Spermatozoa Survival in Egg Yolk-Based and Soybean-Based Extenders at Ambient and Chilling Temperature in Domestic Turkeys (Meleagris gallopavo)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
2.3. Extender Preparation
2.4. Soybean Extraction Method
2.5. Egg Yolk Plasma Preparation
2.6. Semen Collection
2.7. Semen Evaluation
2.7.1. Motility
2.7.2. Concentration
2.7.3. Viability
2.7.4. Morphology
2.8. Statistical Analyses
3. Results
3.1. Baseline Spermiogram of Turkey Toms Used for the Study
3.2. Quality of Preserved Turkey Semen
3.2.1. Sperm Motility Assessment among Different Semen Extenders
3.2.2. Sperm Viability Assessment among Different Semen Extenders
3.2.3. Sperm Morphology Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, S.; Xu, J.; Li, J.; Zhang, Z.; Wang, Y. Research Advances of Galliformes since 1990 and Future Prospects. Avian Res. 2018, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Hennache, A. A Review of Captive Galliformes in European Zoos. In Proceedings of the 4th International Galliformes Symposium, Chengdu, China, 14–21 October 2007; pp. 23–28. [Google Scholar]
- Vié, J.C.; Hilton-Taylor, C.; Stuart, S.N. (Eds.) Wildlife in a Changing World: An Analysis of the 2008 IUCN Red List of Threatened Species; International Union for Conservation of Nature and Resources: Gland, Switzerland, 2009. [Google Scholar]
- Feng, X.; Lin, C.; Qiao, H.; Ji, L. Assessment of Climatically Suitable Area for Syrmaticus Reevesii under Climate Change. Endanger. Species Res. 2015, 28, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Saini, M.; Das, D.K.; Dhara, A.; Swarup, D.; Yadav, M.P.; Gupta, P.K. Characterisation of Peacock (Pavo Cristatus) Mitochondrial 12s Rrna Sequence and Its Use in Differentiation from Closely Related Poultry Species. Br. Poult. Sci. 2007, 48, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Bakst, M.R.; Dymond, J.S. Artificial Insemination in Poultry. In Success in Artificial Insemination—Quality of Semen and Diagnostics Employed; InTech: Rijeka, Croatia, 2011; pp. 175–196. [Google Scholar]
- Donoghue, A.M.; Wishart, G.J. Storage of Poultry Semen. Anim. Reprod. Sci. 2000, 62, 213–232. [Google Scholar] [CrossRef] [Green Version]
- Gordon, I.R. Reproductive Technologies in Farm Animals; CABI Publishers: London, UK, 2004; pp. 49–58. [Google Scholar]
- Kotłowska, M.; Kowalski, R.; Glogowski, J.; Jankowski, J.; Ciereszko, A. Gelatinases and Serine Proteinase Inhibitors of Seminal Plasma and the Reproductive Tract of Turkey (Meleagris gallopavo). Theriogenology 2005, 63, 1667–1681. [Google Scholar] [CrossRef] [PubMed]
- Hess, R.A.; Thurston, R.J. Detection and Incidence of Yellow Turkey Semen on Commercial Breeder Farms. Poult. Sci. 1984, 63, 2084–2086. [Google Scholar] [CrossRef] [PubMed]
- Słowińska, M.; Hejmej, A.; Bukowska, J.; Liszewska, E.; Bilińska, B.; Hliwa, P.; Kozłowski, K.; Jankowski, J.; Ciereszko, A. Expression and Secretion of Albumin in Male Turkey (Meleagris gallopavo) Reproductive Tract in Relation to Yellow Semen Syndrome. Poult. Sci. 2019, 98, 1872–1882. [Google Scholar] [CrossRef] [PubMed]
