The Protective Role of Melatonin in Sperm Cryopreservation of Farm Animals and Human: Lessons for Male Fish Cryopreservation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Cryodamage of Spermatozoa
3. Antioxidant Supplementation of Semen Extenders: The Case of Melatonin
4. Melatonin Supplementation in Farm Animals and Human Freezing Medium
5. Studies Used Melatonin as an Antioxidant in Fish Sperm Cryopreservation
6. Conclusions: Lessons to Be Learned from Farm Animals and Human Studies
- Not all melatonin concentrations are optimal for the properties of sperm cryopreservation extenders;
- Improvements in the use of melatonin as an antioxidant to moderate oxidative damage is more advanced in humans than in farm animals due to the spermatozoon’s smaller head which presents maximum cryostability [95];
- Use of moderate concentrations of melatonin improves the quality of both fresh and frozen semen;
- The positive effects of melatonin on spermatozoa have been proved in non-seasonal long-day and short-day breeders, which suggests that this action is not relevant by the hypothalamus–pituitary–testicular axis regulation;
- Because of its low toxicity and commonly accepted antioxidant activity, melatonin could be a perfect candidate to enhance semen quality during cryopreservation;
- The mechanisms through which melatonin acts positively on spermatozoa need further investigation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cabrita, E.; Sarasquete, C.; Martínez-Páramo, S.; Robles, V.; Beirão, J.; Pérez-Cerezales, S.; Herráez, M.P. Cryopreservation of Fish Sperm: Applications and Perspectives. J. Appl. Ichthyol. 2010, 26, 623–635. [Google Scholar] [CrossRef]
- Martinez-Paramo, S.; Horváth, A.; Labbe, C.; Zhang, T.; Robles, V.; Herraez, P.; Suquet, M.; Adams, S.; Viveiros, A.; Tiersch, T.R.; et al. Cryobanking of Aquatic Species. Aquaculture 2017, 472, 156–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnotti, C.; Cerqueira, V.; Lee-Estevez, M.; Farias, J.G.; Valdebenito, I.; Figueroa, E. Cryopreservation and Vitrification of Fish Semen: A Review with Special Emphasis on Marine Species. Rev. Aquac. 2018, 10, 15–25. [Google Scholar] [CrossRef]
- Lv, C.; Wu, G.; Hong, Q.; Quan, G. Spermatozoa Cryopreservation: State of Art and Future in Small Ruminants. Biopreserv. Biobank. 2019, 17, 171–182. [Google Scholar] [CrossRef]
- Salinas, M.B.; Chuammitri, P.; Sringarm, K.; Boonyayatra, S.; Sathanawongs, A. Current Perspectives on Ruminant Sperm Freezability: Harnessing Molecular Changes Related to Semen Quality through Omics Technologies. Veter. Integr. Sci. 2021, 19, 487–511. [Google Scholar] [CrossRef]
- Yánez-Ortiz, I.; Catalán, J.; Rodríguez-Gil, J.E.; Miró, J.; Yeste, M. Advances in Sperm Cryopreservation in Farm Animals: Cattle, Horse, Pig and Sheep. Anim. Reprod. Sci. 2021, 106904, in press. [Google Scholar] [CrossRef] [PubMed]
- Di Santo, M.; Tarozzi, N.; Nadalini, M.; Borini, A. Human Sperm Cryopreservation: Update on Techniques, Effect on DNA Integrity, and Implications for ART. Adv. Urol. 2012, 2012, 854837. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Sanger, E.; Saewu, A.; Leveille, M.-C. Human Sperm Vitrification: The State of the Art. Reprod. Biol. Endocrinol. 2020, 18, 17. [Google Scholar] [CrossRef]
- Kopeika, E.; Kopeika, J.; Zhang, T. Cryopreservation of Fish Sperm. In Cryopreservation and Freeze-Drying Protocols; Day, J.G., Stacey, G.N., Eds.; Humana Press: Totowa, NJ, USA, 2007; Volume 368, pp. 203–217. ISBN 978-1-58829-377-0. [Google Scholar]
