The Effect of Herbal Feed Additives in the Diet of Dairy Goats on Intestinal Lactic Acid Bacteria (LAB) Count
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Location and Animal Material
- Group 1 (receiving 20 g of herbal supplement—mix of seven herbs).
- Group 2 (receiving 40 g of herbal supplement—mix of seven herbs).
- Group 3 (receiving 20 g of herbal supplement—mix of nine herbs).
- Group 2 (receiving 40 g of herbal supplement—mix of nine herbs).
- Group 5 (control group, no herbal supplements).
2.3. Herbal Supplements
2.4. Animal Nutrition
- Group 1 (G1): basal diet plus 20 g DM herbal mix 1 in 300 g of concentrate (herbal mix 1, 6.6 g of 100 g−1 concentrate dry matter);
- Group 2 (G2): basal diet plus 40 g DM herbal mix 1 in 300 g of concentrate (herbal mix 1, 13.2 g of 100 g−1 concentrate dry matter);
- Group 3 (G3): basal diet plus 20 g DM herbal mix 2 in 300 g of concentrate (herbal mix 1, 6.6 g of 100 g−1 concentrate dry matter);
- Group 4 (G4): basal diet plus 40 g DM herbal mix 2 in 300 g of concentrate (herbal mix 1, 13.2 g of 100 g−1 concentrate dry matter);
- Group 5 (CTRL): basal diet plus 300 g concentrate (no herbs; control group).
2.5. Microbiological Tests of Faeces
Identification of LAB Strains
- (1)
- Isolation of DNA from colonies grown on the plates.
- (2)
- Amplification of the 16SrRNA gene fragment using polymerase chain reaction (PCR) with specific primers and sequencing of PCR arrays.
- 27F: 5-AGAGTTTGATCMTGGCTCAG-3;
- 1492R: 5-GGTTACCTTGTTACGACTT-3;
- on the DNA template isolated from the colony.
- (1)
- 95 °C for 3 min.
- (2)
- 95 °C for 15 s.
- (3)
- 55 °C for 15 s.
- (4)
- 72 °C for 90 s.
- (5)
- Steps 2–4 were repeated 30 times.
- (6)
- 72 °C for 2 min.
- (7)
- 10 °C until cooled.
- (3)
- Amplification by PCR of the internal transcribed spacer (ITS) fragment using specific primers and sequencing of PCR arrays.
- ITS1: 5-TCCGTAGGTGAACCTGCGG-3;
- ITS4: 5-TCCTCCGCTTATTGATATGC-3;
- on the DNA template isolated from the colony.
- (4)
- Alignment of the obtained sequences and the NCBI database.
2.6. Statistical Analysis
3. Results
3.1. The Effects of Experimental Factors on LAB Count
3.2. Identification of LAB Strains
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Katsoulos, P.D.; Karatzia, M.A.; Dovas, C.I.; Filioussis, G.; Papadopoulos, E.; Kiossis, E.; Arsenopoulos, K.; Papadopoulos, T.; Boscos, C.; Karatzias, H. Evaluation of the in-field efficacy of oregano essential oil administration on the control of neonatal diarrhea syndrome in calves. Res. Vet. Sci. 2017, 115, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Bampidis, V.A.; Christodoulou, V.; Florou-Paneri, P.; Christaki, E. Effect of dried oregano leaves versus neomycin in treating newborn calves with colibacillosis. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2006, 53, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Stefańska, B.; Sroka, J.; Katzer, F.; Goliński, P.; Nowak, W. The effect of probiotics, phytobiotics and their combination as feed additives in the diet of dairy calves on performance, rumen fermentation and blood metabolites during the preweaning period. Anim. Feed Sci. Tech. 2021, 272, 114738. [Google Scholar] [CrossRef]
- Grela, E.R.; Klebaniuk, R.; Kwiecień, M.; Pietrzak, K. Phytobiotics in Animal Production. Przegląd Hod. 2013, 3, 21–24. (In Polish) [Google Scholar]
