Pharmacokinetic Profile of Doxycycline in Koala Plasma after Weekly Subcutaneous Injections for the Treatment of Chlamydiosis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Clinical Examination and Blood Collection
2.3. Pooled Blank Plasma
2.4. Drug Analysis
2.5. Sample Preparation
2.6. Assay Validation
2.7. Pharmacokinetic (PK) Analysis
2.8. Doxycycline Binding to Koala Plasma Proteins (PPB)
2.9. Probability of Target Attainment (PTA) and Monte Carlo Simulation
3. Results
3.1. Summary of the Koalas
3.2. Assay Validation
3.3. PK Analysis
3.4. Plasma Protein Binding
3.5. Probability of Target Attainment
4. Discussion
Species | Method | Fraction Unbound (fu) | References |
---|---|---|---|
Koalas (conducted in duplicates at each concentration) | In Vitro rapid equilibrium dialysis | 1000 ng/mL: 0.27; 62.5 ng/mL: 0.15; 7.81 ng/mL: 0.07; Mean: 0.16 | This study |
Dogs | In Vitro ultrafiltration | 0.08 | [49] |
Humans | Not specified | 0.1–0.2 | [50] |
Horses | In Vitro ultrafiltration | 0.19 | [51] |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Gonzalez-Astudillo, V.; Allavena, R.; McKinnon, A.; Larkin, R.; Henning, J. Decline causes of Koalas in South East Queensland, Australia: A 17-year retrospective study of mortality and morbidity. Sci. Rep. 2017, 7, 42587. [Google Scholar] [CrossRef]
- Polkinghorne, A.; Hanger, J.; Timms, P. Recent advances in understanding the biology, epidemiology and control of chlamydial infections in koalas. Vet. Microbiol. 2013, 165, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Pagliarani, S.; Johnston, S.; Pyne, M.; Booth, R.; Hulse, L.; Beagley, K.; Palmieri, C. Chlamydia pecorum Infection in the Reproductive Tract of Female Koalas (Phascolarctos cinereus). J. Comp. Pathol. 2020, 174, 189. [Google Scholar] [CrossRef]
- Hulse, L.S.; Beagley, K.; Ellis, W.; Fitzgibbon, S.; Gillett, A.; Barth, B.; Robbins, A.; Pyne, M.; Larkin, R.; Johnston, S.D. Epidemiology of chlamydia-induced reproductive disease in male koalas (Phascolarctos cinereus) from Southeast Queensland, Australia as assessed from penile urethral swabs and semen. J. Wildl. Dis. 2019, 56, 82–92. [Google Scholar] [CrossRef]
- Govendir, M. Review of some pharmacokinetic and pharmacodynamic properties of anti-infective medicines administered to the koala (Phascolarctos cinereus). J. Vet. Pharmacol. Ther. 2018, 41, 1–10. [Google Scholar] [CrossRef]
- Phillips, S.; Quigley, B.L.; Olagoke, O.; Booth, R.; Pyne, M.; Timms, P. Vaccination of koalas during antibiotic treatment for Chlamydia-induced cystitis induces an improved antibody response to Chlamydia pecorum. Sci. Rep. 2020, 10, 10152. [Google Scholar] [CrossRef] [PubMed]
- Booth, R.; Nyari, S. Clinical comparison of five anti-chlamydial antibiotics in koalas (Phascolarctos cinereus). PLoS ONE 2020, 15, e0236758. [Google Scholar] [CrossRef]
- Gordon, G. Estimation of the age of the Koala, Phascolarctos cinereus (Marsupialia: Phascolarctidae) from tooth wear and growth. Aust. Mammal. 1991, 14, 5–12. [Google Scholar] [CrossRef]
- Hulse, L.S.; McDonald, S.; Johnston, S.D.; Beagley, K.W. Rapid point-of-care diagnostics for the detection of Chlamydia pecorum in koalas (Phascolarctos cinereus) using loop-mediated isothermal amplification without nucleic acid purification. Microbiologyopen 2019, 8, e916. [Google Scholar] [CrossRef]
- Denić, M.S.; Sunarić, S.M.; Kesić, L.G.; Minić, I.Z.; Obradović, R.R.; Denić, M.S.; Petrović, M.S. RP-HPLC assay of doxycycline in human saliva and gingival crevicular fluid in patients with chronic periodontal disease. J. Pharmaceut. Biomed. 2013, 78–79, 170–175. [Google Scholar] [CrossRef]
- Croubels, S.; Vermeersch, H.; De Backer, P.; Santos, M.D.; Remon, J.P.; Van Peteghem, C. Liquid chromatographic separation of doxycycline and 4-epidoxycycline in a tissue depletion study of doxycycline in turkeys. J. Chromatogr. B Biomed. Sci. Appl. 1998, 708, 145–152. [Google Scholar] [CrossRef]
- APVMA. Guidelines for the Validation of Analytical Methods for Active Constituent, Agricultural and Veterinary Chemical Products; Australian Pesticides and Veterinary Medicines Authority: Canberra, Australia, 2004; pp. 1–9.
