Signaling Lymphocytic Activation Molecule Family Member 1 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cells, Viruses, Vectors, and Antibodies
2.2. Construction of SLAMF1 Gene Eukaryotic Expression Plasmid
2.3. Real-Time Quantitative PCR (qRT-PCR)
2.4. Western Blot (WB)
2.5. Statistical Analysis
3. Results
3.1. Expression of SLAMF1 in Marc-145 Cells by pEGFP-N1-SLAMF1
3.2. Overexpression of SLAMF1 Inhibits PRRSV Replication
3.3. Knockdown of SLAMF1 Enhances PRRSV Replication
3.4. SLAMF1 Gene Overexpression Inhibits PRRSV-Induced Inflammation
3.5. Knockdown of Porcine SLAMF1 Promotes PRRSV-Induced Inflammation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Feng, W.H. Porcine Reproductive and Respiratory Syndrome Virus Evades Antiviral Innate Immunity via MicroRNAs Regulation. Front. Microbiol. 2021, 12, 804264. [Google Scholar] [CrossRef] [PubMed]
- Wan, B.; Chen, X.; Li, Y.; Pang, M.; Chen, H.; Nie, X.; Pan, Y.; Qiao, S.; Bao, D. Porcine FcγRIIb mediated PRRSV ADE infection through inhibiting IFN-β by cytoplasmic inhibitory signal transduction. Int. J. Biol. Macromol. 2019, 138, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Risser, J.; Ackerman, M.; Evelsizer, R.; Wu, S.; Kwon, B.; Hammer, J.M. Porcine reproductive and respiratory syndrome virus genetic variability a management and diagnostic dilemma. Virol. J. 2021, 18, 206. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kang, I.; Park, C.; Kim, S.; Park, S.J.; Park, K.H.; Oh, T.; Yang, S.; Yoon, J.S.; Lee, O.; et al. A comparison of the severity of reproductive failure between single and dual infection with porcine reproductive and respiratory syndrome virus (PRRSV)-1 and PRRSV-2 in late-term pregnancy gilts. Transbound. Emerg. Dis. 2018, 65, 1641–1647. [Google Scholar] [CrossRef]
- Duan, X.; Nauwynck, H.J.; Pensaert, M.B. Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV). Arch. Virol. 1997, 142, 2483–2497. [Google Scholar] [CrossRef]
- Duan, X.; Nauwynck, H.J.; Pensaert, M.B. Virus quantification and identification of cellular targets in the lungs and lymphoid tissues of pigs at different time intervals after inoculation with porcine reproductive and respiratory syndrome virus (PRRSV). Vet. Microbiol. 1997, 56, 9–19. [Google Scholar] [CrossRef]
- An, T.Q.; Li, J.N.; Su, C.M.; Yoo, D. Molecular and Cellular Mechanisms for PRRSV Pathogenesis and Host Response to Infection. Virus Res. 2020, 286, 197980. [Google Scholar] [CrossRef]
- Harding, J.C.S.; Ladinig, A.; Novakovic, P.; Detmer, S.E.; Wilkinson, J.M.; Yang, T.; Lunney, J.K.; Plastow, G.S. Novel insights into host responses and reproductive pathophysiology of porcine reproductive and respiratory syndrome caused by PRRSV-2. Vet. Microbiol. 2017, 209, 114–123. [Google Scholar] [CrossRef]
- Nauwynck, H.J.; Duan, X.; Favoreel, H.W.; Van Oostveldt, P.; Pensaert, M.B. Entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages via receptor-mediated endocytosis. J. Gen. Virol. 1999, 80 Pt 2, 297–305. [Google Scholar] [CrossRef]
- Mulupuri, P.; Zimmerman, J.J.; Hermann, J.; Johnson, C.R.; Cano, J.P.; Yu, W.; Dee, S.A.; Murtaugh, M.P. Antigen-specific B-cell responses to porcine reproductive and respiratory syndrome virus infection. J. Virol. 2008, 82, 358–370. [Google Scholar] [CrossRef]
- Rovira, A.; Clement, T.; Christopher-Hennings, J.; Thompson, B.; Engle, M.; Reicks, D.; Muñoz-Zanzi, C. Evaluation of the sensitivity of reverse-transcription polymerase chain reaction to detect porcine reproductive and respiratory syndrome virus on individual and pooled samples from boars. J. Vet. Diagn. Investig. 2007, 19, 502–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Ma, L.; Yang, M.; Wu, W.; Feng, W.; Chen, Z. The Function of the PRRSV–Host Interactions and Their Effects on Viral Replication and Propagation in Antiviral Strategies. Vaccines 2021, 9, 364. [Google Scholar] [CrossRef]
