42]. Fang et al. also found that the serum concentrations of Xiaoyao
Pills at a concentration of 8% did not give better results than at 4% [43].

The growth of bone and skeletal muscle, and fat deposition result in increase of body
weight of livestock [44]. The results of our study showed that bone growth was not the
key factor contributing to the increase in pig growth by ZQ treatment. However, ZQ
supplemented at 1 g/kg in feed significantly increased the live weight and carcass weight,
indicating that ZQ may increase the fat and muscle content of finishing pigs.

Collagen is the most abundant protein in mammalian bodies, making up from 25%
to 35% of the whole-body protein content, and plays structural roles in organizing and
maintaining mechanical properties and shape [45]. It is the main protein component of
connective tissue in the endomysium of skeletal muscles [46,47]. By transcriptome analysis,
our results showed that genes involved in collagen biosynthesis-related proteins were
upregulated in the liver tissues of ZQ-treated pigs. A previous study found that the Astra-
galoside IV, a major ingredient of Astragalus membranaceus, may promote the angiogenesis
and collagen synthesis [48]. Zeng et al. also reported that the extract from Astragalus
membranaceus had the activity of inducing type I and type III collagen synthesis [49]. In
our study, by comparing the transcriptome of the skeletal muscle tissues between the
control group and the ZQ-1 g group, it was shown that the mRNA level of COL22A1 was
upregulated in the skeletal muscle of ZQ-1 g pigs. It has been reported that COL22A1 may
correlate with serum CREA level which is commonly used to assess kidney function [50,51].
CREA is the end product of creatine metabolism in muscle tissue and its level under normal
conditions in serum is positively associated with muscle mass [52], while UREA is the final
product of protein metabolism [53]. The results of our study showed that the administration
of ZQ caused significant decreases in levels of serum CREA while the level of serum UREA
was significantly increased (at 62 d). Therefore, we speculated that the administration of
ZQ could promote protein deposition in skeletal muscle, which could also decrease the
excessive breakdown of muscle tissue proteins.

Backfat thickness is a good indicator of fat deposition [54]. In this study, the average
back fat thickness and fat meat percentage of pigs in ZQ-1 g group were both significantly
higher than that of the control group. Consistently, the mRNA of ACACA, FASN, ELOVL6,
SCD, ACLY was all significantly upregulated by ZQ in longissimus dorsi. This was con-
sistent with that reported by Crespo-Piazuelo et al. [55]. Meanwhile, the expression of
transcripts related to lipid biosynthesis (FRZB, ACSL4, SREBF1) was upregulated in the
liver of ZQ-1 g group. Of these, Srebf1 is one of the main regulators of de novo lipogenesis
in the liver, and its overexpression contributed to lipids accumulation [56]. However, ZQ
decreased the LEPR mRNA levels, LEPR is the receptor for leptin, and leptin promotes
lipolysis and limits ectopic deposition in nonfatty tissues [57–60]. Therefore, we give the
following conjecture: On the one hand, ZQ promoted fatty acid (FA) synthesis from glucose
by upregulating lipogenic genes such as Srebf1, and then, the FA was esterified to TG and
stored in the hepatocyte. On the other hand, less mRNA of LEPR and FABPs corresponds
with reduced hepatic triglyceride secretion and serum TG and resultant hepatic lipid accu-
mulation [61,62]. This is evidenced by the decrease in both the serum Glu and TG levels
of ZQ-1 g group at 62 d. Those mentioned above suggested that the fat deposition was
the main factor of growth promotion of ZQ on finishing pigs. Similar results have been
reported in other previous research, the dietary supplementation of Chinese wolfberry
and astragalus extracts could improve the growth performance and intervene in key genes
related to fatty acid metabolism in Tibetan fragrant pigs [63]. In the review article by
Cui et al., they summarized the intramuscular fat deposition-promoting effect of Chinese
herbal medicines (CHMs), which contain multiple active ingredients, such as polyphenols,
flavonoids, polysaccharides [64].

This study not only demonstrates the growth-promoting effects of Zhenqi Granules
in finishing pigs but also further illustrates this effect was primarily through promoting
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skeletal myogenesis and fat deposition. However, there are still some questions that we
have not well understood. For instance, GH and IGF-1, two hormones highly correlated to
growth and development, showed no differences between any group. Moreover, the active
components of ZQ and their mechanisms of action are unclear.

5. Conclusions

This study demonstrated that supplementation of 1 g/kg ZQ in the pig diet in the
transition of the nursery pigs to the finishing pigs can improve the important parameters
of growth performance and slaughter performance in pigs, while increasing the dose by
2 g/kg did not further increase these effects. This growth-promoting effect was primarily
through upregulating the mRNA level of structural proteins and lipid-related enzymes,
which, in turn, promotes skeletal myogenesis and fat deposition.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12243521/s1: Table S1: Day-old average body weight of pigs.
Table S2: Growth performance throughout the experimental phases. Table S3: Serum GH and IGF-I.
Table S4: DEGs of the liver. Table S5: DEGs of the skeletal muscle. Table S6: Liver GO enrichment
analysis. Table S7: Liver KEGG enrichment analysis. Table S8: Skeletal muscle GO enrichment
analysis. Table S9: Skeletal muscle KEGG enrichment analysis.
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