- Iaffaldano, N.; Rosato, M.P.; Manchisi, A.; Centoducati, G.; Meluzzi, A. Comparison of Different Extenders on the Quality Characteristics of Turkey Semen During Storage. Ital. J. Anim. Sci. 2005, 4, 513–515. [Google Scholar] [CrossRef]
- Long, J.A.; Conn, T.L. Use of Phosphatidylcholine to Improve the Function of Turkey Semen Stored at 4 °C for 24 Hours. Poult. Sci. 2012, 91, 1990–1996. [Google Scholar] [CrossRef] [PubMed]
- Sexton, T.J. Studies on the Dilution of Turkey Semen. Br. Poult. Sci. 1976, 17, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Słowińska, M.; Liszewska, E.; Judycka, S.; Konopka, M.; Ciereszko, A. Mitochondrial Membrane Potential and Reactive Oxygen Species in Liquid Stored and Cryopreserved Turkey (Meleagris gallopavo) Spermatozoa. Poult. Sci. 2018, 97, 3709–3717. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.M.; Wildt, D.E.; Höfle, U.; Voelker, W.; Donoghue, A.M. Implementing Artificial Insemination as an Effective Tool for Ex Situ Conservation of Endangered Avian Species. Theriogenology 2009, 71, 200–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giesen, A.F.; Sexton, T.J. Beltsville Poultry Semen Extender. 9. Effect of Storage Temperature on Turkey Semen Held Eighteen Hours. Poult. Sci. 1983, 62, 1305–1311. [Google Scholar] [CrossRef]
- Bakst, M.R. Fertilizing Capacity and Morphology of Fowl and Turkey Spermatozoa in Hypotonic Extender. Reproduction 1980, 60, 121. [Google Scholar] [CrossRef]
- Sexton, T.J.; Fewlass, T.A. A New Poultry Semen Extender: 2. Effect of the Diluent Components on the Fertilizing Capacity of Chicken Semen Stored at 5 °C. Poult. Sci. 1978, 57, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Lake, P.E.; Cherms, F.L.; Wishart, G.J. Effect of Aeration on the Fertilising Ability of Turkey Semen Stored for 48 Hours at 5 and 15 °C: A Study from the 33rd to the 47th Week of Age. Reprod. Nutr. Develop. 1984, 24, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Wishart, G.J. The Effect of Continuous Aeration on the Fertility of Fowl and Turkey Semen Stored above 0 °C. Br. Poult. Sci. 1981, 22, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Iaffaldano, N.; Manchisi, A.; Rosato, M.P. The Preservability of Turkey Semen Quality During Liquid Storage in Relation to Strain and Age of Males. Anim. Reprod. Sci. 2008, 109, 266–273. [Google Scholar] [CrossRef]
- Paulenz, H.; Söderquist, L.; Pérez-Pé, R.; Andersen Berg, K. Effect of Different Extenders and Storage Temperatures on Sperm Viability of Liquid Ram Semen. Theriogenology 2002, 57, 823–836. [Google Scholar] [CrossRef]
- Wishart, G.J. Metabolism of Fowl and Turkey Spermatozoa at Low Temperatures. Reproduction 1984, 70, 145–149. [Google Scholar] [CrossRef]
- Amirat, L.; Tainturier, D.; Jeanneau, L.; Thorin, C.; Gérard, O.; Courtens, J.L.; Anton, M. Bull Semen in Vitro Fertility after Cryopreservation Using Egg Yolk LDL: A Comparison with Optidyl®, a Commercial Egg Yolk Extender. Theriogenology 2004, 61, 895–907. [Google Scholar] [CrossRef]