- Cabrita, E.; Robles, V.; Herraez, P. Methods in Reproductive Aquaculture: Marine and Freshwater Species, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-0-8493-8053-2. [Google Scholar]
- Tiersch, T.R.; Yang, H.; Jenkins, J.A.; Dong, Q. Sperm Cryopreservation in Fish and Shellfish. Soc. Reprod. Fertil. Suppl. 2007, 65, 493–508. [Google Scholar]
- Tiersch, T.R. Introduction to the Second Edition. In Cryopreservation in Aquatic Species, 2nd ed.; Tiersch, T.R., Green, C.C., Eds.; World Aquaculture Society: Baton Rouge, LA, USA, 2011; pp. 1–17. [Google Scholar]
- Exadactylos, A.; Arvanitoyannis, I. Aquaculture Biotechnology for enhanced fish production for human consumption. In Microbial biotechnology in Agriculture and Aquaculture; Ray, R.C., Ed.; Science Publishers Inc.: Enfield, NH, USA, 2006; Volume II. [Google Scholar] [CrossRef]
- Zhou, G.-B.; Zhu, S.-E.; Hou, Y.-P.; Jin, F.; Yang, Q.-E.; Yang, Z.-Q.; Quan, G.-B.; Tan, H.-M. Vitrification of Mouse Embryos at Various Stages by Open-Pulled Straw (OPS) Method. Anim. Biotechnol. 2005, 16, 153–163. [Google Scholar] [CrossRef]
- Marques, L.S.; Fossati, A.A.N.; Rodrigues, R.B.; da Rosa, H.T.; Izaguirry, A.P.; Ramalho, J.B.; Moreira, J.C.F.; Santos, F.W.; Zhang, T.; Streit, D.P. Slow Freezing versus Vitrification for the Cryopreservation of Zebrafish (Danio rerio) Ovarian Tissue. Sci. Rep. 2019, 9, 15353. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Soares, A.; Batista, A.; Almeida, F.; Nunes, J.; Peixoto, C.; Guerra, M. In Vitro and In Vivo Evaluation of Ram Sperm Frozen in Tris Egg-Yolk and Supplemented with Superoxide Dismutase and Reduced Glutathione: In Vitro and In Vivo Effect of the Addition of SOD and GSH. Reprod. Domest. Anim. 2011, 46, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrita, E.; Ma, S.; Diogo, P.; Martínez-Paramo, S.; Sarasquete, C.; Dinis, M.T. The Influence of Certain Aminoacids and Vitamins on Post-Thaw Fish Sperm Motility, Viability and DNA Fragmentation. Anim. Reprod. Sci. 2011, 125, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Paramo, S.; Diogo, P.; Dinis, M.T.; Herraez, M.P.; Sarasquete, C.; Cabrita, E. Incorporation of Ascorbic Acid and α-Tocopherol to the Extender Media to Enhance Antioxidant System of Cryopreserved Sea Bass Sperm. Theriogenology 2012, 77, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Reactive Species and Antioxidants. Redox Biology Is a Fundamental Theme of Aerobic Life. Plant Physiol. 2006, 141, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Shaliutina-Kolesova, A.; Xian, M.; Nian, R. Antioxidant Defense System in Protein Fractions of Common Carp (Cyprinus carpio) Seminal Plasma. Czech J. Anim. Sci. 2019, 64, 265–271. [Google Scholar] [CrossRef]
- Balamurugan, B.; Ghosh, S.; Lone, S.; Prasad, J.; Das, G.; Katiyar, R.; Mustapha, A.R.; Kumar, A.; Verma, M. Partial Deoxygenation of Extender Improves Sperm Quality, Reduces Lipid Peroxidation and Reactive Oxygen Species during Cryopreservation of Buffalo (Bubalus bubalis) Semen. Anim. Reprod. Sci. 2018, 189, 60–68. [Google Scholar] [CrossRef]
- Figueroa, E.; Lee-Estevez, M.; Valdebenito, I.; Watanabe, I.-S.; Oliveira, R.P.S.; Romero, J.; Castillo, R.L.; Farías, J.G. Effects of Cryopreservation on Mitochondrial Function and Sperm Quality in Fish. Aquaculture 2019, 511, 634190. [Google Scholar] [CrossRef]