- Taleuzzaman, M. Limit of Blank (LOB), Limit of Detection (LOD), and Limit of Quantification (LOQ). Org. Med. Chem. Int. J. 2018, 7, 555722. [Google Scholar] [CrossRef]
- Shechtman, O. The Coefficient of Variation as an Index of Measurement Reliability; Springer: Berlin/Heidelberg, Germany, 2013; pp. 39–49. [Google Scholar]
- Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef]
- DiPiro, J.T.; Spruill, W.J.; Wade, W.E.; Blouin, R.A.; Pruemer, J.M. Concepts in Clinical Pharmacokinetics, 5th ed.; American Society of Health-System Pharmacists: Bethesda, MD, USA, 2010. [Google Scholar]
- Schrag, M.; Regal, K. Chapter 4—Pharmacokinetics and Toxicokinetics. In A Comprehensive Guide to Toxicology in Nonclinical Drug Development, 2nd ed.; Faqi, A.S., Ed.; Academic Press: Boston, MA, USA, 2013; pp. 69–106. [Google Scholar]
- Fernández-Varón, E.; Cárceles-García, C.; Serrano-Rodríguez, J.M.; Cárceles-Rodríguez, C.M. Pharmacokinetics (PK), pharmacodynamics (PD), and PK-PD integration of ceftiofur after a single intravenous, subcutaneous and subcutaneous-LA administration in lactating goats. BMC Vet. Res. 2016, 12, 232. [Google Scholar] [CrossRef] [PubMed]
- Byers, J.; Sarver, J. Pharmacokinetic Modeling. In Pharmacology; Academic Press: Cambridge, MA, USA, 2009; pp. 201–277. [Google Scholar]
- Dow, N. Determination of compound binding to plasma proteins. Curr. Protoc. Pharmacol. 2006, 7, 7.5.1–7.5.15. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, C.; Li, J.; Huang, Z.; Gu, X.; Shen, X.; Ding, H. Pharmacokinetic/Pharmacodynamic Integration of Doxycycline Against Mycoplasma hyopneumoniae in an In Vitro Model. Front. Pharmacol. 2019, 10, 1088. [Google Scholar] [CrossRef] [PubMed]
- Agwuh, K.N.; MacGowan, A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J. Antimicrob. Chemother. 2006, 58, 256–265. [Google Scholar] [CrossRef]
- De Lucas, J.J.; Rodríguez, C.; San Andrés, M.D.; Sainz, A.; Villaescusa, A.; García-Sancho, M.; Rodríguez-Franco, F.; San Andrés, M.I. Pharmacokinetics of doxycycline after oral administration of multiple doses in dogs. J. Vet. Pharmacol. Ther. 2021, 44, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Maaland, M.G.; Papich, M.G.; Turnidge, J.; Guardabassi, L. Pharmacodynamics of doxycycline and tetracycline against Staphylococcus pseudintermedius: Proposal of canine-specific breakpoints for doxycycline. J. Clin. Microbiol. 2013, 51, 3547–3554. [Google Scholar] [CrossRef]
- Toutain, P.-L.; Pelligand, L.; Lees, P.; Bousquet-Mélou, A.; Ferran, A.A.; Turnidge, J.D. The pharmacokinetic/pharmacodynamic paradigm for antimicrobial drugs in veterinary medicine: Recent advances and critical appraisal. J. Vet. Pharmacol. Ther. 2021, 44, 172–200. [Google Scholar] [CrossRef]
- Toutain, P.-L.; Bousquet-Mélou, A.; Martinez, M. AUC/MIC: A PK/PD index for antibiotics with a time dimension or simply a dimensionless scoring factor? J. Antimicrob. Chemother. 2007, 60, 1185–1188. [Google Scholar] [CrossRef] [PubMed]
- Toutain, P.L.; del Castillo, J.R.E.; Bousquet-Mélou, A. The pharmacokinetic–pharmacodynamic approach to a rational dosage regimen for antibiotics. Res. Vet. Sci. 2002, 73, 105–114. [Google Scholar] [CrossRef]
