Pain and Pain Management in Sea Turtle and Herpetological Medicine: State of the Art
Abstract
:Simple Summary
Abstract
1. Introduction
2. Anatomy of Pain
2.1. Transduction
2.2. Transmission
2.3. Modulation
2.4. Projection
2.5. Perception
3. Pain Assessment and Animal Models of Pain
3.1. Somatic Pain Patterns
3.2. Visceral Pain Patterns
3.3. Limits in the Application of Pain Models in Reptiles
- behavioral: they must include species considerations, relating to attitude (predator/prey, diurnal/nocturnal, arboreal/terrestrial/aquatic/fossorial) and individual parameters (ecdysis stage, hibernation, sociability, intercurrent illnesses)
- environmental: they must include the preferred optimal temperature zone (POTZ) and consequent metabolic rate, enclosure setting, presence of the observer
- locomotion: posture, gait, excessive scratching, or flicking foot, tail, or affected area are quite unapplicable to chelonians
- exaggerated fight response: actually present in sea turtles in good condition as a reactive mechanism to handling
- appetite: when dealing with wildlife, adaptation to captive diet must be considered, and some days of anorexia may not be related to pain
- color alterations: useful in saurian species capable of color changes, but not chelonians and snakes
- eyes (open/closed)
- respiratory model (difficult to evaluate in aquatic chelonians)
- physiological: they can also be altered only by the test conditions (excitement, fear for wild animals)
- response to palpation: not very reliable in reptiles in general, not accustomed to contact with other individuals, and unpractical for wild species, particularly for chelonians due to the carapace.
4. Pain Rating Scales
5. Analgesic Therapy
5.1. Systemic Analgesia
5.1.1. Opioids and Opioid-Like Drugs
- The μ receptors, to which β-endorphins bind preferably, are involved in causing supraspinal analgesia, respiratory depression, hypothermia, bradycardia, mydriasis or myosis, euphoria, sedation, and physical dependence
- The κ receptors, to which dynorphins bind mainly, are responsible for spinal analgesia, miosis, modest degree of sedation, dysphoria, a certain degree of respiratory depression, and vasomotor stimulating effects
- The δ receptors are activated by the enkephalins, thus producing excitation, hyperkinesis, euphoria, hallucinations, peripheral analgesia, respiratory depression, and mydriasis.
5.1.2. NSAIDs—Nonsteroidal Anti–Inflammatory Drugs
5.2. Local Analgesia
5.3. Multimodal Analgesia
6. Conclusions
Funding
Conflicts of Interest
References
- Sneddon, L.U. Pain perception in fish: Indicators and endpoints. ILAR J. 2009, 50, 338–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sladky, K. Amphibians and reptile. In Fowler’s Zoo and Wild Animal Medicine Current Therapy; Miller, R.E., Lamberski, N., Calle, P.P., Eds.; Elsevier Inc.: St. Louis, MO, USA, 2019; Volume 9, pp. 421–431. [Google Scholar]
- Perry, S.M.; Nevarez, J.G. Pain and its control in reptiles. Vet. Clin. N. Am. Exot. Anim. Pract. 2018, 21, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Sladky, K.K.; Mans, C. Analgesia. In Mader’s Reptile and Amphibian Medicine and Surgery, 3rd ed.; Hernandez-Divers, S.J., Stahl, S.J., Eds.; Elsevier Inc.: St. Louis, MO, USA, 2019; pp. 465–474. [Google Scholar]
- Belloli, C.; Ormas, P. Introduzione alla farmacologia del sistema nervoso centrale. In Farmacologia Veterinaria, 2nd ed.; Belloli, C., Carli, S., Ormas, P., Eds.; Idelson-Gnocchi: Naples, Italy, 2021; pp. 305–336. [Google Scholar]