- Kurzeja, E.; Stec, M.; Kiryk, M.; Maly, B.; Misiek, K.; Sołujan, A. Changes in the antioxidant properties of herbs under the influence of steam sterilization and storage. Bromat. Chem. Toksykol. 2012, 3, 980–984. (In Polish) [Google Scholar]
- Kalisz, S.; Ścibisz, I. The effect of the addition of plant extracts on the content of total polyphenols, anthocyanins, vitamin C and the antioxidant capacity of blackcurrant nectars. Żywność. Nauka. Technol. Jakość 2010, 5, 45–55. (In Polish) [Google Scholar]
- Szczucińska, A.; Kurzepa, K.; Kleczkowska, P.; Lipkowski, A.W. Technological aspects of milk thistle endosperm for use as antioxidant additives. Rośliny Oleiste 2006, 27, 357–366. (In Polish) [Google Scholar]
- Dragland, S.; Senoo, H.; Wake, K.; Holte, K.; Blomhoff, R. Several culinary and medicinal herbs are important sources of dietary antioxidants. J. Nutr. 2003, 133, 1286–1290. [Google Scholar] [CrossRef] [PubMed]
- Wójtowski, J.; Danków, R.; Foksowicz-Flaczyk, J.; Grajek, K. Herbal additives in the nutrition of cows, sheep and dairy goats. Życie Weter. 2019, 94, 550–556. (In Polish) [Google Scholar]
- Mastellone, V.; Morittu, V.M.; Musco, N.; Spina, A.A.; Malgeri, A.; Molinari, M.L.; D’Aniello, B.; Infascelli, F.; Tudisco, R.; Lombardi, P. Dietary supplementation with a phytocomplex affects blood parameters and milk yield and quality in grazing goats. Small Rumin. Res. 2021, 201, 106421. [Google Scholar] [CrossRef]
- Simitzis, P.E.; Feggeros, K.; Bizelis, J.A.; Deligeorgis, S.C. Behavioral reaction to essential oils supplementation in sheep. Biotech. Anim. Husb. 2005, 5–6, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Luo, S.; Yan, C. Gut Microbiota Implications for Health and Welfare in Farm Animals: A Review. Animals 2022, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id = 1578 (accessed on 25 October 2017).
- Fontana, L.; Bermudez-Brito, M.; Plaza-Diaz, J.; Munoz-Quezada, S.; Gil, A. Sources, isolation, characterisation and evaluation of probiotics. Br. J. Nutr. 2013, 109 (Suppl. 2), S35–S50. [Google Scholar] [CrossRef] [Green Version]
- Jarzynowska, A.; Peter, E. The effect of adding herbs to the summer diet on the fatty acid profile of the lipid fraction of sheep milk. Rocz. Nauk. Pol. Tow. Zootech. 2017, 13, 31–42. (In Polish) [Google Scholar] [CrossRef]
- Kowalski, Z.M. Goat feeding. In Breeding, Housing and Use of Goats, 3rd ed.; Wójtowski, J.A., Ed.; Publishing House of the University of Life Sciences in Poznań: Poznań, Poland, 2021; (In Polish). ISBN 978-83-7160-985-5. [Google Scholar]
- Isolauri, E.; Salminen, S.; Ouwehand, A.C. Microbial-gut interactions in health and disease. Probiotics. Best Pract. Res. Clin. Gastroenterol. 2004, 18, 299–313. [Google Scholar] [CrossRef]
- de Vos, W.M. Systems solutions by lactic acid bacteria: From paradigms to practice. Microb. Cell Fact. 2011, 10 (Suppl. 1), S2. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Malmuthuge, N.; Steele, M.A.; Guan, L.L. Shift of hindgut microbiota and microbial short chain fatty acids profiles in dairy calves from birth to pre-weaning. FEMS Microbiol. Ecol. 2018, 94, 1–15. [Google Scholar] [CrossRef]