- Moussa, M.; Martinet, V.; Trimeche, A.; Tainturier, D.; Anton, M. Low Density Lipoproteins Extracted from Hen Egg Yolk by an Easy Method: Cryoprotective Effect on Frozen-Thawed Bull Semen. Theriogenology 2002, 57, 1695–1706. [Google Scholar] [CrossRef]
- Akhter, S.; Rakha, B.A.; Andrabi, S.M.H.; Ansari, M.S. Comparison of Egg Yolks from Three Avian Species in Extender for Cryopreservation of Sahiwal Bull Epididymal Spermatozoa. Anim. Sci. Pap. Rep. 2011, 29, 131–138. [Google Scholar]
- Santiago-Moreno, J.; Castaño, C.; Toledano-Díaz, A.; Coloma, M.A.; López-Sebastián, A.; Prieto, M.T.; Campo, J.L. Cryoprotective and Contraceptive Properties of Egg Yolk as an Additive in Rooster Sperm Diluents. Cryobiology 2012, 65, 230–234. [Google Scholar] [CrossRef]
- Abouelezz, F.M.K.; Castaño, C.; Toledano-Díaz, A.; Esteso, M.C.; López-Sebastián, A.; Campo, J.L.; Santiago-Moreno, J. Sperm–Egg Penetration Assay Assessment of the Contraceptive Effects of Glycerol and Egg Yolk in Rooster Sperm Diluents. Theriogenology 2015, 83, 1541–1547. [Google Scholar] [CrossRef]
- Bergeron, A.; Manjunath, P. New Insights Towards Understanding the Mechanisms of Sperm Protection by Egg Yolk and Milk. Mol. Reprod. Dev. 2006, 73, 1338–1344. [Google Scholar] [CrossRef]
- Mehdipour, M.; Daghigh Kia, H.; Moghaddam, G.; Hamishehkar, H. Effect of Egg Yolk Plasma and Soybean Lecithin on Rooster Frozen-Thawed Sperm Quality and Fertility. Theriogenology 2018, 116, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Rakha, B.A.; Ansari, M.S.; Akhter, S.; Santiago-Moreno, J.; Blesbois, E. Cryoprotectant Effects of Egg Yolk on Indian Red Jungle Fowl (Gallus gallus Murghi) Sperm. Theriogenology 2018, 119, 150–155. [Google Scholar] [CrossRef] [PubMed]
- El-Sisy, G.A.; El-Nattat, W.S.; El-Sheshtawy, R.I.; El-Maaty, A.M.A. Substitution of Egg Yolk with Different Concentrations of Soybean Lecithin in Tris-Based Extender During Bulls’ Semen Preservability. Asian Pac. J. Reprod. 2016, 5, 514–518. [Google Scholar] [CrossRef]
- Sharafi, M.; Forouzanfar, M.; Hosseini, S.M.; Hajian, M.; Ostad, H.S.; Hosseini, L.; Abedi, P.; Nili, N.; Rahmani, H.R.; Javaheri, A.R.; et al. In Vitro Comparison of Soybean Lecithin Based-Extender with Commercially Available Extender for Ram Semen Cryopreservation. Int. J. Fertil. Steril. 2009, 3, 149–152. [Google Scholar]
- Rehman, F.U.; Qureshi, M.S.; Khan, R.U. Effect of Soybean Based Extenders on Sperm Parameters of Holstein-Friesian Bull During Liquid Storage at 4 °C. Pak. J. Zool. 2014, 46, 185–189. [Google Scholar]
- Gil, J.; Rodriguez-Irazoqui, M.; Lundeheim, N.; Söderquist, L.; Rodríguez-Martínez, H. Fertility of Ram Semen Frozen in Bioxcell® and Used for Cervical Artificial Insemination. Theriogenology 2003, 59, 1157–1170. [Google Scholar] [CrossRef]
- Thibier, M.; Guerin, B. Hygienic Aspects of Storage and Use of Semen for Artificial Insemination. Anim. Reprod. Sci. 2000, 62, 233–251. [Google Scholar] [CrossRef]
- Bréque, C.; Surai, P.; Brillard, J.-P. Roles of Antioxidants on Prolonged Storage of Avian Spermatozoa in Vivo and in Vitro. Mol. Reprod. Dev. 2003, 66, 314–323. [Google Scholar] [CrossRef]
