Potential of Agroindustrial By-Products to Modulate Ruminal Fermentation and Reduce Methane Production: In Vitro Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. By-Products and Diets Formulation
2.2. Donor Animals and In Vitro Fermentation of Experimental Diets
2.3. Analyses of By-Products and Feeds Chemical Composition and Fermentation Parameters
2.4. Calculations and Statistical Analyses
3. Results and Discussion
3.1. Fermentation of Diets including Wine Lees
3.2. Fermentation of Diets including Exhausted Olive Cake
3.3. Fermentation of Diets including the Exhausted Olive Cake and Tomato Pomace Mixture
3.4. Comparison of All Experimental Diets
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geissdoerfer:, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Circular Economy Action Plan. Available online: https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en (accessed on 15 October 2022).
- European Commission. Waste and Recycling. Available online: https://environment.ec.europa.eu/topics/waste-and-recycling_en (accessed on 15 October 2022).
- Del Valle, M.; Cámara, M.; Torija, M.E. Chemical characterization of tomato pomace. J. Sci. Food Agric. 2006, 86, 1232–1236. [Google Scholar] [CrossRef]
- Marcos, C.N.; de Evan, T.; Molina-Alcaide, E.; Carro, M.D. Nutritive value of tomato pomace for ruminants and its influence on in vitro methane production. Animals 2019, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- Romero-Huelva, M.; Ramos-Morales, E.; Molina-Alcaide, E. Nutrient utilization, ruminal fermentation, microbial abundances, and milk yield composition in dairy goats fed diets including tomato and cucumber waste fruits. J. Dairy Sci. 2012, 95, 6015–6026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanti, Y.; Yayota, M. Agricultural by-products as feed for ruminants in tropical area: Nutritive value and mitigating methane emission. Rev. Agri. Sci. 2017, 5, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Fernández, C.; Romero, T.; Martí, J.V.; Moya, V.J.; Hernando, I.; Loor, J. Energy, nitrogen partitioning, and methane emissions in dairy goats differ when an isoenergetic and isoproteic diet contained orange leaves and rice straw crop residues. J. Dairy Sci. 2021, 104, 7830–7844. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Speech by President von der Leyen on the launch of the Global Methane Pledge. Available online: https://ec.europa.eu/commission/presscorner/detail/en/speech_21_5770 (accessed on 15 October 2022).
- FAOSTAT. Food and Agricultural Organization of the United Nations, Statistics Division (FAOSTAT). Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 15 October 2022).
- World Processing Tomato Council (WPTC). WPTC Crop Update as of 1 September 2022. Available online: https://www.wptc.to/releases-wptc.php (accessed on 15 October 2022).
- Marcos, C.N.; García-Rebollar, P.; de Blas, C.; Carro, M.D. Variability in chemical composition and in vitro ruminal fermentation of olive cake in Spain. Animals 2019, 9, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, Y.; Nakanish, T.; Wang, L.; Oishi, K.; Hirooka, H.; Kumagai, H. In vitro and in vivo evaluations of wine lees as feeds for ruminants: Effects on ruminal fermentation characteristics, nutrient digestibility, blood metabolites and antioxidant status. Livest. Sci. 2020, 241, 104217. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th rev. ed.; National Academy of Sciences: Washington, DC, USA, 2001. [Google Scholar]
- Sauvant, D.; Delaby, L.; Noziere, P. INRA Feeding System for Ruminants; Noziere, P., Sauvant, D., Delaby, L., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2017. [Google Scholar]
- Goering, M.K.; Van Soest, P.J. Forage Fiber Analysis (Apparatus, Reagents, Procedures and Some Applications). In Agricultural Handbook; Agriculture Handbook No. 379; Agricultural Research Services: Washington, DC, USA, 1970. [Google Scholar]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acids reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- García-Martínez, R.; Ranilla, M.J.; Tejido, M.L.; Carro, M.D. Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage concentrate ratio. Br. J. Nutr. 2005, 94, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, M.E.; Ranilla, M.J.; Tejido, M.L.; Ramos, S.; Carro, M.D. The effect of the diet fed to donor sheep on in vitro methane production and ruminal fermentation of diets of variable composition. Anim. Feed Sci. Technol. 2010, 158, 126–135. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT®Users Guide, Version 9.3; SAS Inst. Inc.: Cary, NC, USA, 2017.