- Gonçalves-Carneiro, D.; McKeating, J.A.; Bailey, D. The Measles Virus Receptor SLAMF1 Can Mediate Particle Endocytosis. J. Virol. 2017, 91, e02255-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, M.; Poljak, Z.; Arsenault, J.; D’Allaire, S. Epidemiological investigations in regard to porcine reproductive and respiratory syndrome (PRRS) in Quebec, Canada. Part 1: Biosecurity practices and their geographical distribution in two areas of different swine density. Prev. Vet. Med. 2012, 104, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Dragovich, M.A.; Mor, A. The SLAM family receptors: Potential therapeutic targets for inflammatory and autoimmune diseases. Autoimmun. Rev. 2018, 17, 674–682. [Google Scholar] [CrossRef]
- O’Connell, P.; Amalfitano, A.; Aldhamen, Y.A. SLAM Family Receptor Signaling in Viral Infections: HIV and Beyond. Vaccines 2019, 7, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Zeng, N.; Liu, S.; Miao, Q.; Zhou, L.; Ge, X.; Han, J.; Guo, X.; Yang, H. Interaction of porcine reproductive and respiratory syndrome virus proteins with SUMO-conjugating enzyme reveals the SUMOylation of nucleocapsid protein. PLoS ONE 2017, 12, e0189191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, W.; Ji, L.; Zhang, Y.; Zhen, Y.; Zhang, Q.; Xu, X.; Liu, B. Transcriptome Differences in Porcine Alveolar Macrophages from Tongcheng and Large White Pigs in Response to Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Infection. Int. J. Mol. Sci. 2017, 18, 1475. [Google Scholar] [CrossRef] [Green Version]
- Berger, S.B.; Romero, X.; Ma, C.; Wang, G.; Faubion, W.A.; Liao, G.; Compeer, E.; Keszei, M.; Rameh, L.; Wang, N.; et al. SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages. Nat. Immunol. 2010, 11, 920–927. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.; Wu, Z.; Guo, C.; Zhu, S.; Zhang, X.; Xia, X.; Sun, H. Recombinant adenovirus-delivered soluble CD163 and sialoadhesin receptors protected pigs from porcine reproductive and respiratory syndrome virus infection. Vet. Microbiol. 2018, 219, 1–7. [Google Scholar] [CrossRef]
- Dai, G.; Huang, M.; Fung, T.S.; Liu, D.X. Research progress in the development of porcine reproductive and respiratory syndrome virus as a viral vector for foreign gene expression and delivery. Expert Rev. Vaccines 2020, 19, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Brand, S.; Beigel, F.; Olszak, T.; Zitzmann, K.; Eichhorst, S.T.; Otte, J.M.; Diebold, J.; Diepolder, H.; Adler, B.; Auernhammer, C.J.; et al. IL-28A and IL-29 mediate antiproliferative and antiviral signals in intestinal epithelial cells and murine CMV infection increases colonic IL-28A expression. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 289, G960–G968. [Google Scholar] [CrossRef] [PubMed]
- Maher, S.G.; Sheikh, F.; Scarzello, A.J.; Romero-Weaver, A.L.; Baker, D.P.; Donnelly, R.P.; Gamero, A.M. IFNalpha and IFNlambda differ in their antiproliferative effects and duration of JAK/STAT signaling activity. Cancer Biol. Ther. 2008, 7, 1109–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witte, K.; Gruetz, G.; Volk, H.D.; Looman, A.C.; Asadullah, K.; Sterry, W.; Sabat, R.; Wolk, K. Despite IFN-lambda receptor expression, blood immune cells, but not keratinocytes or melanocytes, have an impaired response to type III interferons: Implications for therapeutic applications of these cytokines. Genes Immun. 2009, 10, 702–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Shao, C.; Wang, L.; Li, Q.; Song, H.; Fang, W. The viral non-structural protein 1 alpha (Nsp1α) inhibits p53 apoptosis activity by increasing murine double minute 2 (mdm2) expression in porcine reproductive and respiratory syndrome virus (PRRSV) early-infected cells. Vet. Microbiol. 2016, 184, 73–79. [Google Scholar] [CrossRef]