- Dill-McFarland, K.A.; Weimer, P.J.; Breaker, J.D.; Suen, G. Diet influences early microbiota development in dairy calves without long-term impacts on milk production. Appl. Environ. Microbiol. 2019, 85, e02141. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Ma, M.P.; Diao, Q.Y.; Tu, Y. Saponin-induced shifts in the rumen microbiome and metabolome of young cattle. Front. Microbiol. 2019, 10, 356. [Google Scholar] [CrossRef] [Green Version]
- Behr, C.; Sperber, S.; Jiang, X.; Strauss, V.; Kamp, H.; Walk, T.; Herold, M.; Beekmann, K.; Rietjens, I.; van Ravenzwaay, B. Microbiome-related metabolite changes in gut tissue, cecum content and feces of rats treated with antibiotics. Toxicol. Appl. Pharmacol. 2018, 355, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Oultram, J.; Phipps, E.; Teixeira, A.G.; Foditsch, C.; Bicalho, M.L.; Machado, V.S.; Bicalho, R.C.; Oikonomou, G. Effects of antibiotics (oxytetracycline, florfenicol or tulathromycin) on neonatal calves’ faecal microbial diversity. Vet. Rec. 2015, 177, 598. [Google Scholar] [CrossRef]
- Yousif, M.H.; Li, J.H.; Li, Z.Q.; Maswayi Alugongo, G.; Ji, S.K.; Li, Y.X.; Wang, Y.J.; Li, S.L.; Cao, Z.J. Low concentration of antibiotics modulates gut microbiota at different levels in pre-weaning dairy calves. Microorganisms 2018, 6, 118. [Google Scholar] [CrossRef] [Green Version]
- Gomez, D.E.; Arroyo, L.G.; Costa, M.C.; Viel, L.; Weese, J.S. Characterization of the fecal bacterial microbiota of healthy and diarrheic dairy calves. J. Vet. Int. Med. 2017, 31, 928–939. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, H.T.; Wang, Y.J.; Cao, Z.J.; Yang, H.J.; Li, S.L. Effect of limit-fed diets with different forage to concentrate ratios on fecal bacterial and archaeal community composition in holstein heifers. Front. Microbiol. 2018, 9, 976. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J.; Kuehn, L.A.; Bono, J.L.; Berry, E.D.; Kalchayanand, N.; Freetly, H.C.; Benson, A.K.; Wells, J.E. Investigation of bacterial diversity in the feces of cattle fed different diets. J. Anim. Sci. 2014, 92, 683–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Ji, S.; Wang, F.; Huang, J.; Alugongo, G.M.; Li, S. Dynamic changes of the fecal bacterial community in dairy cows during early lactation. AMB Expr. 2020, 10, 167. [Google Scholar] [CrossRef]
- Draksler, D.; Locascio, M.; González, S.; Oliver, G. The development of faecal flora in young Creole goats. Small Rumin. Res. 2002, 46, 67–70. [Google Scholar] [CrossRef]
- Stella, A.V.; Paratte, R.; Valnegri, L.; Cigalino, G.; Soncini, G.; Chevaux, E.; Dell’Orto, V.; Savoini, G. Effect of administration of live Saccharomyces cerevisiae on milk production, milk composition, blood metabolites, and faecal flora in early lactating dairy goats. Small Rumin. Res. 2007, 67, 7–13. [Google Scholar] [CrossRef]
- Shokryazdan, P.; Sieo, C.C.; Kalavathy, R.; Boo Liang, J.; Banu Alitheen, N.; Jahromi, M.F.; Yin Ho, Y. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. BioMed Res. Int. 2014, 2014, 927268. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.; Wu, J.; Zhou, C.; Tang, S.; Wang, M.; Tan, Z. Composition of ileal bacterial community in grazing goats varies across non-rumination, transition and rumination stages of life. Front. Microbiol. 2016, 7, 1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dietary Treatment | |||
---|---|---|---|
Item | Groups 1 and 3 | Groups 2 and 4 | Group 5 (Control) |
Ingredient (% DM) | |||
Wheat bran | 17 | 13 | 17 |
Triticale | 18.6 | 18 | 18.6 |
Rapeseed meal | 17 | 16.5 | 17 |