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Sneddon, L.U.; Elwood, R.W.; Adamo, S.A.; Leach, M.C. Defining and assessing animal pain. Anim. Behav. 2014, 97, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, M. Physiologische Mechanismen des Schmerzes und seiner Behandlung. In Klinische Anästhesiologie Intensivtherapie; Bergmann, H., Ed.; Springer: Berlin/Heidelberg, Germany, 1986; Volume 32, pp. 1–19. [Google Scholar]
- Mosley, C. Reptile-specific considerations. In Handbook of Veterinary Pain Management, 3rd ed.; Gaynor, J.S., Muir, W.W., III, Eds.; Elsevier-Mosby: St. Louis, MO, USA, 2015; pp. 562–566. [Google Scholar]
- Mosley, C.I.; Mosley, C.A. Comparative Anesthesia and Analgesia of Reptiles, Amphibians, and Fishes. In Veterinary Anesthesia and Analgesia, 5th ed.; Grimm, K.A., Lamont, L.A., Tranquilli, W.J., Greene, S.A., Robertson, S.A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 788–790. [Google Scholar]
- Bateson, P. Do animals suffer like us?—The assessment of animal welfare. Vet. J. 2004, 168, 110–111. [Google Scholar] [CrossRef]
- Olsson, A.; Simpson, M. Analgesia and anaesthesia. In Reptile Medicine and Surgery in Clinial Practice; Doneley, B., Monks, D., Johnson, R., Carmel, B., Eds.; John Wiley & Sons Ltd.: Oxfod, UK, 2018; pp. 369–381. [Google Scholar]
- Sherrington, C.S. Qualitative difference of spinal reflex corresponding with qualitative difference of cutaneous stimulus. J. Physiol. 1903, 30, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.F.; Terashima, S.; Zhu, A.Q. Distinct morphological characteristics of touch, temperature, and mechanical nociceptive neurons in the crotaline trigeminal ganglia. J. Comp. Neurol. 1995, 360, 621–633. [Google Scholar] [CrossRef]
- Williams, C.J.A.; James, L.E.; Bertelsen, M.F.; Wang, T. Analgesia for non-mammalian vertebrates. Curr. Opin. Physiol. 2019, 11, 75–84. [Google Scholar] [CrossRef]
- Amato, F.; Morrone, E.G. TRPV1 receptors widespread distribution as expression and function in anatomy and district systems. Pathos 2017, 24, 2. [Google Scholar]
- Naumann, R.K.; Ondracek, J.M.; Reiter, S.; Shein-Idelson, M.; Tosches, M.A.; Yamawaki, T.M.; Laurent, G. The reptilian brain. Curr. Biol. 2015, 25, R317–R321. [Google Scholar] [CrossRef] [Green Version]
- Partata, W.A.; Krepsky, A.M.; Xavier, L.L.; Marques, M.; Achaval, M. Substance P immunoreactivity in the lumbar spinal cord of the turtle Trachemys dorbigni following peripheral nerve injury. Braz. J. Med. Biol. Res. 2003, 36, 515–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiner, A.; Krause, J.E.; Keyser, K.T.; Eldred, W.D.; McKelvy, J.F. The distribution of substance P in turtle nervous system: A radioimmunoassay and immunohistochemical study. J. Comp. Neurol. 1984, 226, 50–75. [Google Scholar] [CrossRef] [PubMed]
- Melzack, R.; Wall, P.D. Pain mechanisms: A new theory. Science 1965, 150, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Berkowitz, A. Physiology and morphology of shared and specialized spinal interneurons for locomotion and scratching. J. Neurophysiol. 2008, 99, 2887–2901. [Google Scholar] [CrossRef]
- Berkowitz, A. Multifunctional and specialized spinal interneurons for turtle limb movements. Ann. N. Y. Acad. Sci. 2010, 1198, 119–132. [Google Scholar] [CrossRef]
- Mosley, C. Clinical approaches to analgesia in reptiles. In Handbook of Veterinary Pain Management, 2nd ed.; Gaynor, J.S., Muir, W.W., III, Eds.; Elsevier-Mosby: St. Louis, MO, USA, 2002; pp. 481–493. [Google Scholar]