- Blanshard, W. Medicine and husbandry of koalas. In Proceedings of the Wildlife: The T G Hungerford Refresher Course for Veterinarians, Dubbo, Australia, 19–23 September 1994; pp. 547–626. [Google Scholar]
- Canfield, P.M.; O’Neill, M.E.; Smith, E.F. Haematological and biochemical reference values for the koala (Phascolarctos cinereus). Aust. Vet. J. 1989, 66, 324–326. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Barreto, N.J. Bayesian Model Inference. In Brain Mapping; Toga, A.W., Ed.; Academic Press: Waltham, MA, USA, 2015; pp. 535–539. [Google Scholar]
- Mouton, J.W.; Dudley, M.N.; Cars, O.; Derendorf, H.; Drusano, G.L. Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: An update. J. Antimicrob. Chemother. 2005, 55, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Andes, D.; Craig, W.A. In Vivo pharmacodynamic activity of the glycopeptide dalbavancin. Antimicrob. Agents Chemother. 2007, 51, 1633–1642. [Google Scholar] [CrossRef]
- Pudjiatmoko; Fukushi, H.; Ochiai, Y.; Yamaguchi, T.; Hirai, K. In Vitro Susceptibility of Chlamydia pecorum to Macrolides, Tetracyclines, Quinolones and β-Lactam. Microbiol. Immunol. 1998, 42, 61–63. [Google Scholar] [CrossRef]
- Pang, K.S.; Rowland, M. Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. J. Pharmacokinet. Biopharm. 1977, 5, 625–653. [Google Scholar] [CrossRef]
- Hallifax, D.; Foster, J.A.; Houston, J.B. Prediction of human metabolic clearance from in vitro systems: Retrospective analysis and prospective view. Pharm. Res. 2010, 27, 2150–2161. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Xu, L.; Sheng, Y.; Huang, J.; Zheng, Q. Systematic evaluation of dose accumulation studies in clinical pharmacokinetics. Curr. Drug Metab. 2013, 14, 605–615. [Google Scholar] [CrossRef]
- Riond, J.L.; Vaden, S.L.; Riviere, J.E. Comparative pharmacokinetics of doxycycline in cats and dogs. J. Vet. Pharmacol. Ther. 1990, 13, 415–424. [Google Scholar] [CrossRef]
- Gutiérrez, L.; Velasco, Z.; Vázquez, C.; Vargas, D.; Sumano, H. Pharmacokinetics of an injectable long-acting formulation of doxycycline hyclate in dogs. Acta Vet. Scand. 2012, 54, 35. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Li, G.H.; Meng, X.B.; Wang, L.Q.; Huang, X.H.; Shan, Q.; Zeng, D.P.; Ding, H.Z.; Zeng, Z.L. Pharmacokinetic interactions of flunixin meglumine and doxycycline in broiler chickens. J. Vet. Pharmacol. Ther. 2013, 36, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Bryant, J.E.; Brown, M.P.; Gronwall, R.R.; Merritt, K.A. Study of intragastric administration of doxycycline: Pharmacokinetics including body fluid, endometrial and minimum inhibitory concentrations. Equine Vet. J. 2000, 32, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Castro, L.J.; Sahagun, A.M.; Diez, M.J.; Fernandez, N.; Sierra, M.; Garcia, J.J. Pharmacokinetics of doxycycline in sheep after intravenous and oral administration. Vet. J. 2009, 180, 389–395. [Google Scholar] [CrossRef]
- Gutierrez, L.; Ocampo, L.; Espinosa, F.; Sumano, H. Pharmacokinetics of an injectable long-acting parenteral formulation of doxycycline hyclate in pigs. J. Vet. Pharmacol. Ther. 2014, 37, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.D.; Vermeersch, H.; Remon, J.P.; Schelkens, M.; De Backer, P.; Van Bree, H.J.; Ducatelle, R.; Haesebrouck, F. Pharmacokinetics and bioavailability of doxycycline in turkeys. J. Vet. Pharmacol. Ther. 1996, 19, 274–280. [Google Scholar] [CrossRef]