- Klaiwattana, P.; Srisook, K.; Srisook, E.; Vuthiphandchai, V.; Neumvonk, J. Effect of cryopreservation on lipid composition and antioxidant enzyme activity of seabass (Lates calcarifer) sperm. Iran. J. Fish. Sci. 2016, 15, 157–169. [Google Scholar]
- Riesco, M.F.; Oliveira, C.; Soares, F.; Gavaia, P.J.; Dinis, M.T.; Cabrita, E. Solea senegalensis Sperm Cryopreservation: New Insights on Sperm Quality. PLoS ONE 2017, 12, e0186542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öğretmen, F.; İnanan, B.E.; Kutluyer, F.; Kayim, M. Effect of Semen Extender Supplementation with Cysteine on Postthaw Sperm Quality, DNA Damage, and Fertilizing Ability in the Common Carp (Cyprinus carpio). Theriogenology 2015, 83, 1548–1552. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Woods III, L.C. Effects of Dimethyl Sulfoxide and Glycine on Cryopreservation Induced Damage of Plasma Membranes and Mitochondria to Striped Bass (Morone saxatilis) Sperm. Cryobiology 2004, 48, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Cabrita, E.; Robles, V.; Cuñado, S.; Wallace, J.C.; Sarasquete, C.; Herráez, M.P. Evaluation of Gilthead Sea Bream, Sparus aurata, Sperm Quality after Cryopreservation in 5 mL Macrotubes. Cryobiology 2005, 50, 273–284. [Google Scholar] [CrossRef]
- Figueroa, E.; Valdebenito, I.; Merino, O.; Ubilla, A.; Risopatrón, J.; Farias, J.G. Cryopreservation of Atlantic Salmon Salmo salar Sperm: Effects on Sperm Physiology. J. Fish. Biol. 2016, 89, 1537–1550. [Google Scholar] [CrossRef]
- Purdy, P.H.; Barbosa, E.A.; Praamsma, C.J.; Schisler, G.J. Modification of Trout Sperm Membranes Associated with Activation and Cryopreservation. Implications for Fertilizing Potential. Cryobiology 2016, 73, 73–79. [Google Scholar] [CrossRef]
- Dietrich, M.A.; Arnold, G.J.; Fröhlich, T.; Otte, K.A.; Dietrich, G.J.; Ciereszko, A. Proteomic Analysis of Extracellular Medium of Cryopreserved Carp (Cyprinus carpio L.) Semen. Comp. Biochem. Physiol. Part D Genom. Proteom. 2015, 15, 49–57. [Google Scholar] [CrossRef]
- Nynca, J.; Arnold, G.J.; Fröhlich, T.; Ciereszko, A. Cryopreservation-Induced Alterations in Protein Composition of Rainbow Trout Semen. Proteomics 2015, 15, 2643–2654. [Google Scholar] [CrossRef]
- Lahnsteiner, F.; Mansour, N.; Kunz, F.A. The Effect of Antioxidants on the Quality of Cryopreserved Semen in Two Salmonid Fish, the Brook Trout (Salvelinus fontinalis) and the Rainbow Trout (Oncorhynchus mykiss). Theriogenology 2011, 76, 882–890. [Google Scholar] [CrossRef]
- Figueroa, E.; Farias, J.G.; Lee-Estevez, M.; Valdebenito, I.; Risopatrón, J.; Magnotti, C.; Romero, J.; Watanabe, I.; Oliveira, R.P.S. Sperm Cryopreservation with Supplementation of α-Tocopherol and Ascorbic Acid in Freezing Media Increase Sperm Function and Fertility Rate in Atlantic Salmon (Salmo salar). Aquaculture 2018, 493, 1–8. [Google Scholar] [CrossRef]
- Li, P.; Xi, M.; Du, H.; Qiao, X.; Liu, Z.; Wei, Q. Antioxidant Supplementation, Effect on Post-Thaw Spermatozoan Function in Three Sturgeon Species. Reprod. Domest. Anim. 2018, 53, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Vargas, L.; Silva Jiménez, M.; Risopatrón González, J.; Villalobos, E.F.; Cabrita, E.; Valdebenito Isler, I. Oxidative Stress and Use of Antioxidants in Fish Semen Cryopreservation. Rev. Aquac. 2021, 13, 365–387. [Google Scholar] [CrossRef]