Sunflower meal | 10 | 9.5 | 10 |
Corn DDGS a | 5 | 5 | 5 |
Rye | 7 | 6 | 7 |
Wheat | 5 | 5 | 5 |
Barley | 4 | 4 | 4 |
Dried grasses | 0 | 0 | 6.6 |
Herbs | 6.6 | 13.2 | 0 |
Sugarcane molasses | 2 | 2 | 2 |
Dried sugar beet pulp | 4.2 | 4.2 | 4.2 |
Minerals and vitamins b | 2.5 | 2.5 | 2.5 |
Fodder chalk | 0.1 | 0.1 | 0.1 |
Salt | 1 | 1 | 1 |
Composition (g kg−1 DM) | |||
Organic matter | 927 | 926 | 928 |
Crude protein | 229 | 223 | 224 |
Crude fat | 36 | 33 | 34 |
Crude fibre | 86 | 92 | 87 |
LAB | Group | Time | SE | Group | Time | Group × Time | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | T0 | T1 | T2 | T3 | p-Value | ||||
Transformed CFU | 6.82 a 3.15 × 108 | 6.93 ab 2.37 × 109 | 7.03 b 1.92 × 109 | 6.75 ac 1.95 × 109 | 6.60 c 6.92 × 105 | 6.35 a 9.40 × 104 | 6.80 b 7.03 × 108 | 7.24 c 4.54 × 109 | 6.91 b 4.97 × 106 | 0.03 - | 0.0001 - | 0.0001 - | 0.0033 - |
LAB | Group | Time | SE | |||
---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | |||
Transformed CFU | 1 | 6.35 a 9.33 × 104 | 6.82 b 1.51 × 106 | 7.34 cef 1.25 × 109 | 6.77 b 2.58 × 106 | 0.07 - |
Transformed CFU | 2 | 6.37 a 9.41 × 104 | 7.01 b 2.36 × 109 | 7.35 bef 7.13 × 109 | 6.98 b 4.55 × 106 | 0.08 - |
Transformed CFU | 3 | 6.36 a 9.51 × 104 | 6.98 b 4.28 × 107 | 7.72 ce 7.63 × 109 | 7.07 b 1.19 × 107 | 0.09 - |
Transformed CFU | 4 | 6.33 a 9.33 × 104 | 6.65 ab 1.11 × 109 | 7.11 bfg 6.69 × 109 | 6.90 b 4.03 × 106 | 0.08 - |
Transformed CFU | CTRL | 6.36 a 9.41 × 104 | 6.55 ab 5.39 × 105 | 6.66 abg 4.25 × 105 | 6.81 b 1.71 × 106 | 0.05 - |
Species of Bacteria | Similarity | Sequence Coverage |
---|---|---|
Experimental and control groups | ||
Lactobacillus buchneri strain JCM 1115 | 99.8% | 100% |
Enterococcus faecium strain ATCC 19434 | 100% | 100% |
Enterococcus mundtii strain NBRC 100490 | 100% | 100% |
Experimental group | ||
Lactobacillus fermentum strain NBRC 15885 | 99.9% | 100% |
Control group | ||
Aspergillus fumigatus isolate C1946 | 100% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foksowicz-Flaczyk, J.; Wójtowski, J.A.; Danków, R.; Mikołajczak, P.; Pikul, J.; Gryszczyńska, A.; Łowicki, Z.; Zajączek, K.; Stanisławski, D. The Effect of Herbal Feed Additives in the Diet of Dairy Goats on Intestinal Lactic Acid Bacteria (LAB) Count. Animals 2022, 12, 255. https://doi.org/10.3390/ani12030255
Foksowicz-Flaczyk J, Wójtowski JA, Danków R, Mikołajczak P, Pikul J, Gryszczyńska A, Łowicki Z, Zajączek K, Stanisławski D. The Effect of Herbal Feed Additives in the Diet of Dairy Goats on Intestinal Lactic Acid Bacteria (LAB) Count. Animals. 2022; 12(3):255. https://doi.org/10.3390/ani12030255
Chicago/Turabian StyleFoksowicz-Flaczyk, Joanna, Jacek Antoni Wójtowski, Romualda Danków, Przemysław Mikołajczak, Jan Pikul, Agnieszka Gryszczyńska, Zdzisław Łowicki, Karolina Zajączek, and Daniel Stanisławski. 2022. "The Effect of Herbal Feed Additives in the Diet of Dairy Goats on Intestinal Lactic Acid Bacteria (LAB) Count" Animals 12, no. 3: 255. https://doi.org/10.3390/ani12030255
APA StyleFoksowicz-Flaczyk, J., Wójtowski, J. A., Danków, R., Mikołajczak, P., Pikul, J., Gryszczyńska, A., Łowicki, Z., Zajączek, K., & Stanisławski, D. (2022). The Effect of Herbal Feed Additives in the Diet of Dairy Goats on Intestinal Lactic Acid Bacteria (LAB) Count. Animals, 12(3), 255. https://doi.org/10.3390/ani12030255