- France, J.; Dijkstra, J.; Dhanoa, M.S.; Lopez, S.; Bannink, A. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: Derivation of models and other mathematical considerations. Br. J. Nutr. 2000, 83, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Demeyer, D. Quantitative aspects of microbial metabolism in the rumen and hindgut. In Rumen Microbial Metabolism and Ruminant Digestion; Jouany, J.P., Ed.; INRA Editions: Paris, France, 1991; pp. 217–237. [Google Scholar]
- Molina-Alcaide, E.; Moumen, A.; Martin-Garcia, A.I. By-products from viticulture and the wine industry: Potential as sources of nutrients for ruminants. J. Sci. Food Agric. 2008, 88, 597–604. [Google Scholar] [CrossRef]
- Rivas, M.A.; Casquete, R.; Córdoba, M.d.-G.; Ruíz-Moyano, S.; Benito, M.J.; Pérez-Nevado, F.; Martín, A. Chemical Composition and Functional Properties of Dietary Fibre Concentrates from Winemaking By-Products: Skins, Stems and Lees. Foods 2021, 10, 1510. [Google Scholar] [CrossRef]
- Zhijing, Y.; Shavandi, A.; Harrison, R.; Bekhit, A.E.A. Characterization of Phenolic Compounds in Wine Lees. Antioxidants 2018, 7, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sancho-Galán, P.; Amores-Arrocha, A.; Jiménez-Cantizano, A.; Palacios, V. Physicochemical and Nutritional Characterization of Winemaking Lees: A New Food Ingredient. Agronomy 2020, 10, 996. [Google Scholar] [CrossRef]
- Ciliberti, M.G.; Francavilla, M.; Albenzio, M.; Inghese, C.; Santillo, A.; Sevi, A.; Caroprese, M. Green extraction of bioactive compounds from wine lees and their bio-responses on immune modulation using in vitro sheep model. J. Dairy Sci. 2022, 105, 4335–4353. [Google Scholar] [CrossRef]
- Tejido, M.L.; Ranilla, M.J.; Palacios, C.; Martínez, M.E.; Saro, C.; Sosa, A.; Díaz, A.; Carro, M.D. A comparison of the yield and nutritive value of organically and conventionally grown barley and wheat crops. Options Mediterr. 2011, 99, 53–61. [Google Scholar]
- Yao, K.Y.; Gu, F.F.; Liu, J.X. In vitro rumen fermentation characteristics of substrate mixtures with soybean meal partially replaced by microbially fermented yellow wine lees. Ital. J. Anim. Sci. 2020, 19, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Cone, J.W.; Van Gelder, A.H. Influence of protein fermentation on gas production profiles. Anim. Feed Sci. Technol. 1999, 76, 251–264. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Kingston-Smith, A.H.; Winter, A.L.; Lee, M.R.F.; Minchin, F.R.; Morris, P.; MacRae, J. Polyphenols and their influence on gut function and health in ruminants. Environ. Chem. Lett. 2006, 4, 121–126. [Google Scholar] [CrossRef]
- Jayanegara, A.; Togtokhbayar, N.; Makkar, H.P.S.; Becker, K. Tannins determined by various methods as predictors of methane production reduction potential of plants by an in vitro rumen fermentation system. Anim. Feed Sci. Technol. 2009, 150, 230–237. [Google Scholar] [CrossRef]
- Vasta, V.; Daghio, M.; Capucci, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef]