- Sun, T.-C.; Li, H.-Y.; Li, X.-Y.; Yu, K.; Deng, S.-L.; Tian, L. Protective Effects of Melatonin on Male Fertility Preservation and Reproductive System. Cryobiology 2020, 95, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ofosu, J.; Qazi, I.H.; Fang, Y.; Zhou, G. Use of Melatonin in Sperm Cryopreservation of Farm Animals: A Brief Review. Anim. Reprod. Sci. 2021, 233, 106850. [Google Scholar] [CrossRef] [PubMed]
- Félix, F.; Oliveira, C.C.V.; Cabrita, E. Antioxidants in Fish Sperm and the Potential Role of Melatonin. Antioxidants 2020, 10, 36. [Google Scholar] [CrossRef]
- Meng, X.; Li, Y.; Li, S.; Zhou, Y.; Gan, R.-Y.; Xu, D.-P.; Li, H.-B. Dietary Sources and Bioactivities of Melatonin. Nutrients 2017, 9, 367. [Google Scholar] [CrossRef] [Green Version]
- Hardeland, R.; Cardinali, D.P.; Srinivasan, V.; Spence, D.W.; Brown, G.M.; Pandi-Perumal, S.R. Melatonin—A Pleiotropic, Orchestrating Regulator Molecule. Prog. Neurobiol. 2011, 93, 350–384. [Google Scholar] [CrossRef] [Green Version]
- Reiter, R.J.; Tan, D.-X.; Manchester, L.C.; Paredes, S.D.; Mayo, J.C.; Sainz, R.M. Melatonin and Reproduction Revisited. Biol. Reprod. 2009, 81, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Maitra, S.K.; Hasan, K.N. The Role of Melatonin as a Hormone and an Antioxidant in the Control of Fish Reproduction. Front. Endocrinol. 2016, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Galano, A.; Tan, D.X.; Reiter, R.J. On the Free Radical Scavenging Activities of Melatonin’s Metabolites, AFMK and AMK. J. Pineal Res. 2013, 54, 245–257. [Google Scholar] [CrossRef]
- Reiter, R.J.; Rosales-Corral, S.; Tan, D.X.; Jou, M.J.; Galano, A.; Xu, B. Melatonin as a Mitochondria-Targeted Antioxidant: One of Evolution’s Best Ideas. Cell. Mol. Life Sci. 2017, 74, 3863–3881. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.-X.; Chen, L.D.; Poeggeler, B.; Manchester, L.C.; Reiter, R. Melatonin: A Potent Endogenous Hydroxyl Radical Scavenger. Endocr. J. 1993, 1, 57–60. [Google Scholar]
- Reiter, R.J.; Tan, D.; Sainz, R.M.; Mayo, J.C.; Lopez-Burillo, S. Melatonin: Reducing the Toxicity and Increasing the Efficacy of Drugs. J. Pharm. Pharmacol. 2010, 54, 1299–1321. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, A.; Rosales-Corral, S.; Reiter, R.J. Gene Regulation by Melatonin Linked to Epigenetic Phenomena. Gene 2012, 503, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, C.M.B.; Macías-García, B.; Miró-Morán, A.; González-Fernández, L.; Morillo-Rodriguez, A.; Ortega-Ferrusola, C.; Gallardo-Bolaños, J.M.; Stilwell, G.; Tapia, J.A.; Peña, F.J. Melatonin Reduces Lipid Peroxidation and Apoptotic-like Changes in Stallion Spermatozoa: Melatonin Reduces Lipid Peroxidation. J. Pineal Res. 2011, 51, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-J.; Zhang, Y.; Jia, G.-X.; Meng, Q.-G.; Bunch, T.-D.; Liu, G.-S.; Zhu, S.-E.; Xhou, G.-B. Effect of Melatonin Supplementation on Cryopreserved Sperm Quality in Mouse. Cryo Lett. 2016, 37, 115–122. [Google Scholar]
- Najafi, A.; Adutwum, E.; Yari, A.; Salehi, E.; Mikaeili, S.; Dashtestani, F.; Abolhassani, F.; Rashki, L.; Shiasi, S.; Asadi, E. Melatonin Affects Membrane Integrity, Intracellular Reactive Oxygen Species, Caspase3 Activity and AKT Phosphorylation in Frozen Thawed Human Sperm. Cell Tissue Res. 2018, 372, 149–159. [Google Scholar] [CrossRef]
- Reiter, R.; Rosales-Corral, S.; Manchester, L.; Tan, D.-X. Peripheral Reproductive Organ Health and Melatonin: Ready for Prime Time. Int. J. Mol. Sci. 2013, 14, 7231–7272. [Google Scholar] [CrossRef] [Green Version]