- Jing, H.; Song, T.; Cao, S.; Sun, Y.; Wang, J.; Dong, W.; Zhang, Y.; Ding, Z.; Wang, T.; Xing, Z.; et al. Nucleotide-binding oligomerization domain-like receptor X1 restricts porcine reproductive and respiratory syndrome virus-2 replication by interacting with viral Nsp9. Virus Res. 2019, 268, 18–26. [Google Scholar] [CrossRef]
- Czyżewska-Dors, E.; Pomorska-Mól, M.; Dors, A.; Pluta, A.; Podgórska, K.; Kwit, K.; Stasiak, E.; Łukomska, A. Proinflammatory Cytokine Changes in Bronchoalveolar Lavage Fluid Cells Isolated from Pigs Infected Solely with Porcine Reproductive and Respiratory Syndrome Virus or Co-infected with Swine Influenza Virus. J. Vet. Res. 2019, 63, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Kimman, T.G.; Cornelissen, L.A.; Moormann, R.J.; Rebel, J.M.; Stockhofe-Zurwieden, N. Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology. Vaccine 2009, 27, 3704–3718. [Google Scholar] [CrossRef]
- Lamontagne, L.; Page, C.; Larochelle, R.; Longtin, D.; Magar, R. Polyclonal activation of B cells occurs in lymphoid organs from porcine reproductive and respiratory syndrome virus (PRRSV)-infected pigs. Vet. Immunol. Immunopathol. 2001, 82, 165–182. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, N.; Xu, L.; Zhou, L.; Ge, X.; Guo, X.; Yang, H. Induction of Apoptosis by the Nonstructural Protein 4 and 10 of Porcine Reproductive and Respiratory Syndrome Virus. PLoS ONE 2016, 11, e0156518. [Google Scholar] [CrossRef]
- Gordiienko, I.; Shlapatska, L.; Kovalevska, L.; Sidorenko, S.P. SLAMF1/CD150 in hematologic malignancies: Silent marker or active player? Clin. Immunol. (Orlando Fla.) 2019, 204, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Wang, N.; Detre, C.; Wang, G.; O’Keeffe, M.; Terhorst, C. Receptor signaling lymphocyte-activation molecule family 1 (Slamf1) regulates membrane fusion and NADPH oxidase 2 (NOX2) activity by recruiting a Beclin-1/Vps34/ultraviolet radiation resistance-associated gene (UVRAG) complex. J. Biol. Chem. 2012, 287, 18359–18365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suradhat, S.; Wongyanin, P.; Sirisereewan, C.; Nedumpun, T.; Lumyai, M.; Triyarach, S.; Chaturavittawong, D.; Paphavasit, T.; Panyatong, R.; Thanawongnuwech, R. Transdermal delivery of plasmid encoding truncated nucleocapsid protein enhanced PRRSV-specific immune responses. Vaccine 2016, 34, 609–615. [Google Scholar] [CrossRef]
- Rowland, R.R.; Yoo, D. Nucleolar-cytoplasmic shuttling of PRRSV nucleocapsid protein: A simple case of molecular mimicry or the complex regulation by nuclear import, nucleolar localization and nuclear export signal sequences. Virus Res. 2003, 95, 23–33. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Q.; Bai, J.; Zhao, Y.; Wang, X.; Wang, H.; Jiang, P. The Nucleocapsid Protein and Nonstructural Protein 10 of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Enhance CD83 Production via NF-κB and Sp1 Signaling Pathways. J. Virol. 2017, 91, e00986-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Xing, X.; Li, Q.; Feng, S.; Han, X.; He, S.; Zhang, G. Serine 105 and 120 are important phosphorylation sites for porcine reproductive and respiratory syndrome virus N protein function. Vet. Microbiol. 2018, 219, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhang, X.; Li, S.; Zhu, Y.; Zheng, X.; Liu, F.; Feng, W.H. miR-142-3p suppresses porcine reproductive and respiratory syndrome virus (PRRSV) infection by directly targeting Rac1. Vet. Microbiol. 2022, 269, 109434. [Google Scholar] [CrossRef]