- Giller, K.; Bossut, L.; Eggerschwiler, L.; Terranova, M. In vitro ruminal fermentation, methane production and nutrient degradability as affected by fruit and vegetable pomaces in differing concentrations. J. Anim. Physiol. Anim. Nutr. 2022, 106, 957–967. [Google Scholar] [CrossRef]
- Marcos, C.N.; de Evan, T.; García-Rebollar, P.; de Blas, C.; Carro, M.D. Influence of storage time and processing on chemical composition and in vitro ruminal fermentation of olive cake. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1303. [Google Scholar] [CrossRef]
- Molina-Alcaide, E.; Yáñez-Ruíz, D. Potential use of olive by-products in ruminant feeding: A review. Anim. Feed Sci. Technol. 2008, 147, 247–264. [Google Scholar] [CrossRef]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, J.F.; Molina-Alcaide, E. Enteric methane production in adult sheep of the Segureña breed fed diets containing alkali-treated olive cake. Small Rumin. Res. 2021, 194, 106295. [Google Scholar] [CrossRef]
- Carro, M.D.; de Evan, T.; Marcos, C.N.; Molina-Alcaide, E. Tomato by-products as animal feed. In Tomato Processing by-Products; Jeguirim, M., Zorpas, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 33–76. [Google Scholar]
- Drouliscos, N.J. Nutritional evaluation of the protein of dried tomato pomace in the rat. Br. J. Nutr. 1976, 36, 449–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fondevila, M.; Guada, J.A.; Gasa, J.; Castrillo, C. Tomato pomace as a protein supplement for growing lambs. Small Rumin. Res. 1994, 13, 117–126. [Google Scholar] [CrossRef]
- Romero-Huelva, M.; Molina-Alcaide, E. Nutrient utilization, ruminal fermentation, microbial nitrogen flow, microbial abundances, and methane emissions in goats fed diets including tomato and cucumber waste fruits. J. Anim. Sci. 2013, 91, 914–923. [Google Scholar] [CrossRef] [Green Version]
- Romero-Huelva, M.; Martin-García, I.; Nogales, R.; Molina-Alcaide, E. The effect of feed blocks containing tomato and cucumber by-products on in vitro ruminal fermentation, microbiota, and methane production. J. Anim. Sci. 2013, 22, 229–237. [Google Scholar] [CrossRef]
- Arco-Pérez, A.; Ramos-Morales, E.; Yáñez-Ruiz, D.R.; Abecia, L.; Martín-García, A.I. Nutritive evaluation and milk quality of including of tomato or olive by-products silages with sunflower oil in the diet of dairy goats. Anim. Feed Sci. Technol. 2017, 232, 57–70. [Google Scholar] [CrossRef]
Dry Matter (g/kg) | Organic Matter | Crude Protein | Neutral Detergent Fiber | Acid Detergent Fiber | Ether Extract | Total Soluble Polyphenols | |
---|---|---|---|---|---|---|---|
By-product | |||||||
Wine lees (WL) | 932 | 936 | 125 | 311 | 249 | 43.0 | 34.1 |
Exhausted olive cake (EOC) | 823 | 830 | 90.6 | 565 | 432 | 31.3 | 23.5 |
Tomato pomace (TP) | 960 | 967 | 163 | 572 | 446 | 95.2 | 3.47 |
EOC:TP mixture (1:1) 1 | 892 | 899 | 127 | 569 | 439 | 63.3 | 13.5 |
Conventional feedstuffs | |||||||
Barley | 918 | 973 | 124 | 227 | 52.3 | 31.6 | - |
Wheat | 900 | 982 | 153 | 147 | 29.2 | 22.8 | - |
Corn | 871 | 988 | 68.1 | 98.2 | 20.6 | 41.3 | - |
Soybean meal | 897 | 924 | 506 | 145 | 77.4 | 29.0 | - |