- Aripin, S.A.; Jintasataporn, O.; Yoonpundh, R. Effects of Melatonin in Clarias macrocephalus Male Broodstock First Puberty. In Proceedings of the International Conference of Aquaculture Indonesia (ICAI), Bandung, Indonesia, 1 January 2014. [Google Scholar]
- Aripin, S.-A.; Jintasatap, O.; Yoonpundh, R. Effects of Exogenous Melatonin and Zinc Amino Acid on Male Clarias macrocephalus Broodstock. Asian J. Sci. Res. 2018, 11, 515–521. [Google Scholar] [CrossRef]
- Sarabia, L.; Maurer, I.; Bustos-Obregón, E. Melatonin Prevents Damage Elicited by the Organophosphorous Pesticide Diazinon on Mouse Sperm DNA. Ecotoxicol. Environ. Saf. 2009, 72, 663–668. [Google Scholar] [CrossRef]
- Ortiz, A.; Espino, J.; Bejarano, I.; Lozano, G.M.; Monllor, F.; García, J.F.; Pariente, J.A.; Rodríguez, A.B. High Endogenous Melatonin Concentrations Enhance Sperm Quality and Short-Term in Vitro Exposure to Melatonin Improves Aspects of Sperm Motility: Melatonin Improves Sperm Quality. J. Pineal Res. 2010, 50, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Casao, A.; Vega, S.; Palacín, I.; Pérez-Pe, R.; Laviña, A.; Quintín, F.; Sevilla, E.; Abecia, J.; Cebrián-Pérez, J.; Forcada, F.; et al. Effects of Melatonin Implants During Non-Breeding Season on Sperm Motility and Reproductive Parameters in Rasa aragonesa Rams: Melatonin on Ram Sperm Motility and Reproductive Parameters. Reprod. Domest. Anim. 2008, 45, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Kim, Y.; Kim, B.; Park, I.; Cheong, H.; Kim, J.; Park, C.; Kong, H.; Lee, H.; Yang, B. Ameliorative Effects of Melatonin against Hydrogen Peroxide-Induced Oxidative Stress on Boar Sperm Characteristics and Subsequent In Vitro Embryo Development: Effect of Melatonin against Oxidative Stress in Pig Germ Cell. Reprod. Domest. Anim. 2010, 45, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Succu, S.; Berlinguer, F.; Pasciu, V.; Satta, V.; Leoni, G.G.; Naitana, S. Melatonin Protects Ram Spermatozoa from Cryopreservation Injuries in a Dose-Dependent Manner. J. Pineal Res. 2011, 50, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, I.; Kohram, H.; Ardabili, F.F. Antioxidative Effects of Melatonin on Kinetics, Microscopic and Oxidative Parameters of Cryopreserved Bull Spermatozoa. Anim. Reprod. Sci. 2013, 139, 25–30. [Google Scholar] [CrossRef]
- Domínguez-Rebolledo, Á.E.; Fernández-Santos, M.R.; Bisbal, A.; Ros-Santaella, J.L.; Ramón, M.; Carmona, M.; Martínez-Pastor, F.; Garde, J.J. Improving the Effect of Incubation and Oxidative Stress on Thawed Spermatozoa from Red Deer by Using Different Antioxidant Treatments. Reprod. Fertil. Dev. 2010, 22, 856–870. [Google Scholar] [CrossRef]
- Deng, S.-L.; Sun, T.-C.; Yu, K.; Wang, Z.-P.; Zhang, B.-L.; Zhang, Y.; Wang, X.-X.; Lian, Z.-X.; Liu, Y.-X. Melatonin Reduces Oxidative Damage and Upregulates Heat Shock Protein 90 Expression in Cryopreserved Human Semen. Free Radic. Biol. Med. 2017, 113, 347–354. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, R.; Lv, Y.; Zeng, W. Melatonin Protects Rabbit Spermatozoa from Cryo-Damage via Decreasing Oxidative Stress. Cryobiology 2019, 88, 1–8. [Google Scholar] [CrossRef]
- Mehaisen, G.M.K.; Partyka, A.; Ligocka, Z.; Niżański, W. Cryoprotective Effect of Melatonin Supplementation on Post-Thawed Rooster Sperm Quality. Anim. Reprod. Sci. 2020, 212, 106238. [Google Scholar] [CrossRef]