- Tabatabaei, S. Effect of Ascorbic Acid on Chicken Semen Quality During Liquid Storage. Comp. Clin. Pathol. 2012, 21, 621–626. [Google Scholar] [CrossRef]
- Burrows, W.H.; Quinn, J.P. The Collection of Spermatozoa from the Domestic Fowl and Turkey. Poult. Sci. 1937, 16, 19–24. [Google Scholar] [CrossRef]
- Noirault, J.; Brillard, J.P.; Baks, M.R. Spermatogenesis in the Turkey (Meleagris gallopavo): Quantitative Approach in Mature and Adult Males Subjected to Various Photoperiods. Theriogenology 2006, 65, 845–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Singh, V.; Narwade, B.; Mohanty, T.; Atreja, S. Comparative Quality Assessment of Buffalo (Bubalus Bubalis) Semen Chilled (5 °C) in Egg Yolk- and Soya Milk–Based Extenders. Reprod. Domest. Anim. 2012, 47, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Wu, J. Emulsifying Properties of Plasma Fractionated from Egg Yolk Using Low Centrifugal Forces-Mayonnaise Preparation. J. Food Process. Preserv. 2021, 45, e15553. [Google Scholar] [CrossRef]
- Santiago-Moreno, J.; Castaño, C.; Toledano-Díaz, A.; Coloma, M.A.; López-Sebastián, A.; Prieto, M.T.; Campo, J.L. Semen Cryopreservation for the Creation of a Spanish Poultry Breeds Cryobank: Optimization of Freezing Rate and Equilibration Time. Poult. Sci. 2011, 90, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- Klimowicz, M.; Łukaszewicz, E.; Dubiel, A. Effect of Collection Frequency on Quantitative and Qualitative Characteristics of Pigeon (Columba livia) Semen. Br. Poult. Sci. 2005, 46, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, M.L. How to Evaluate Semen in the Field. In Proceedings of the Annual Convention of the AAEP, San Diego, CA, USA, 28 November 2001; pp. 412–416. [Google Scholar]
- Agarwal, A.; Gupta, S.; Sharma, R. Eosin-Nigrosin Staining Procedure. In Andrological Evaluation of Male Infertility: A Laboratory Guide; Springer International Publishing: Cham, Switzerland, 2016; pp. 73–77. [Google Scholar]
- Churchil, R.R.; Praveena, E.P.; Sharma, D. Semen Quality Parameters, Their Inter-Relationship and Post-Washing Sperm Attributes of Rhode Island Red Roosters. Vet. World 2014, 7, 1117–1122. [Google Scholar] [CrossRef]
- Alkan, S.; Baran, A.; Ozdaþ, O.B.; Evecen, M. Morphological Defects in Turkey Semen. Turk. J. Vet. Anim. Sci. 2002, 26, 1087–1092. [Google Scholar]
- Zahradden, D.; Butswat, I.S.R.; Kalla, D.J.U.; Sir, S.M.; Bukar, M.T. Effect of Frequency of Ejaculation on Semen Characteristics in Two Breeds of Turkeys (Meleagris gallopavo) Raised in Tropical Environment. Int. J. Poult. Sci. 2005, 4, 217–221. [Google Scholar] [CrossRef] [Green Version]
- Ngu, G.T.; Etchu, K.A.; Butswat, I.S.R.; Woogeng, I.N. Semen and Microbial Characteristics of Two Breeds of Turkeys in an Arid Tropical Environment of Bauchi State, Nigeria. Afr. J. Microbiol. 2014, 8, 2174–2182. [Google Scholar] [CrossRef]