Wheat bran | 891 | 946 | 187 | 417 | 127 | 55.5 | - |
Barley straw | 974 | 937 | 37.3 | 787 | 432 | 16.9 | - |
Item | Control | WL6 | WL12 | WL18 | EOC6 | EOC12 | EOC18 | EOCTP6 | EOCTP12 | EOCTP18 |
---|---|---|---|---|---|---|---|---|---|---|
Ingredient (g/kg fresh matter) | ||||||||||
Barley | 335 | 335 | 335 | 335 | 335 | 335 | 335 | 335 | 335 | 335 |
Corn | 252 | 222 | 192 | 162 | 240 | 228 | 210 | 252 | 252 | 252 |
Wheat | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 130 |
Barley straw | 120 | 100 | 80.0 | 60.0 | 90.0 | 60.0 | 30.0 | 90.0 | 60.0 | 30.0 |
Soybean meal | 90.0 | 80.0 | 70.0 | 60.0 | 90.0 | 90.0 | 90.0 | 78.0 | 68.0 | 57.0 |
Wheat bran | 48.0 | 48.0 | 48.0 | 48.0 | 30.0 | 12.0 | - | 33.0 | 16.0 | - |
WL | - | 60.0 | 120 | 180 | - | - | - | - | - | - |
EOC | - | - | - | - | 60.0 | 120 | 180 | - | - | - |
EOCTP | - | - | - | - | - | - | - | 60.0 | 120 | 180 |
Calcium soap | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 | 12.0 | 9.0 | 6.0 |
Calcium carbonate | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
Mineral/vitamin premix | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
Chemical composition 1 | ||||||||||
Dry matter | 903 | 905 | 906 | 907 | 897 | 892 | 883 | 900 | 898 | 895 |
Organic matter | 946 | 948 | 946 | 944 | 942 | 935 | 928 | 950 | 950 | 951 |
Crude protein | 137 | 137 | 137 | 137 | 138 | 139 | 140 | 135 | 134 | 133 |
Neutral detergent fiber | 246 | 245 | 244 | 243 | 247 | 248 | 251 | 249 | 252 | 255 |
Acid detergent fiber | 100 | 104 | 107 | 111 | 106 | 113 | 121 | 108 | 117 | 125 |
Ether extract | 44.9 | 45.6 | 46.4 | 47.1 | 44.9 | 45.0 | 45.1 | 44.3 | 43.7 | 43.1 |
Non structural carbohydrates | 518 | 520 | 519 | 517 | 512 | 503 | 492 | 520 | 516 | 519 |
Item | Control | WL6 | WL12 | WL18 | SEM 1 | p-Value | |
---|---|---|---|---|---|---|---|
Lineal | Quadratic | ||||||
Gas production parameters 2 | |||||||
PGP (mL/g dry matter (DM)) | 336 b | 325 b | 312 ab | 304 a | 3.7 | <0.001 | 0.729 |
c (%/h) | 4.17 | 4.27 | 4.36 | 4.37 | 0.132 | 0.211 | 0.690 |
lag (h) | 1.63 | 1.82 | 1.53 | 1.12 | 0.231 | 0.107 | 0.223 |
AGPR (mL/h) | 9.16 | 8.95 | 8.88 | 8.88 | 0.352 | 0.588 | 0.772 |
Fermentation parameters at 8 h incubation 3 | |||||||
Total VFA (mmol/g DM) | 3.47 | 3.51 | 3.46 | 3.48 | 0.065 | 0.909 | 0.853 |
Molar proportions (mol/100 mol) | |||||||
Acetate | 57.7 a | 58.3 b | 59.2 c | 59.9 d | 0.13 | <0.001 | 0.414 |
Propionate | 23.9 c | 23.6 c | 22.8 b | 22.0 a | 0.27 | 0.003 | 0.395 |
Butyrate | 15.0 | 14.7 | 14.7 | 14.8 | 0.17 | 0.461 | 0.452 |
Branched-chain VFA | 3.37 | 3.41 | 3.32 | 3.34 | 0.050 | 0.521 | 0.911 |
Acetate/Propionate (mol/mol) | 2.46 a | 2.52 a | 2.64 b | 2.78 c | 0.030 | <0.001 | 0.231 |
NH3-N (mg/L) | 185 | 186 | 179 | 188 | 3.44 | 0.999 | 0.283 |
CH4 (mL/g DM) | 18.5 | 16.8 | 17.4 | 17.6 | 0.90 | 0.604 | 0.315 |
CH4/VFA (mL/mmol) | 5.34 | 4.79 | 5.00 | 5.07 | 0.250 | 0.599 | 0.239 |
AFOM (mg/g) | 315 | 318 | 313 | 315 | 6.0 | 0.855 | 0.909 |
Fermentation parameters at 24 h incubation | |||||||