- Ole-Mapenay, I.M.; Mitema, E.S. Some pharmacokinetic parameters of doxycycline in east African goats after intramuscular administration of a long-acting formulation. Vet. Res. Commun. 1995, 19, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Kimble, B.; Li, K.M.; Govendir, M. Quantitation of meloxicam in the plasma of koalas (Phascolarctos cinereus) by improved high performance liquid chromatography. J. Vet. Sci. 2013, 14, 7. [Google Scholar] [CrossRef]
- Black, L.A.; Krockenberger, M.B.; Kimble, B.; Govendir, M. Pharmacokinetics of fluconazole following intravenous and oral administration to koalas (Phascolarctos cinereus). J. Vet. Pharmacol. Ther. 2014, 37, 90–98. [Google Scholar] [CrossRef]
- Govendir, M.; Hanger, J.; Loader, J.J.; Kimble, B.; Griffith, J.E.; Black, L.A.; Krockenberger, M.B.; Higgins, D.P. Plasma concentrations of chloramphenicol after subcutaneous administration to koalas (Phascolarctos cinereus) with chlamydiosis. J. Vet. Pharmacol. Ther. 2012, 35, 147–154. [Google Scholar] [CrossRef]
- Cervelli, M.J.; Russ, G.R. Chapter 73—Principles of Drug Therapy, Dosing, and Prescribing in Chronic Kidney Disease and Renal Replacement Therapy. In Comprehensive Clinical Nephrology, 4th ed.; Floege, J., Johnson, R.J., Feehally, J., Eds.; Mosby: Philadelphia, PA, USA, 2010; pp. 871–893. [Google Scholar]
- Bidgood, T.L.; Papich, M.G. Comparison of plasma and interstitial fluid concentrations of doxycycline and meropenem following constant rate intravenous infusion in dogs. Am. J. Vet. Res. 2003, 64, 1040–1046. [Google Scholar] [CrossRef]
- Cunha, B.A.; Sibley, C.M.; Ristuccia, A.M. Doxycycline. Ther. Drug Monit. 1982, 4, 115. [Google Scholar] [CrossRef]
- Davis, J.; Salmon, J.; Papich, M. Pharmacokinetics and tissue distribution of doxycycline after oral administration of single and multiple doses in horses. J. Am. Vet. Med. Assoc. 2006, 228, 421. [Google Scholar] [CrossRef]
- Lindup, W.E.; Orme, M.C. Clinical pharmacology: Plasma protein binding of drugs. Br. Med. J. (Clin. Res. ed.) 1981, 282, 212–214. [Google Scholar] [CrossRef]
- Sansom, L.N.; Evans, A.M. What is the true clinical significance of plasma protein binding displacement interactions? Drug Saf. 1995, 12, 227–233. [Google Scholar] [CrossRef]
- Riviere, J.E.; Buur, J. Distribution. In Comparative Pharmacokinetics, Principles, Techniques and Applications, 2nd ed.; Riviere, J.E., Ed.; Wiley-Blackwell: Chichester, UK, 2011; pp. 73–90. [Google Scholar]
- Riedel, J. Distribution—In Vitro Tests—Protein Binding. In Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays; Vogel, H.G., Maas, J., Hock, F.J., Mayer, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 897–913. [Google Scholar]
- Houin, G.; Brunner, F.; Nebout, T.; Cherfaoui, M.; Lagrue, G.; Tillement, J.P. The effects of chronic renal insufficiency on the pharmacokinetics of doxycycline in man. Br. J. Clin. Pharmacol. 1983, 16, 245–252. [Google Scholar] [CrossRef]
- Heaney, D.; Eknoyan, G. Minocycline and doxycycline kinetics in chronic renal failure. Clin. Pharmacol. Ther. 1978, 24, 233–239. [Google Scholar] [CrossRef]