- Larhammar, D.; Bergqvist, C.; Sundström, G. Ancestral Vertebrate Complexity of the Opioid System. In Vitamins and Hormones; Gerald, L., Ed.; Academic Press: Burlington, NJ, USA, 2015; Volume 97, pp. 95–122. [Google Scholar]
- Reiner, A. The distribution of proenkephalin-derived peptides in the central nervous system of turtles. J. Comp. Neurol. 1987, 259, 65–91. [Google Scholar] [CrossRef]
- Johnson, S.M.; Kinney, M.E.; Wiegel, L.M. Inhibitory and excitatory effects of micro-, delta-, and kappa-opioid receptor activation on breathing in awake turtles, Trachemys scripta. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R1599–R1612. [Google Scholar] [CrossRef]
- Johnson, S.M.; Moris, C.M.; Bartman, M.E.; Wiegel, L.M. Excitatory and inhibitory effects of opioid agonists on respiratory motor output produced by isolated brainstems from adult turtles (Trachemys). Respir. Physiol. Neurobiol. 2010, 170, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Loeza-Alcocer, E.; Canto-Bustos, M.; Aguilar, J.; González-Ramírez, R.; Felix, R.; Delgado-Lezama, R. α(5)GABA(A) receptors mediate primary afferent fiber tonic excitability in the turtle spinal cord. J. Neurophysiol. 2013, 110, 2175–2184. [Google Scholar] [CrossRef] [Green Version]
- Dores, R.M. Localization of multiple forms of ACTH- and beta-endorphin-related substances in the pituitary of the reptile, Anolis carolinensis. Peptides 1982, 3, 913–924. [Google Scholar] [CrossRef]
- Reiner, A. The co-occurrence of substance P-like immunoreactivity and dynorphin-like immunoreactivity in striatopallidal and striatonigral projection neurons in birds and reptiles. Brain Res. 1986, 371, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Hall, W.C.; Ebner, F.F. Thalamotelencephalic projections in the turtle (Pseudemys scripta). J. Comp. Neurol. 1970, 140, 101–122. [Google Scholar] [CrossRef] [PubMed]
- Bruce, L.L.; Butler, A.B. Telencephalic connections in lizards. II. Projections to anterior dorsal ventricular ridge. J. Comp. Neurol. 1984, 229, 602–615. [Google Scholar] [CrossRef] [PubMed]
- Kenigfest, N.; Martínez-Marcos, A.; Belekhova, M.; Font, C.; Lanuza, E.; Desfilis, E.; Martínez-García, F. A lacertilian dorsal retinorecipient thalamus: A re-investigation in the old-world lizard Podarcis hispanica. Brain Behav. Evol. 1997, 50, 313–334. [Google Scholar] [CrossRef]
- Medina, L.; Abellán, A. Development and evolution of the pallium. Semin. Cell Dev. Biol. 2009, 20, 698–711. [Google Scholar] [CrossRef] [PubMed]
- Pritz, M.B. Dorsal thalamic nuclei in Caiman crocodilus. Neurosci. Lett. 2014, 581, 57–62. [Google Scholar] [CrossRef]
- Guirado, S.; Dávila, J.C. Thalamo-telencephalic connections: New insights on the cortical organization in reptiles. Brain Res. Bull 2002, 57, 451–454. [Google Scholar] [CrossRef]
- Whiteside, D.P. Analgesia. In Zoo Animal and Wildlife Immobilization and Anesthesia, 2nd ed.; West, G., Heard, D., Caulkett, N., Eds.; Wiley Blackwell: Ames, IA, USA, 2014; pp. 83–108. [Google Scholar]
- Duncan, I.J.; Petherick, J.C. The implications of cognitive processes for animal welfare. J. Anim. Sci. 1991, 69, 5017–5022. [Google Scholar] [CrossRef]
- Read, M.R. Evaluation of the use of anesthesia and analgesia in reptiles. J. Am. Vet. Med. Assoc. 2004, 224, 547–552. [Google Scholar] [CrossRef]