- García, J.J.; Reiter, R.J.; Guerrero, J.M.; Escames, G.; Yu, B.P.; Oh, C.S.; Muñoz-Hoyos, A. Melatonin Prevents Changes in Microsomal Membrane Fluidity during Induced Lipid Peroxidation. FEBS Lett. 1997, 408, 297–300. [Google Scholar] [CrossRef] [Green Version]
- Reiter, R.J.; Tan, D.; Osuna, C.; Gitto, E. Actions of Melatonin in the Reduction of Oxidative Stress: A Review. J. Biomed. Sci. 2000, 7, 444–458. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Zhao, C.; Xiang, H.; Jia, G.; Zhong, R. Melatonin Improves Cryopreservation of Ram Sperm by Inhibiting Mitochondrial Permeability Transition Pore Opening. Reprod. Domest. Anim. 2020, 55, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Perumal, P.; Chang, S.; Baruah, K.K.; Srivastava, N. Administration of Slow Release Exogenous Melatonin Modulates Oxidative Stress Profiles and In Vitro Fertilizing Ability of the Cryopreserved Mithun (Bos frontalis) Spermatozoa. Theriogenology 2018, 120, 79–90. [Google Scholar] [CrossRef] [PubMed]
- ChaithraShree, A.R.; Ingole, S.D.; Dighe, V.D.; Nagvekar, A.S.; Bharucha, S.V.; Dagli, N.R.; Kekan, P.M.; Kharde, S.D. Effect of Melatonin on Bovine Sperm Characteristics and Ultrastructure Changes Following Cryopreservation. Vet. Med. Sci. 2020, 6, 177–186. [Google Scholar] [CrossRef]
- Pool, K.R.; Rickard, J.P.; Tumeth, E.; de Graaf, S.P. Treatment of Rams with Melatonin Implants in the Non-Breeding Season Improves Post-Thaw Sperm Progressive Motility and DNA Integrity. Anim. Reprod. Sci. 2020, 221, 106579. [Google Scholar] [CrossRef] [PubMed]
- El-Raey, M.; Badr, M.R.; Rawash, Z.M.; Darwish, G.M. Evidences for the Role of Melatonin as a Protective Additive During Buffalo Semen Freezing. Am. J. Anim Vet. Sci 2014, 9, 252–262. [Google Scholar] [CrossRef] [Green Version]
- El-Raey, M.; Badr, M.R.; Assi, M.M.; Rawash, Z.M. Effect of melatonin on buffalo bull sperm freezability, ultrastructure changes and fertilizing potentials. Assiut Vet. Med. J. 2015, 61, 201–208. [Google Scholar]
- Feng, T.-Y.; Li, Q.; Ren, F.; Xi, H.-M.; Lv, D.-L.; Li, Y.; Hu, J.-H. Melatonin Protects Goat Spermatogonial Stem Cells against Oxidative Damage during Cryopreservation by Improving Antioxidant Capacity and Inhibiting Mitochondrial Apoptosis Pathway. Oxid. Med. Cell. Longev. 2020, 2020, 5954635. [Google Scholar] [CrossRef]
- Chaudhary, S.C.; Aeksiri, N.; Wanangkarn, A.; Liao, Y.-J.; Inyawilert, W. Effects of Melatonin on Cryopreserved Semen Parameters and Apoptosis of Thai Swamp Buffalo Bull (Bubalus bubalis) in Different Thawing Conditions. Adv. Anim. Vet. Sci. 2020, 9, 238–245. [Google Scholar] [CrossRef]
- Karimfar, M.; Niazvand, F.; Haghani, K.; Ghafourian, S.; Shirazi, R.; Bakhtiyari, S. The Protective Effects of Melatonin against Cryopreservation-Induced Oxidative Stress in Human Sperm. Int. J. Immunopathol Pharm. 2015, 28, 69–76. [Google Scholar] [CrossRef]
- Appiah, M.O.; He, B.; Lu, W.; Wang, J. Antioxidative Effect of Melatonin on Cryopreserved Chicken Semen. Cryobiology 2019, 89, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Jozaki, M.; Tanabe, M.; Shirafuta, Y.; Mihara, Y.; Shinagawa, M.; Tamura, I.; Maekawa, R.; Sato, S.; Taketani, T.; et al. Importance of Melatonin in Assisted Reproductive Technology and Ovarian Aging. Int. J. Mol. Sci. 2020, 21, 1135. [Google Scholar] [CrossRef] [Green Version]
- Pool, K.R.; Rickard, J.P.; Pini, T.; de Graaf, S.P. Exogenous Melatonin Advances the Ram Breeding Season and Increases Testicular Function. Sci. Rep. 2020, 10, 9711. [Google Scholar] [CrossRef] [PubMed]