- Kimble, B.; Vogelnest, L.; Valtchev, P.; Govendir, M. Pharmacokinetic profile of injectable tramadol in the koala (Phascolarctos cinereus) and prediction of its analgesic efficacy. PLoS ONE 2021, 16, e0247546. [Google Scholar] [CrossRef] [PubMed]
- Tokonami, F.; Kimble, B.; Govendir, M. Pharmacokinetic Profile of Fentanyl in the Koala (Phascolarctos cinereus) after Intravenous Administration, and Absorption via a Transdermal Patch. Animals 2021, 11, 3550. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-Y.; Kim, K.-A.; Kim, S.-L. Chloramphenicol is a potent inhibitor of cytochrome P450 isoforms CYP2C19 and CYP3A4 in human liver microsomes. Antimicrob. Agents Chemother. 2003, 47, 3464–3469. [Google Scholar] [CrossRef] [PubMed]
Koala | Age (years) | Weight (kg) | Body Condition Score | Clinical Sign/s | LAMP Result (Pre-Treatment) | Drugs Administered | Clinical Sign/s Resolved? | LAMP Result (Post-Treatment) | Outcome |
---|---|---|---|---|---|---|---|---|---|
K1 | 3 | 6.3 | 6/10 | Cystitis | Positive (UGT) | Doxycycline, prednisolone 5 mg/kg PO SID from 48 h after blood collection for three doses then EOD for three further doses during doxycycline injections | Y | Negative | Released |
K2 | 10 | 6.0 | 4/10 | Cystitis | Positive (UGT, ocular) | IV fluids on admission for 24 h to correct dehydration. Doxycycline, prednisolone 5 mg/kg PO SID for three doses then EOD for seven further doses from day 12 for several days during doxycycline injections | Y | Negative | Released |
K3 | 6 | 8.5 | 6/10 | Conjunctivitis, cystitis | Positive (UGT, ocular) | S.c. fluids on admission to correct dehydration. Doxycycline, Chloroptsone administered twice daily for 14 days, and dexamethasone eye drops (once only) | Y | Negative | Released |
K4 | 10 | 8.9 | 5/10 | Cystitis | Positive (UGT, ocular) | Doxycycline | Y | Negative | Released |
K5 | 5 | 7.7 | 6/10 | Conjunctivitis | Positive (ocular) | Doxycycline, ofloxacin eye drops BID for the first 14 days. Repeat ofloxacin course BID with addition of dexamethasone BID for 14 days starting from the fourth doxycycline injection | Y | Negative | Released |
K6 | 10 | 7.5 | 5/10 | Conjunctivitis | Positive (UGT) | Doxycycline, IV fluids for 48 h from admission to correct dehydration after T = 0 h | Y | Negative | Released |
Intra-Day (across 3 Days) | ||
Expected concentration (ng/mL) | 125 | 1000 |
Estimated concentration (ng/mL) | 108.93 ± 4.46 | 1083.03 ± 68.52 |
Accuracy (%) | 84.45–92.19 | 100.21–116.97 |
Precision (%) | 4.10 | 6.33 |
Inter-Day (across 3 Days) | ||
Expected concentration (ng/mL) | 125 | 1000 |
Estimated concentration (ng/mL) | 115.71 ± 6.65 | 1068.06 ± 73.14 |
Accuracy (%) | 88.01–96.03 | 104.31–110.78 |
Precision (%) | 5.38 | 6.84 |
Doxycycline Concentration in Plasma (ng/mL) | Median PK/PD | ||||||
---|---|---|---|---|---|---|---|
T (h) | Mean | SD | Median | Range | MIC = 8 ng/mL | MIC = 20 ng/mL | MIC = 31 ng/mL |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 284.77 | 117.07 | 283.45 | 138.38–498.89 | 708.64 | 283.45 | 182.87 |
2 | 284.04 | 94.00 | 264.36 | 167.40–474.38 | 44.81 | 17.92 | 11.56 |
4 | 270.55 | 93.43 | 238.78 | 140.53–408.68 | 51.70 | 20.68 | 13.34 |
8 | 230.92 | 70.79 | 209.26 | 124.47–312.56 | 43.43 | 17.37 | 11.21 |
12 | 208.28 | 79.49 | 191.21 | 104.41–323.39 | 41.21 | 16.49 | 10.64 |