- Sladky, K.K.; Kinney, M.E.; Johnson, S.M. Effects of opioid receptor activation on thermal antinociception in red-eared slider turtles (Trachemys scripta). Am. J. Vet. Res. 2009, 70, 1072–1078. [Google Scholar] [CrossRef]
- Lai, O.R.; Soloperto, S. Approccio all’analgesia nella medicina riabilitativa delle tartarughe marine: Farmaci più comunamente utilizzati e considerazioni sulla loro efficacia. Exot. Files 2012, 2, 81–84. [Google Scholar]
- Walker, K.; Fox, A.J.; Urban, L.A. Animal models for pain research. Mol. Med. Today 1999, 5, 319–321. [Google Scholar] [CrossRef]
- Chaplan, S.R.; Bach, F.W.; Pogrel, J.W.; Chung, J.M.; Yaksh, T.L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 1994, 53, 55–63. [Google Scholar] [CrossRef]
- Dubuisson, D.; Dennis, S.G. The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 1977, 4, 161–174. [Google Scholar] [CrossRef]
- Dennis, S.G.; Melzack, R. Comparison of phasic and tonic pain in animals. In Advances in Pain Research and Therapy; Bonica, J.J., Ed.; Raven Press: New York, NY, USA, 1979; Volume 3, pp. 747–760. [Google Scholar]
- Mogil, J.S.; Crager, S.E. What should we be measuring in behavioral studies of chronic pain in animals? Pain 2004, 112, 12–15. [Google Scholar] [CrossRef]
- Tjølsen, A.; Berge, O.G.; Hunskaar, S.; Rosland, J.H.; Hole, K. The formalin test: An evaluation of the method. Pain 1992, 51, 5–17. [Google Scholar] [CrossRef]
- Bennett, G.J.; Chung, J.M.; Honore, M.; Seltzer, Z. Models of neuropathic pain in the rat. Curr. Protoc. Neurosci. 2003, 22, 9–14. [Google Scholar] [CrossRef]
- Austin, P.J.; Wu, A.; Moalem-Taylor, G. Chronic constriction of the sciatic nerve and pain hypersensitivity testing in rats. J. Vis. Exp. 2012, 61, e3393. [Google Scholar] [CrossRef] [Green Version]
- Regmi, B.; Shah, M.K. Possible implications of animal models for the assessment of visceral pain. Anim. Models Exp. Med. 2020, 3, 215–228. [Google Scholar] [CrossRef]
- Greenacre, C.B.; Takle, G.; Schumacher, J.P.; Klaphake, E.K.; Harvey, R.C. Comparative antinociception of morphine, butorphanol, and buprenorphine versus saline in the Green Iguana, Iguana iguana, using electrostimulation. J. Herpetol. Med. Surg. 2006, 16, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Sladky, K.K.; Kinney, M.E.; Johnson, S.M. Analgesic efficacy of butorphanol and morphine in bearded dragons and corn snakes. J. Am. Vet. Med. Assoc. 2008, 233, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.B.; Sladky, K.K.; Johnson, S.M. Evaluation of the analgesic effects of oral and subcutaneous tramadol administration in red-eared slider turtles. J. Am. Vet. Med. Assoc. 2011, 238, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Mans, C.; Lahner, L.L.; Baker, B.B.; Johnson, S.M.; Sladky, K.K. Antinociceptive efficacy of buprenorphine and hydromorphone in red-eared slider turtles (Trachemys scripta elegans). J. Zoo Wildl. Med. 2012, 43, 662–665. [Google Scholar] [CrossRef]
- Kharbush, R.J.; Gutwillig, A.; Hartzler, K.E.; Kimyon, R.S.; Gardner, A.N.; Abbott, A.D.; Cox, S.K.; Watters, J.J.; Sladky, K.K.; Johnson, S.M. Antinociceptive and respiratory effects following application of transdermal fentanyl patches and assessment of brain μ-opioid receptor mRNA expression in ball pythons. Am. J. Vet. Res. 2017, 78, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Couture, É.L.; Monteiro, B.P.; Aymen, J.; Troncy, E.; Steagall, P.V. Validation of a thermal threshold nociceptive model in bearded dragons (Pogona vitticeps). Vet. Anaesth. Analg. 2017, 44, 676–683. [Google Scholar] [CrossRef]