pH | 6.71 a | 6.70 a | 6.74 ab | 6.76 b | 0.020 | 0.021 | 0.210 |
Total VFA (mmol/g DM) | 6.82 b | 6.79 b | 6.59 a | 6.53 a | 0.081 | 0.017 | 0.849 |
Molar proportions (mol/100 mol) | |||||||
Acetate | 58.6 a | 59.1 b | 59.7 c | 60.1 d | 0.14 | <0.001 | 0.830 |
Propionate | 19.4 c | 19.3 c | 18.6 b | 18.0 a | 0.19 | 0.003 | 0.358 |
Butyrate | 17.5 | 17.2 | 17.3 | 17.3 | 0.13 | 0.403 | 0.340 |
Branched-chain VFA | 4.40 a | 4.40 a | 4.38 a | 4.55 b | 0.040 | 0.061 | 0.079 |
Acetate/Propionate (mol/mol) | 3.08 a | 3.14 a | 3.27 b | 3.39 c | 0.030 | <0.001 | 0.344 |
NH3-N (mg/L) | 284 | 286 | 289 | 289 | 5.43 | 0.534 | 0.863 |
CH4 (mL/g DM) | 43.1 | 42.0 | 42.3 | 43.0 | 1.10 | 0.996 | 0.469 |
CH4/VFA (mL/mmol) | 6.32 | 6.19 | 6.42 | 6.58 | 0.160 | 0.201 | 0.387 |
AFOM (mg/g) | 625 c | 620 bc | 603 ab | 598 a | 7.0 | 0.011 | 0.869 |
Item | Control | EOC6 | EOC12 | EOC18 | SEM 1 | p-Value | |
---|---|---|---|---|---|---|---|
Lineal | Quadratic | ||||||
Gas production parameters 2 | |||||||
PGP (mL/g dry matter (DM)) | 336 b | 321 a | 320 a | 309 a | 4.4 | 0.003 | 0.677 |
c (%/h) | 4.17 | 4.43 | 4.26 | 4.34 | 0.101 | 0.471 | 0.459 |
lag (h) | 1.63 | 1.89 | 1.71 | 1.58 | 0.261 | 0.788 | 0.491 |
AGPR (mL/h) | 9.16 | 8.84 | 8.84 | 8.75 | 0.343 | 0.380 | 0.985 |
Fermentation parameters at 8 h incubation 3 | |||||||
Total VFA (mmol/g DM) | 3.47 | 3.61 | 3.60 | 3.55 | 0.045 | 0.193 | 0.168 |
Molar proportions (mol/100 mol) | |||||||
Acetate | 57.7 a | 58.1 ab | 58.3 b | 58.4 b | 0.16 | 0.015 | 0.404 |
Propionate | 23.9 | 23.8 | 23.8 | 24.2 | 0.20 | 0.347 | 0.150 |
Butyrate | 15.0 b | 14.8 ab | 14.7 ab | 14.4 a | 0.09 | <0.001 | 0.285 |
Branched-chain VFA | 3.37 b | 3.30 b | 3.23 ab | 3.03 a | 0.052 | 0.002 | 0.253 |
Acetate/Propionate (mol/mol) | 2.46 | 2.48 | 2.50 | 2.44 | 0.033 | 0.888 | 0.162 |
NH3-N (mg/L) | 185 b | 184 b | 178 a | 173 a | 2.1 | 0.001 | 0.528 |
CH4 (mL/g DM) | 18.5 | 19.1 | 18.7 | 18.5 | 0.45 | 0.899 | 0.424 |
CH4/VFA (mL/mmol) | 5.34 | 5.28 | 5.19 | 5.21 | 0.113 | 0.333 | 0.832 |
AFOM (mg/g) | 315 | 323 | 325 | 320 | 4.0 | 0.246 | 0.164 |
Fermentation parameters at 24 h incubation | |||||||
pH | 6.71 | 6.70 | 6.71 | 6.71 | 0.013 | 0.850 | 0.673 |
Total VFA (mmol/g DM) | 6.82 | 6.88 | 6.82 | 6.70 | 0.048 | 0.102 | 0.101 |
Molar proportions (mol/100 mol) | |||||||
Acetate | 58.6 a | 58.7 ab | 58.9 b | 58.4 a | 0.13 | 0.265 | 0.043 |
Propionate | 19.4 a | 19.3 a | 19.3 a | 20.1 b | 0.12 | 0.108 | 0.008 |
Butyrate | 17.5 | 17.6 | 17.3 | 17.4 | 0.07 | 0.209 | 0.812 |
Branched-chain VFA | 4.45 b | 4.38 b | 4.44 b | 4.10 a | 0.061 | 0.012 | 0.031 |
Acetate/Propionate (mol/mol) | 3.08 b | 3.10 b | 3.10 b | 2.96 a | 0.031 | 0.014 | 0.013 |
NH3-N (mg/L) | 284 b | 284 b | 287 b | 266 a | 2.3 | <0.001 | 0.002 |
CH4 (mL/g DM) | 43.1 | 44.5 | 43.8 | 43.0 | 0.75 | 0.808 | 0.213 |
CH4/VFA (mL/mmol) | 6.32 | 6.46 | 6.39 | 6.41 | 0.101 | 0.655 | 0.596 |
AFOM (mg/g) | 625 | 633 | 623 | 615 | 4.5 | 0.115 | 0.135 |
Item | Control | EOCTP6 | EOCTP12 | EOCTP18 | SEM 1 | p-Value | |
---|---|---|---|---|---|---|---|