- Yahaya, M.S.; Umaru, M.A.; Aliyu, A. A Preliminary Study on Semen Collection, Evaluation and Insemination in Nigerian Local Turkeys (Meleagris gallopavo). Sokoto J. Vet. Sci. 2013, 11, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Bakst, M.R.; Cecil, H.C. Changes in the Characteristics of Turkey Ejaculated Semen and Ductus Deferens Semen with Repeated Ejaculations. J. Reprod. Nutr. Dev. 1981, 21, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, A.M.; Donoghue, D.J. Effects of Water- and Lipid-Soluble Antioxidants on Turkey Sperm Viability, Membrane Integrity, and Motility During Liquid Storage. Poult. Sci. 1997, 76, 1440–1445. [Google Scholar] [CrossRef]
- Douard, V.; Hermier, D.; Blesbois, E. Changes in Turkey Semen Lipids During Liquid in vitro Storage. Biol. Reprod. 2000, 63, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
- Horrocks, A.J.; Stewart, S.; Jackson, L.; Wishart, G.J. Induction of Acrosomal Exocytosis in Chicken Spermatozoa by Inner Perivitelline-Derived N-Linked Glycans. Biochem. Biophys. Res. Commun. 2000, 278, 84–89. [Google Scholar] [CrossRef]
- Lemoine, M.; Grasseau, I.; Brillard, J.-P.; Blesbois, E. A Reappraisal of the Factors Involved in in Vitro Initiation of the Acrosome Reaction in Chicken Spermatozoa. Reproduction 2008, 136, 391. [Google Scholar] [CrossRef] [Green Version]
- Layek, S.S.; Mohanty, T.K.; Kumaresan, A.; Parks, J.E. Cryopreservation of Bull Semen: Evolution from Egg Yolk Based to Soybean Based Extenders. Anim. Reprod. Sci. 2016, 172, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Aires, V.A.; Hinsch, K.-D.; Mueller-Schloesser, F.; Bogner, K.; Mueller-Schloesser, S.; Hinsch, E. In Vitro and in Vivo Comparison of Egg Yolk-Based and Soybean Lecithin-Based Extenders for Cryopreservation of Bovine Semen. Theriogenology 2003, 60, 269–279. [Google Scholar] [CrossRef]
- Fukui, Y.; Kohno, H.; Togari, T.; Hiwasa, M.; Okabe, K. Fertility after Artificial Insemination Using a Soybean-Based Semen Extender in Sheep. J. Reprod. Dev. 2008, 54, 286–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masoudi, R.; Sharafi, M.; Zareh Shahneh, A.; Towhidi, A.; Kohram, H.; Esmaeili, V.; Shahverdi, A.; Davachi, N.D. Fertility and Flow Cytometry Study of Frozen-Thawed Sperm in Cryopreservation Medium Supplemented with Soybean Lecithin. Cryobiology 2016, 73, 69–72. [Google Scholar] [CrossRef] [Green Version]
- Al-Daraji, H.J. Effect of Vitamin a, C & E on Quality of Fowl Semen Stored for 24 Hours at 4 °C. Iraqi J. Agric. 2002, 7, 170–181. [Google Scholar]
- Hu, J.-H.; Tian, W.-Q.; Zhao, X.-L.; Zan, L.-S.; Wang, H.; Li, Q.-W.; Xin, Y.-P. The Cryoprotective Effects of Ascorbic Acid Supplementation on Bovine Semen Quality. Anim. Reprod. Sci. 2010, 121, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, A.; Serin, I. Influence of Ascorbic Acid Addition to the Extender on Dog Sperm Motility, Viability and Acrosomal Integrity During Cold Storage. Vet. Med. Rev. 2007, 158, 384–387. [Google Scholar]
- Beconi, M.T.; Francia, C.R.; Mora, N.G.; Affranchino, M.A. Effect of Natural Antioxidants on Frozen Bovine Semen Preservation. Theriogenology 1993, 40, 841–851. [Google Scholar] [CrossRef]