- Leal, W.P.; Carregaro, A.B.; Bressan, T.F.; Bisetto, S.P.; Melo, C.F.; Sladky, K.K. Antinociceptive efficacy of intramuscular administration of morphine sulfate and butorphanol tartrate in tegus (Salvator merianae). Am. J. Vet. Res. 2017, 78, 1019–1024. [Google Scholar] [CrossRef]
- Bisetto, S.P.; Melo, C.F.; Carregaro, A.B. Evaluation of sedative and antinociceptive effects of dexmedetomidine, midazolam and dexmedetomidine-midazolam in tegus (Salvator merianae). Vet. Anaesth. Analg. 2018, 45, 320–328. [Google Scholar] [CrossRef]
- Bunke, L.G.; Sladky, K.K.; Johnson, S.M. Antinociceptive efficacy and respiratory effects of dexmedetomidine in ball pythons (Python regius). Am. J. Vet. Res. 2018, 79, 718–726. [Google Scholar] [CrossRef]
- Karklus, A.A.; Sladky, K.K.; Johnson, S.M. Respiratory and antinociceptive effects of dexmedetomidine and doxapram in ball pythons (Python regius). Am. J. Vet. Res. 2021, 82, 11–21. [Google Scholar] [CrossRef]
- Makau, C.M.; Towett, P.K.; Abelson, K.S.P.; Kanui, T.I. Modulation of nociception by amitriptyline hydrochloride in the Speke’s hinge-back tortoise (Kiniskys spekii). Vet. Med. Sci. 2021, 7, 1034–1041. [Google Scholar] [CrossRef]
- Kanui, T.I.; Hole, K. Morphine and pethidine antinociception in the crocodile. J. Vet. Pharmacol. Ther. 1992, 15, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.C.C. What can evolutionary theory tell us about chronic pain? Pain 2016, 157, 788–790. [Google Scholar] [CrossRef] [PubMed]
- Mosley, C. Pain and nociception in reptiles. Vet. Clin. N. Am. Exot. Anim. Pract. 2011, 14, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Bradley Bays, T.; Mattos de Souza Dantas, L. Clinical Behavioral medicine. In Mader’s Reptile and Amphibian Medicine and Surgery, 3rd ed.; Hernandez-Divers, S.J., Stahl, S.J., Eds.; Elsevier: St. Louis, MO, USA, 2019; pp. 922–931. [Google Scholar]
- Bradley Bays, T.; Lightfoot, T.; Mayer, J. Exotic Pet Behavior: Birds, Reptiles, and Small Mammals; Elsevier Saunders: St. Louis, MO, USA, 2006. [Google Scholar]
- Sladky, K.K. Analgesia. In Current Therapy in Reptile Medicine and Surgery; Mader, D.R., Hernandez-Divers, S.J., Eds.; Elsevier-Saunders: St. Louis, MO, USA, 2015; pp. 217–228. [Google Scholar]
- Kinney, M.; Johnson, S.M.; Sladky, K.K. Behavioral evaluation of red-eared slider turtles (Trachemys scripta) administered either morphine or butorphanol following unilateral gonadectomy. J. Herpetol. Med. Surg. 2011, 21, 54–62. [Google Scholar] [CrossRef]
- Le Bars, D.; Gozariu, M.; Cadden, W. Animal models of nociception. Pharm. Rev. 2001, 53, 597–652. [Google Scholar]
- Olesen, M.G.; Bertelsen, M.F.; Perry, S.F.; Wang, T. Effects of preoperative administration of butorphanol or meloxicam on physiologic responses to surgery in ball pythons. J. Am. Vet. Med. Assoc. 2008, 233, 1883–1888. [Google Scholar] [CrossRef]
- Hansen, B.D. Assessment of Pain in Dogs: Veterinary clinical studies. ILAR J. 2003, 44, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.; Beths, T. Grimace Scores: Tools to Support the Identification of Pain in Mammals Used in Research. Animals 2020, 10, 1726. [Google Scholar] [CrossRef]
- Lascelles, B.D. Monitoraggio postoperatorio del paziente: Valutazione clinica pratica del dolore acuto nel cane e nel gatto. In Proceedings of the International Congress of the Italian Association of Companion Animal Veterinarians—SCIVAC, Rimini, Italy, 8–10 June 2006; pp. 1–4. [Google Scholar]