- Pool, K.R.; Rickard, J.P.; de Graaf, S.P. Melatonin Improves the Motility and DNA Integrity of Frozen-Thawed Ram Spermatozoa Likely via Suppression of Mitochondrial Superoxide Production. Domest. Anim. Endocrinol. 2021, 74, 106516. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, I.; Kohram, H.; Naijian, H.; Bahreini, M.; Poorhamdollah, M. Protective effect of melatonin on sperm motility parameters on liquid storage of ram semen at 5 °C. Afr. J. Biotechnol. 2011, 10, 6670–6674. [Google Scholar] [CrossRef]
- Rateb, S.A.; Khalifa, M.A.; El-Hamid, I.S.A.; Shedeed, H.A. Enhancing Liquid-Chilled Storage and Cryopreservation Capacities of Ram Spermatozoa by Supplementing the Diluent with Different Additives. Asian-Australasan J. Anim. Sci. 2020, 33, 1068–1076. [Google Scholar] [CrossRef] [Green Version]
- Medrano, A.; Contreras, C.F.B.; Herrera, F.M.; Alcantar-Rodriguez, A.M. Melatonin as an Antioxidant Preserving Sperm from Domestic Animals. Asian Pac. J. Reprod. 2017, 6, 241. [Google Scholar] [CrossRef]
- El-Battawy, K. Preservation of goat semen at 5 °C with emphasis on its freezability and the impact of melatonin. Int. J. Vet. Sci. Res. 2019, 5, 35–38. [Google Scholar] [CrossRef] [Green Version]
- Inyawilert, W.; Rungruangsak, J.; Liao, Y.; Tang, P.; Paungsukpaibool, V. Melatonin Supplementation Improved Cryopreserved Thai Swamp Buffalo Semen. Reprod. Domest. Anim. 2021, 56, 83–88. [Google Scholar] [CrossRef]
- Maldjian, A.; Pizzi, F.; Gliozzi, T.; Cerolini, S.; Penny, P.; Noble, R. Changes in Sperm Quality and Lipid Composition during Cryopreservation of Boar Semen. Theriogenology 2005, 63, 411–421. [Google Scholar] [CrossRef]
- Martín-Hidalgo, D.; Barón, F.J.; Bragado, M.J.; Carmona, P.; Robina, A.; García-Marín, L.J.; Gil, M.C. The Effect of Melatonin on the Quality of Extended Boar Semen after Long-Term Storage at 17 °C. Theriogenology 2011, 75, 1550–1560. [Google Scholar] [CrossRef]
- De Lima Assis, I.; Palhares, P.C.; Machado, G.J.; da Silva Souza, J.G.; de Souza França, T.; de Oliveira Felizardo, V.; Murgas, L.D.S. Effect of Melatonin on Cryopreserved Sperm of Prochilodus lineatus (Characiformes). Cryo Lett. 2019, 40, 152–158. [Google Scholar]
- Motta, N.C.; Egger, R.C.; Monteiro, K.S.; de Oliveira, A.V.; Solis Murgas, L.D. Effects of Melatonin Supplementation on the Quality of Cryopreserved Sperm in the Neotropical Fish Prochilodus lineatus. Theriogenology 2022, 179, 14–21. [Google Scholar] [CrossRef]
- Ferrão, M.L.P. The Role of Melatonin in Sperm from Two Aquaculture Fish Species with Reproductive Problems: Solea senegalensis and Anguilla anguilla. Master Thesis, University of Algarve, Faro, Portugal, November 2020. [Google Scholar]
- Félix, F.; Antunes, R.; Leoni, L.; Oliveira, C.C.V.; Cabrita, E. Is there a melatonin protective effect during Gilthead seabream sperm cryopreservation? In Proceedings of the Aquaculture Europe 21, Funchal, Portugal, 4–7 October 2021; pp. 381–382. [Google Scholar]