24 | 159.50 | 60.69 | 155.07 | 64.09–237.03 | 191.88 | 76.75 | 49.52 |
48 | 100.23 α | 32.14 α | 107.49 α | 47.23–140.61 α | 165.20 | 66.08 | 42.63 |
72 | 71.18 β | 0 β | 71.18 β | N/A | 79.32 | 31.73 | 20.47 |
96 | 55.38 α | 27.92 α | 48.70 α | 12.70–94.87 α | 27.19 | 10.88 | 7.02 |
120 | 39.25 β | 0 β | 39.25 β | N/A | 52.65 | 21.06 | 13.59 |
144 | 25.07 α | 6.81 α | 24.02 α | 15.10–36.38 α | 35.36 | 14.14 | 9.13 |
168 | 23.39 | 6.49 | 24.56 | 9.98–30.88 | 2.79 | 1.12 | 0.72 |
336 | 19.99 | 6.66 | 20.84 | 9.84–27.72 | 0.05 | 0.02 | 0.01 |
504 | 19.26 | 7.87 | 18.71 | 10.42–33.38 | 5.62 | 2.25 | 1.45 |
672 | 27.27 | 8.46 | 25.07 | 20.75–45.61 | 6.12 | 2.45 | 1.58 |
Parameters and Indices | Mean | SD | Median | Range |
---|---|---|---|---|
K10 (1/h) | 0.02 | 0.004 | 0.02 | 0.02–0.03 |
K12 (1/h) | 0.04 | 0.04 | 0.02 | 0.01–0.12 |
K21 (1/h) | 0.06 | 0.04 | 0.07 | 0.01–0.10 |
T1/2 α (h) | 10.51 | 7.15 | 6.50 | 2.97–22.67 |
T1/2 β (h) | 82.93 | 37.76 | 64.25 | 46.02–137.87 |
T1/2 K10 (h) | - | - | - | - |
Tmax (h) | 1.94 | 1.51 | 2.14 | 0.20–4.01 |
Cmax (ng/mL) | 324.67 | 114.07 | 345.86 | 155.64–504.24 |
AUC0–t (ng/mL·h) | 14,063.63 | 5099.77 | 15,887.91 | 5725.13–20,604.50 |
AUC0–∞_obs (ng/mL·h) | 16,295.38 | 5264.70 | 17,252.40 | 7765.74–22,464.07 |
AUC0–t/AUC0–∞_obs | 0.85 | 0.07 | 0.85 | 0.74–0.92 |
AUMCo–∞_obs (ng/mL·h2) | 1.37 × 106 | 3.84 × 105 | 1.16 × 106 | 1.01 × 106, −2.08 × 106 |
MRT (h) | 89.65 | 24.26 | 86.45 | 64.58–129.88 |
Vz/F _obs (L/kg) | 16.60 | 6.75 | 14.03 | 9.77–29.37 |
Cl/F_obs (L/kg/h) | 0.35 | 0.15 | 0.29 | 0.22–0.64 |
Doxycycline Concentrations in Plasma (ng/mL) | |||
---|---|---|---|
Animal | Trough Concentration Prior to 2nd Dose (T = 168 h) | Trough Concentration prior to 3rd Dose (T = 336 h) | Trough Concentration Prior to 4th Dose (T = 672 h) |
K1 | 23.31 | 27.72 | 45.61 |
K2 | 23.99 | 24.01 | 25.97 |
K3 | 25.14 | 26.74 | 24.21 |
K4 | 9.98 | 13.94 | 20.75 |
K5 | 30.88 | 17.67 | 25.93 |
K6 | 27.06 | 9.84 | 21.15 |
Mean (ng/mL) | 23.39 | 19.99 | 27.27 |
SD (ng/mL) | 7.11 | 7.30 | 9.27 |
Median (ng/mL) | 24.56 | 20.84 | 25.07 |
Range (ng/mL) | 9.98–30.88 | 9.84–27.72 | 20.75–45.61 |
Accumulation factor | 1.26 | 1.33 | 1.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-J.; Gillett, A.; Booth, R.; Kimble, B.; Govendir, M. Pharmacokinetic Profile of Doxycycline in Koala Plasma after Weekly Subcutaneous Injections for the Treatment of Chlamydiosis. Animals 2022, 12, 250. https://doi.org/10.3390/ani12030250
Chen C-J, Gillett A, Booth R, Kimble B, Govendir M. Pharmacokinetic Profile of Doxycycline in Koala Plasma after Weekly Subcutaneous Injections for the Treatment of Chlamydiosis. Animals. 2022; 12(3):250. https://doi.org/10.3390/ani12030250
Chicago/Turabian StyleChen, Chien-Jung, Amber Gillett, Rosemary Booth, Benjamin Kimble, and Merran Govendir. 2022. "Pharmacokinetic Profile of Doxycycline in Koala Plasma after Weekly Subcutaneous Injections for the Treatment of Chlamydiosis" Animals 12, no. 3: 250. https://doi.org/10.3390/ani12030250
APA StyleChen, C. -J., Gillett, A., Booth, R., Kimble, B., & Govendir, M. (2022). Pharmacokinetic Profile of Doxycycline in Koala Plasma after Weekly Subcutaneous Injections for the Treatment of Chlamydiosis. Animals, 12(3), 250. https://doi.org/10.3390/ani12030250