- Giorgi, M.; Lee, H.K.; Rota, S.; Owen, H.; De Vito, V.; Demontis, M.P.; Varoni, M.V. Pharmacokinetic and pharmacodynamic assessments of tapentadol in yellow-bellied slider turtles (Trachemys scripta scripta) after a single intramuscular injection. J. Exot. Pet Med. 2015, 24, 317–325. [Google Scholar] [CrossRef]
- Giorgi, M.; Salvadori, M.; De Vito, V.; Owen, H.; Demontis, M.P.; Varoni, M.V. Pharmacokinetic/pharmacodynamic assessments of 10 mg/kg tramadol intramuscular injection in yellow-bellied slider turtles (Trachemys scripta scripta). J. Vet. Pharmacol. Ther. 2015, 38, 488–496. [Google Scholar] [CrossRef]
- Stevens, C.W. The evolution of vertebrate opioid receptors. Front. Biosci. Land 2009, 14, 1247–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, Y.; Haddad, G.G. Major difference in the expression of delta- and mu-opioid receptors between turtle and rat brain. J. Comp. Neurol. 2001, 436, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Fleming, G.J.; Robertson, S.A. Assessments of thermal antinociceptive effects of butorphanol and human observer effect on quantitative evaluation of analgesia in green iguanas (Iguana iguana). Am. J. Vet. Res. 2012, 73, 1507–1511. [Google Scholar] [CrossRef] [PubMed]
- Malte, C.L.; Bundgaard, J.; Jensen, M.S.; Bertelsen, M.F.; Wang, T. The effects of morphine on gas exchange, ventilation pattern and ventilatory responses to hypercapnia and hypoxia in dwarf caiman (Paleosuchus palpebrosus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2018, 222, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Kummrow, M.S.; Tseng, F.; Hesse, L.; Court, M. Pharmacokinetics of buprenorphine after single-dose subcutaneous administration in red-eared sliders (Trachemys scripta elegans). J. Zoo Wildl. Med. 2008, 39, 590–595. [Google Scholar] [CrossRef]
- Gamble, K.C. Plasma Fentanyl Concentrations Achieved after Transdermal Fentanyl Patch Application in Prehensile-Tailed Skinks, Corucia zebrata. J. Herpetol. Med. Surg. 2008, 18, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Norton, T.M.; Clauss, T.; Sommer, R.; Stowell, S.; Kaylor, M.; Thistle, C.; Cox, S. Pharmacokinetic behavior of meloxicam in loggerhead (Caretta caretta), kemp’s ridley (Lepidochelys kempii), and green (Chelonia mydas) sea turtles after subcutaneous administration. J. Zoo Wildl. Med. 2021, 52, 295–299. [Google Scholar] [CrossRef]
- Hawkins, S.J.; Cox, S.; Yaw, T.J.; Sladky, K. Pharmacokinetics of subcutaneously administered hydromorphone in bearded dragons (Pogona vitticeps) and red-eared slider turtles (Trachemys scripta elegans). Vet. Anaesth. Analg. 2019, 46, 352–359. [Google Scholar] [CrossRef]
- Wambugu, S.N.; Towett, P.K.; Kiama, S.G.; Abelson, K.S.; Kanui, T.I. Effects of opioids in the formalin test in the Speke’s hinged tortoise (Kinixy’s spekii). J. Vet. Pharmacol. Ther. 2010, 33, 347–351. [Google Scholar] [CrossRef]
- Norton, T.M.; Cox, S.; Nelson, S.E., Jr.; Kaylor, M.; Thomas, R.; Hupp, A.; Sladky, K.K. Pharmacokinetics of tramadol and o-desmethyltramadol in loggerhead sea turtles (Caretta caretta). J. Zoo Wildl. Med. 2015, 46, 262–265. [Google Scholar] [CrossRef]
- Gutwillig, A.; Abbott, A.; Johnson, S.M. Opioid dependent analgesia in ball pythons (Python regius) and corn snakes (Elaphe guttata). Proc. Annu. Conf. Assoc. Rept. Amph. Vet. 2012, 66. [Google Scholar]
- Zizzadoro, C.; Belloli, C. Autacoidi lipidici. In Farmacologia Veterinaria, 2nd ed.; Belloli, C., Carli, S., Ormas, P., Eds.; Idelson-Gnocchi: Naples, Italy, 2021; pp. 479–516. [Google Scholar]