- Len, J.S.; Koh, W.S.D.; Tan, S.-X. The Roles of Reactive Oxygen Species and Antioxidants in Cryopreservation. Biosci. Rep. 2019, 39, BSR20191601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palhares, P.C.; de Lima Assis, I.; da Silva Souza, J.G.; de Souza França, T.; Egger, R.C.; de Jesus Paula, D.A.; Murgas, L.D.S. Effect of Melatonin Supplementation to a Cytoprotective Medium on Post-Thawed Brycon orbignyanus Sperm Quality Preserved during Different Freezing Times. Cryobiology 2020, 96, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Palhares, P.C.; Assis, I.D.L.; Machado, G.J.; de Freitas, R.M.P.; de Freitas, M.B.D.; Paula, D.A.J.; Carneiro, W.F.; Motta, N.C.; Murgas, L.D.S. Sperm Characteristics, Peroxidation Lipid and Antioxidant Enzyme Activity Changes in Milt of Brycon orbignyanus Cryopreserved with Melatonin in Different Freezing Curves. Theriogenology 2021, 176, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Martsikalis, P.V.; Gkafas, G.A.; Palaiokostas, C.; Exadactylos, A. Genomics Era on Breeding Aquaculture Stocks. In Organic Aquaculture; Lembo, G., Mente, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Gao, D.; Mazur, P.; Critser, J.K. Fundamental Cryobiology of Mammalian Spermatozoa. In Reproductive Tissue Banking: Scientific Principles; Karow, A.M., Critser, J.K., Eds.; Academic Press: Cambridge, MA, USA, 1997; pp. 263–328. [Google Scholar]
Pathway of Action | Εffects on Spermatozoa | References |
---|---|---|
Reduction in excessive production of free radicals. | Positive effects on the function and morphometry parameters of sperm in humans and various farm animals. | [62,63,64] |
Upregulation of the expression of heat shock protein (HSP) 90. | Resistance to stress factors in frozen–thawed sperm. | [62] |
Upregulation of antioxidant enzymes, e.g., superoxide dismutase, glutathione peroxidase, and catalase. | Elimination of ROS levels causing preservation of membrane fluidity and motility. | [62,65,66] |
Regulation of mitochondrial permeability transition pores (MPTPs) as a result of binding to the MT1 receptor and the activation of the PI3K/AKT/GSK 3β pathway. | Improvement in the quality and fertilizing capacity of frozen–thawed ram sperm. | [67] |
Reduction of LPO production leads to (a) stabilization of membrane integrity and (b) prevention of leakage of intracellular enzymes, e.g., aspartate transaminase (AST), alanine transaminase (ALT), and phosphatase. | Decreased malondialdehyde (MDA) concentrations and oxidative stress. | [68,69] |
Enhancement of the functions of antioxidant enzymes. | Protection against oxidative modifications of DNA. DNA becomes more resistant to fragmentation, reducing the rate of sperm degradation and enhancing its viability and functions. | [42,59,70,71] |
Action as an anti-apoptotic molecule. |
| [72] |
| [73,74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alevra, A.I.; Exadactylos, A.; Mente, E.; Papadopoulos, S. The Protective Role of Melatonin in Sperm Cryopreservation of Farm Animals and Human: Lessons for Male Fish Cryopreservation. Animals 2022, 12, 791. https://doi.org/10.3390/ani12060791
Alevra AI, Exadactylos A, Mente E, Papadopoulos S. The Protective Role of Melatonin in Sperm Cryopreservation of Farm Animals and Human: Lessons for Male Fish Cryopreservation. Animals. 2022; 12(6):791. https://doi.org/10.3390/ani12060791
Chicago/Turabian StyleAlevra, Alexandra I., Athanasios Exadactylos, Eleni Mente, and Serafeim Papadopoulos. 2022. "The Protective Role of Melatonin in Sperm Cryopreservation of Farm Animals and Human: Lessons for Male Fish Cryopreservation" Animals 12, no. 6: 791. https://doi.org/10.3390/ani12060791
APA StyleAlevra, A. I., Exadactylos, A., Mente, E., & Papadopoulos, S. (2022). The Protective Role of Melatonin in Sperm Cryopreservation of Farm Animals and Human: Lessons for Male Fish Cryopreservation. Animals, 12(6), 791. https://doi.org/10.3390/ani12060791