Lineal | Quadratic | ||||||
Gas production parameters 2 | |||||||
PGP (mL/g dry matter (DM)) | 336 b | 331 b | 328 ab | 316 a | 4.3 | 0.009 | 0.439 |
c (%/h) | 4.17 a | 4.44 ab | 4.57 b | 4.55 ab | 0.124 | 0.050 | 0.265 |
lag (h) | 1.63 | 1.84 | 1.81 | 1.60 | 0.264 | 0.722 | 0.356 |
AGPR (mL/h) | 9.16 | 9.47 | 9.62 | 9.39 | 0.438 | 0.670 | 0.547 |
Fermentation parameters at 8 h incubation 3 | |||||||
Total VFA (mmol/g DM) | 3.47 | 3.52 | 3.70 | 3.70 | 0.122 | 0.147 | 0.872 |
Molar proportions (mol/100 mol) | |||||||
Acetate | 57.7 a | 58.1 ab | 58.2 ab | 58.3 b | 0.18 | 0.049 | 0.618 |
Propionate | 23.9 | 24.2 | 23.9 | 24.0 | 0.38 | 0.990 | 0.887 |
Butyrate | 15.0 | 15.6 | 14.7 | 14.5 | 0.21 | 0.265 | 0.593 |
Branched-chain VFA | 3.37 b | 3.21 ab | 3.22 ab | 3.13 a | 0.057 | 0.024 | 0.589 |
Acetate/Propionate (mol/mol) | 2.46 | 2.44 | 2.47 | 2.46 | 0.044 | 0.852 | 0.985 |
NH3-N (mg/L) | 185 | 181 | 185 | 184 | 4.4 | 0.987 | 0.742 |
CH4 (mL/g DM) | 18.5 | 18.7 | 19.1 | 20.3 | 0.88 | 0.180 | 0.602 |
CH4/VFA (mL/mmol) | 5.34 | 5.32 | 5.19 | 5.48 | 0.173 | 0.721 | 0.394 |
AFOM (mg/g) | 315 | 318 | 335 | 335 | 11.5 | 0.164 | 0.907 |
Fermentation parameters at 24 h incubation | |||||||
pH | 6.71 b | 6.71 b | 6.69 ab | 6.67 a | 0.011 | 0.019 | 0.524 |
Total VFA (mmol/g DM) | 6.82 | 6.80 | 6.66 | 6.70 | 0.083 | 0.217 | 0.723 |
Molar proportions (mol/100 mol) | |||||||
Acetate | 58.6 | 58.4 | 58.6 | 58.7 | 0.12 | 0.460 | 0.153 |
Propionate | 19.4 | 19.7 | 19.7 | 19.9 | 0.24 | 0.279 | 0.726 |
Butyrate | 17.5 | 17.6 | 17.6 | 17.4 | 0.14 | 0.580 | 0.510 |
Branched-chain VFA | 4.40 b | 4.28 ab | 4.15 ab | 4.03 a | 0.087 | 0.010 | 0.986 |
Acetate/Propionate (mol/mol) | 3.08 | 3.01 | 3.02 | 3.00 | 0.043 | 0.294 | 0.501 |
NH3-N (mg/L) | 284 c | 282 bc | 269 ab | 258 a | 5.0 | 0.003 | 0.416 |
CH4 (mL/g DM) | 43.5 | 45.5 | 43.0 | 43.5 | 0.83 | 0.764 | 0.270 |
CH4/VFA (mL/mmol) | 6.32 | 6.70 | 6.45 | 6.48 | 0.104 | 0.634 | 0.133 |
AFOM (mg/g) | 625 | 625 | 613 | 615 | 6.8 | 0.218 | 0.754 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcos, C.N.; Evan, T.d.; Jiménez, C.; Carro, M.D. Potential of Agroindustrial By-Products to Modulate Ruminal Fermentation and Reduce Methane Production: In Vitro Studies. Animals 2022, 12, 3540. https://doi.org/10.3390/ani12243540
Marcos CN, Evan Td, Jiménez C, Carro MD. Potential of Agroindustrial By-Products to Modulate Ruminal Fermentation and Reduce Methane Production: In Vitro Studies. Animals. 2022; 12(24):3540. https://doi.org/10.3390/ani12243540
Chicago/Turabian StyleMarcos, Carlos Navarro, Trinidad de Evan, Christian Jiménez, and María Dolores Carro. 2022. "Potential of Agroindustrial By-Products to Modulate Ruminal Fermentation and Reduce Methane Production: In Vitro Studies" Animals 12, no. 24: 3540. https://doi.org/10.3390/ani12243540
APA StyleMarcos, C. N., Evan, T. d., Jiménez, C., & Carro, M. D. (2022). Potential of Agroindustrial By-Products to Modulate Ruminal Fermentation and Reduce Methane Production: In Vitro Studies. Animals, 12(24), 3540. https://doi.org/10.3390/ani12243540