- Di Salvo, A.; Giorgi, M.; Catanzaro, A.; Deli, G.; Della Rocca, G. Pharmacokinetic profiles of meloxicam in turtles (Trachemys scripta scripta) after single oral, intracoelomic and intramuscular administrations. J. Vet. Pharmacol. Ther. 2016, 39, 102–105. [Google Scholar] [CrossRef]
- Uney, K.; Altan, F.; Aboubakr, M.; Cetin, G.; Dik, B. Pharmacokinetics of meloxicam in red-eared slider turtles (Trachemys scripta elegans) after single intravenous and intramuscular injections. Am. J. Vet. Res. 2016, 77, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Tuttle, A.D.; Papich, M.; Lewbart, G.A.; Christian, S.; Gunkel, C.; Harms, C.A. Pharmacokinetics of ketoprofen in the green iguana (Iguana iguana) following single intravenous and intramuscular injections. J. Zoo Wildl. Med. 2006, 37, 567–570. [Google Scholar] [CrossRef]
- Cerreta, A.J.; Masterson, C.A.; Lewbart, G.A.; Dise, D.R.; Papich, M.G. Pharmacokinetics of ketorolac in wild Eastern box turtles (Terrapene carolina carolina) after single intramuscular administration. J. Vet. Pharmacol. Ther. 2019, 42, 154–159. [Google Scholar] [CrossRef]
- Lai, O.R.; Di Bello, A.; Soloperto, S.; Freggi, D.; Marzano, G.; Cavaliere, L.; Crescenzo, G. Pharmacokinetic behavior of meloxicam in loggerhead sea turtles (Caretta caretta) after intramuscular and intravenous administration. J. Wildl. Dis. 2015, 51, 509–512. [Google Scholar] [CrossRef]
- Gregory, T.M.; Harms, C.A.; Gorges, M.A.; Lewbart, G.A.; Papich, M.G. Pharmacokinetics of ketorolac in juvenile loggerhead sea turtles (Caretta caretta) after a single intramuscular injection. J. Vet. Pharmacol. Ther. 2021, 44, 583–589. [Google Scholar] [CrossRef]
- Thompson, K.A.; Papich, M.G.; Higgins, B.; Flanagan, J.; Christiansen, E.F.; Harms, C.A. Ketoprofen pharmacokinetics of R- and S-isomers in juvenile loggerhead sea turtles (Caretta caretta) after single intravenous and single- and multidose intramuscular administration. J. Vet. Pharmacol. Ther. 2018, 41, 340–348. [Google Scholar] [CrossRef]
- Raweewan, N.; Chomcheun, T.; Laovechprasit, W.; Jongkolpath, O.; Klangkaew, N.; Phaochoosak, N.; Giorgi, M.; Poapolathep, A.; Poapolathep, S. Pharmacokinetics of tolfenamic acid in green sea turtles (Chelonia mydas) after intravenous and intramuscular administration. J. Vet. Pharmacol. Ther. 2020, 43, 527–532. [Google Scholar] [CrossRef]
- Raweewan, N.; Laovechprasit, W.; Giorgi, M.; Chomcheun, T.; Klangkaew, N.; Imsilp, K.; Poapolathep, A.; Poapolathep, S. Pharmacokinetics of tolfenamic acid in Hawksbill turtles (Eretmochelys imbricata) after single intravenous and intramuscular administration. J. Vet. Pharmacol. Ther. 2020, 43, 135–140. [Google Scholar] [CrossRef]
- Royal, L.W.; Lascelles, B.D.; Lewbart, G.A.; Correa, M.T.; Jones, S.L. Evaluation of cyclooxygenase protein expression in traumatized versus normal tissues from eastern box turtles (Terrapene carolina carolina). J. Zoo Wildl. Med. 2012, 43, 289–295. [Google Scholar] [CrossRef]
- Sadler, R.A.; Schumacher, J.P.; Rathore, K.; Newkirk, K.M.; Cole, G.; Seibert, R.; Cekanova, M. Evaluation of the role of the cyclooxygenase signaling pathway during inflammation in skin and muscle tissues of ball pythons (Python regius). Am. J. Vet. Res. 2016, 77, 487–494. [Google Scholar] [CrossRef]