- Vernet, P.; Fulton, N.; Wallace, C.; Aitken, R.J. Analysis of Reactive Oxygen Species Generating Systems in Rat Epididymal Spermatozoa1. Biol. Reprod. 2001, 65, 1102–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du Plessis, L.; Soley, J.T. Incidence, Structure and Morphological Classification of Abnormal Sperm in the Emu (Dromaius novaehollandiae). Theriogenology 2011, 75, 589–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łukaszewicz, E.; Jerysz, A.; Chełmońska, B. Effect of Semen Extenders and Storage Time on Quality of Muscovy Duck (Cairina moschata) Drake Semen During the Entire Reproductive Season. Reprod. Domest. Anim. 2020, 55, 943–950. [Google Scholar] [CrossRef]
- Chapman, D.A.; Killian, G.J.; Gelerinter, E.; Jarrett, M.T. Reduction of the Spin-Label Tempone by Ubiquinol in the Electron Transport Chain of Intact Rabbit Spermatozoa1. Biol. Reprod. 1985, 32, 884–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, M.K.; Storey, B.T. Oxygen Metabolism of Mammalian Spermatozoa. Generation of Hydrogen Peroxide by Rabbit Epididymal Spermatozoa. Biochem. J. 1981, 198, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Koppers, A.J.; De Iuliis, G.N.; Finnie, J.M.; Mclaughlin, E.A.; Aitken, R.J. Significance of Mitochondrial Reactive Oxygen Species in the Generation of Oxidative Stress in Spermatozoa. J. Clin. Endocrinol. Metab. 2008, 93, 3199–3207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siudzińska, A.; Łukaszewicz, E. Effect of Semen Extenders and Storage Time on Sperm Morphology of Four Chicken Breeds. J. Appl. Poult. Res. 2008, 17, 101–108. [Google Scholar] [CrossRef]
Treatment Hroups | Time (Hours) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Egg yolk based (EYR) | 84.0 ± 8.4 a | 74.0 ± 8.4 a | 69.5 ± 7.6 a | 54.0 ± 13.5 a | 43.0 ± 13.4 a | 26.0 ± 19.6 a | 16.6 ± 19.0 a | 7.0 ± 13.4 a |
Soybean based (SBR) | 81.2 ± 5.2 a | 73.5 ± 8.2 a | 67.0 ± 9.8 a | 54.0 ± 10.8 a | 43.0 ± 11.6 a | 29.0 ± 12.9 a | 17.0 ± 10.6 a | 4.0 ± 7.0 a |
EYR + L-ascorbic acid | 87.1 ± 5.1b | 80.0 ± 9.4 b | 71.0 ± 9.9 a | 59.0 ± 4.0 a | 47.0 ± 14.9 a | 35.0 ± 16.5 a | 22.0 ± 14.0 a | 11.0 ± 8.8 a |
SBR + L-ascorbic acid | 86.8 ± 7.4 b | 80.0 ± 8.2 b | 68.0 ± 9.2 a | 54.0 ± 11.7 a | 43.0 ± 15.7 a | 31.0 ± 17.3 a | 17.0 ± 13.4 a | 7.0 ± 9.5 a |
Treatment Groups | Time (Hours) | ||
---|---|---|---|
6 | 12 | 24 | |
Egg yolk based (EYR) | 64.0 ± 9.7 a | 45.0 ± 15.1a | 30.5 ± 14.6 a |
Soybean based (SBR) | 61.0 ± 12.9 a | 46.0 ± 17.8 a | 29.0 ± 20.4 a |
EYR + L-ascorbic acid | 77.5 ± 4.3 b | 64.0 ± 5.2 b | 47.0 ± 7.5 b |
SBR + L-ascorbic acid | 76.5 ± 4.7 b | 63.0 ± 8.2 b | 42.0 ± 12.3 b |
Treatment Groups | Time (Hours) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Egg yolk based (EYR) | 94.0 ± 2.6 a | 90.6 ± 2.6 a | 85.7 ± 5.3 a | 83.0 ± 6.0 a | 78.9 ± 6.3 a | 74.6 ± 9.1 a | 70.4 ± 9.1 a | 61.8 ± 16.4 a |
Soybean based (SBR) | 92.5 ± 3.1 a | 88.8 ± 5.5 a | 87.2 ± 5.4 a | 82.5 ± 5.9 a | 80.9 ± 7.5 a | 75.7 ± 9.2 a | 70.9 ± 14.0 a | 63.4 ± 17.8 a |
EYR + L-ascorbic acid | 99.5 ± 0.9 b | 99.3 ± 1.0 b | 95.4 ± 3.3 b | 91.3 ± 3.2 b | 90.3 ± 4.9 b | 85.2 ± 6.0 b | 79.9 ± 8.6 b | 74.7 ± 9.2 b |