- Liu, X.; Song, Z.; Bai, J.; Nauwynck, H.; Zhao, Y.; Jiang, P. Xanthohumol inhibits PRRSV proliferation and alleviates oxidative stress induced by PRRSV via the Nrf2-HMOX1 axis. Vet. Res. 2019, 50, 61. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Liu, P.; Yuan, L.; Lian, Z.; Hu, D.; Yao, X.; Li, X. Induction of UPR Promotes Interferon Response to Inhibit PRRSV Replication via PKR and NF-κB Pathway. Front. Microbiol. 2021, 12, 757690. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, S.; Sun, W.; Chen, L.; Yoo, D.; Li, F.; Ren, S.; Guo, L.; Cong, X.; Li, J.; et al. Nuclear export signal of PRRSV NSP1α is necessary for type I IFN inhibition. Virology 2016, 499, 278–287. [Google Scholar] [CrossRef]
- Sun, Y.; Han, M.; Kim, C.; Calvert, J.G.; Yoo, D. Interplay between interferon-mediated innate immunity and porcine reproductive and respiratory syndrome virus. Viruses 2012, 4, 424–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shcherbina, V.; Gordiienko, I.; Shlapatska, L.; Gluzman, D.; Sidorenko, S. CD150 and CD180 are negative regulators of IL-10 expression and secretion in chronic lymphocytic leukemia B cells. Neoplasma 2021, 68, 760–769. [Google Scholar] [CrossRef] [PubMed]
Primer Name | The Necleotide Sequence (5′-3′) | Product Length |
---|---|---|
SLAMF1-F | FCCGCTCGAGATGCATAAACTAGACAGTAGAGGCA | 1032 bp |
SLAMF1-R | CCAAGCTTGCTCTCCGGAAGAGTCACG |
Primer | Sequences (5′-3′) |
---|---|
mTNF-F | CACCACGCTCTTCTGTCTGCT |
mTNF-R | CAGGCTTGTCACTTGGGGTT |
mIL-6-F | ACTGGTCTTTTGGAGTTTGAGG |
mIL-6-R | GCTGGCATTTGTGGTTGGTT |
mRIG-I-F | TGATTGCCACCTCAGTTG |
mRIG-I-R | TTCCTCTGCCTCTGGTTTG |
mIFN-α-F | CATTGCCCTTTGCTTTACTGAT |
mIFN-α-R | CTGGAGCCTTCTGGAACTGGT |
mIL-1B-F | TCCCACGAGCACTACAACGA |
mIL-1B-R | CTTAGCTTCTCCATGGCTACAACA |
mIL-8-F | CTGGCGGTGGCTCTCTTG |
mIL-8-R | CCTTGGCAAAACTGCACCTT |
mTLR2-F | CTGCAAGCTGCGGAAGATAAT |
mTLR2-R | TTCCTGCCGAGCCTCATC |
mTRIF-F | ACTCGGCCTTCACCATCCT |
mTRIF-R | GGCTGCTCATCAGAGACTGGTT |
mMyD88-F | GGCAGCTGGAACAGACCAA |
mMyD88-R | GGTGCCAGGCAGGACATC |
mIKBa-F | TCCACTTGGCGGTGATCA |
mIKBa-R | ATCACAGCCAGCTTCCAGAAG |
mGAPDH-F | TGGGGAAGGTGAAGGTCGG |
mGAPDH-R | TCCTGGAAGATGGTGATGGG |
qORF7-F | TCAGCTGTGCCAAATGCTGG |
qORF7-R | AAATGGGGCTTCTCCGGGTTTT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Quan, J.; Li, C.; Liang, W.; Zhang, L.; Wang, S.; Lu, H.; Yang, K.; Zhou, D.; Li, P.; et al. Signaling Lymphocytic Activation Molecule Family Member 1 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication. Animals 2022, 12, 3542. https://doi.org/10.3390/ani12243542
Song H, Quan J, Li C, Liang W, Zhang L, Wang S, Lu H, Yang K, Zhou D, Li P, et al. Signaling Lymphocytic Activation Molecule Family Member 1 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication. Animals. 2022; 12(24):3542. https://doi.org/10.3390/ani12243542
Chicago/Turabian StyleSong, Haofei, Jima Quan, Chang Li, Wan Liang, Lan Zhang, Shuangshuang Wang, Hongyu Lu, Keli Yang, Danna Zhou, Peng Li, and et al. 2022. "Signaling Lymphocytic Activation Molecule Family Member 1 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication" Animals 12, no. 24: 3542. https://doi.org/10.3390/ani12243542
APA StyleSong, H., Quan, J., Li, C., Liang, W., Zhang, L., Wang, S., Lu, H., Yang, K., Zhou, D., Li, P., & Tian, Y. (2022). Signaling Lymphocytic Activation Molecule Family Member 1 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication. Animals, 12(24), 3542. https://doi.org/10.3390/ani12243542