- Harms, C.A.; Ruterbories, L.K.; Stacy, N.I.; Christiansen, E.F.; Papich, M.G.; Lynch, A.M.; Barratclough, A.; Serrano, M.E. Safety of multiple-dose intramuscular ketoprofen treatment in loggerhead turtles (Caretta caretta). J. Zoo Wildl. Med. 2021, 52, 126–132. [Google Scholar] [CrossRef]
- Norton, T.M.; Clauss, T.; Overmeyer, R.; Stowell, S.; Kaylor, M.; Cox, S. Multi-injection pharmacokinetics of meloxicam in Kemp’s Ridley (Lepidochelys kempii) and green (Chelonia mydas) sea turtles after subcutaneous administration. Animals 2021, 11, 3522. [Google Scholar] [CrossRef]
- Hernandez-Divers, S.J.; Papich, M.; McBride, M.; Stedman, N.L.; Perpinan, D.; Koch, T.F.; Hernandez, S.M.; Barron, G.H.; Pethel, M.; Budsberg, S.C. Pharmacokinetics of meloxicam following intravenous and oral administration in green iguanas (Iguana iguana). Am. J. Vet. Res. 2010, 71, 1277–1283. [Google Scholar] [CrossRef]
- Trnkova, S.; Knotkova, Z.; Hrda, A.; Znotek, Z. Effect of non-steroidal anti-inflammatory drugs on the blood profile in the green iguana (Iguana iguana). Vet. Med. 2007, 52, 507. [Google Scholar] [CrossRef] [Green Version]
- Wellehan, J.F.; Gunkel, C.I.; Kledzik, D.; Robertson, S.A.; Heard, D.J. Use of a nerve locator to facilitate administration of mandibular nerve blocks in crocodilians. J. Zoo Wildl. Med. 2006, 37, 405–408. [Google Scholar] [CrossRef]
- Hernandez-Divers, S.J.; Stahl, S.J.; Farrell, R. An endoscopic method for identifying sex of hatchling Chinese box turtles and comparison of general versus local anesthesia for coelioscopy. J. Am. Vet. Med. Assoc. 2009, 234, 800–804. [Google Scholar] [CrossRef]
- Mans, C.; Steagall, P.V.M.; Lahner, L.L.; Johnson, S.M.; Sladky, K.K. Efficacy of intrathecal lidocaine, bupivacaine, and morphine for spinal anesthesia and analgesia in red-eared slider turtles (Trachemys scripta elegans). In Proceedings of the 2011 Proceedings AAZV Conference, Kansas City, MO, USA, 22–28 October 2011. [Google Scholar]
- Rivera, S.; Hernandez-Divers, S.J.; Knafo, S.E.; Martinez, P.; Cayot, L.J.; Tapia-Aguilera, W.; Flanagan, J. Sterilisation of hybrid Galapagos tortoises (Geochelone nigra) for island restoration. Part 2: Phallectomy of males under intrathecal anaesthesia with lidocaine. Vet. Rec. 2011, 168, 78. [Google Scholar] [CrossRef]
- Makau, C.M.; Towett, P.K.; Abelson, K.S.; Kanui, T.I. Intrathecal administration of clonidine or yohimbine decreases the nociceptive behavior caused by formalin injection in the marsh terrapin (Pelomedusa subrufa). Brain Behav. 2014, 4, 850–857. [Google Scholar] [CrossRef]
- Klaphake, E.; Gibbons, P.M.; Sladky, K.K.; Carpenter, J.W. Reptiles. In Exotic Animal Formulary, 5th ed.; Elsevier Inc.: St. Louis, MO, USA, 2018; pp. 155–159. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serinelli, I.; Soloperto, S.; Lai, O.R. Pain and Pain Management in Sea Turtle and Herpetological Medicine: State of the Art. Animals 2022, 12, 697. https://doi.org/10.3390/ani12060697
Serinelli I, Soloperto S, Lai OR. Pain and Pain Management in Sea Turtle and Herpetological Medicine: State of the Art. Animals. 2022; 12(6):697. https://doi.org/10.3390/ani12060697
Chicago/Turabian StyleSerinelli, Ilenia, Simona Soloperto, and Olimpia R. Lai. 2022. "Pain and Pain Management in Sea Turtle and Herpetological Medicine: State of the Art" Animals 12, no. 6: 697. https://doi.org/10.3390/ani12060697
APA StyleSerinelli, I., Soloperto, S., & Lai, O. R. (2022). Pain and Pain Management in Sea Turtle and Herpetological Medicine: State of the Art. Animals, 12(6), 697. https://doi.org/10.3390/ani12060697