SBR + L-ascorbic acid | 99.4 ± 1.1 b | 99.2 ± 0.9 b | 95.8 ± 2.7 b | 93.3 ± 3.3 b | 90.3 ± 3.1 b | 85.8 ± 6.2 b | 80.9 ± 7.1 b | 74.2 ± 5.6 b |
Treatment Groups | Time (Hours) | ||
---|---|---|---|
6 | 12 | 24 | |
Egg yolk based (EYR) | 94.5 ± 2.6 a | 90.0 ± 5.7 a | 85.6 ± 5.8 b |
Soybean based (SBR) | 94.9 ± 3.2 a | 91.4 ± 4.5 a | 89.5 ± 3.9 b |
EYR + L-ascorbic acid | 97.9 ± 2.5 b | 94.0 ± 3.9 b | 88.5 ± 5.0 b |
SBR + L-ascorbic acid | 97.9 ± 2.9 b | 94.1 ± 3.4 b | 89.7 ± 3.7 b |
Treatment Groups | Time (Hours) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Egg yolk based (EYR) | 7.7 ± 3.7 a | 10.2 ± 3.1 a | 12.2 ± 4.0 a | 17.9 ± 5.7 a | 23.6 ± 7.3 a | 24.2 ± 6.0 a | 26.0 ± 6.1 a | 37.2 ± 9.9 a |
Soybean based (SBR) | 6.9 ± 3.1 a | 8.0 ± 2.9 b | 9.0 ± 2.7 b | 15.9 ± 3.1 a | 21.2 ± 7.2 a | 23.5 ± 6.3 a | 27.2 ± 6.9 a | 35.8 ± 8.2 a |
EYR + L-ascorbic acid | 2.5 ± 1.2 b | 4.4 ± 2.0 c | 5.8 ± 2.7 c | 7.4 ± 1.9 b | 9.5 ± 2.7 b | 12.2 ± 3.3 b | 15.0 ± 3.6 b | 17.6 ± 2.7 b |
SBR + L-ascorbic acid | 2.3 ± 1.2 b | 2.6 ± 1.1 d | 4.3 ± 1.5 d | 6.2 ± 2.3 b | 8.4 ± 2.0 b | 10.4 ± 2.4 b | 12.7 ± 3.4 b | 15.2 ± 1.9 b |
Treatment Groups | Time (Hours) | ||
---|---|---|---|
6 | 12 | 24 | |
Egg yolk based (EYR) | 10.2 ± 3.7 a | 11.3 ± 2.8 a | 16.4 ± 2.2 a |
Soybean based (SBR) | 7.9 ± 4.6 a | 12.8 ± 3.5 a | 20.1 ± 5.4 b |
EYR + L-ascorbic acid | 3.9 ± 1.0 b | 7.3 ± 3.1 b | 10.2 ± 3.3 c |
SBR + L-ascorbic acid | 3.6 ± 1.2 b | 6.3 ± 2.0 b | 9.5 ± 2.1 c |
Preservation | Acrosome | Percentage (%) Head | Mid-Piece | Tail |
---|---|---|---|---|
Fresh semen N = 173 | 0.0 a | 11.8 a | 44.4 a | 43.8 a |
Ambient temperature N = 799 | 1.5 a | 15.4 a | 19.2 b | 63.8 b |
Chilled (4 °C) N = 1399 | 3.6 b | 17.0 a | 20.5 b | 58.9 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkali, I.M.; Asuku, S.O.; Colombo, M.; Bukar, M.M.; Waziri, M.A.; Luvoni, G.C. Spermatozoa Survival in Egg Yolk-Based and Soybean-Based Extenders at Ambient and Chilling Temperature in Domestic Turkeys (Meleagris gallopavo). Animals 2022, 12, 648. https://doi.org/10.3390/ani12050648
Alkali IM, Asuku SO, Colombo M, Bukar MM, Waziri MA, Luvoni GC. Spermatozoa Survival in Egg Yolk-Based and Soybean-Based Extenders at Ambient and Chilling Temperature in Domestic Turkeys (Meleagris gallopavo). Animals. 2022; 12(5):648. https://doi.org/10.3390/ani12050648
Chicago/Turabian StyleAlkali, Isa Mohammed, Suleiman Omeiza Asuku, Martina Colombo, Muhammad Modu Bukar, Mohammed Ahmed Waziri, and Gaia Cecilia Luvoni. 2022. "Spermatozoa Survival in Egg Yolk-Based and Soybean-Based Extenders at Ambient and Chilling Temperature in Domestic Turkeys (Meleagris gallopavo)" Animals 12, no. 5: 648. https://doi.org/10.3390/ani12050648
APA StyleAlkali, I. M., Asuku, S. O., Colombo, M., Bukar, M. M., Waziri, M. A., & Luvoni, G. C. (2022). Spermatozoa Survival in Egg Yolk-Based and Soybean-Based Extenders at Ambient and Chilling Temperature in Domestic Turkeys (Meleagris gallopavo). Animals, 12(5), 648. https://doi.org/10.3390/ani12050648