Epidemiological Cut-Off Values and Multidrug Resistance of Escherichia coli Isolated from Domesticated Poultry and Pigs Reared in Mwanza, Tanzania: A Cross-Section Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Ethical Approval
2.2. Study Design, Population Setting, and Duration
2.3. Animals and Farms Selection
2.4. Sample Collection and Transportation
2.5. Laboratory Procedure
2.5.1. Isolation of E. coli
2.5.2. Physiological and Biochemical Identification of E. coli
2.5.3. Antibiotics Susceptibility Testing (AST)
2.5.4. Screening and Phenotypic Confirmation of ESBL Production
2.5.5. Quality Control
2.6. Data Management and Analysis
3. Results
3.1. Characteristics of and Antimicrobials Use among Livestock Enrolled in the Study
3.2. Commonly Used Classes of Antibiotics among Livestock Enrolled in this Study
3.3. Culture Results
3.4. Resistance Patterns of E. coli to Antibiotics Tested
3.5. ECVs of Tested Antibiotics against E. coli
3.6. Factors Associated with MDR Colonization
4. Discussion
5. Conclusions
6. Study Limitation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolář, M.; Urbánek, K.; Látal, T. Antibiotic selective pressure and development of bacterial resistance. Int. J. Antimicrob. Agents 2001, 17, 357–363. [Google Scholar] [CrossRef]
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [Green Version]
- Millner, P.D. Manure management. In The Produce Contamination Problem; Elsevier: Amsterdam, The Netherlands, 2009; pp. 79–104. [Google Scholar]
- Nonga, H.; Mariki, M.; Karimuribo, E.; Mdegela, R. Assessment of antimicrobial usage and antimicrobial residues in broiler chickens in Morogoro Municipality, Tanzania. Pak. J. Nutr. 2009, 8, 203–207. [Google Scholar] [CrossRef]
- Caudell, M.A.; Quinlan, M.B.; Subbiah, M.; Call, D.R.; Roulette, C.J.; Roulette, J.W.; Roth, A.; Matthews, L.; Quinlan, R.J. Antimicrobial use and veterinary care among agro-pastoralists in Northern Tanzania. PLoS ONE 2017, 12, e0170328. [Google Scholar] [CrossRef] [Green Version]
- Mshana, S.E.; Sindato, C.; Matee, M.I.; Mboera, L.E. Antimicrobial Use and Resistance in Agriculture and Food Production Systems in Africa: A Systematic Review. Antibiotics 2021, 10, 976. [Google Scholar] [CrossRef]
- Seni, J.; Falgenhauer, L.; Simeo, N.; Mirambo, M.M.; Imirzalioglu, C.; Matee, M.; Roth, A.; Matthews, L.; Quinlan, R.J. Multiple ESBL-producing Escherichia coli sequence types carrying quinolone and aminoglycoside resistance genes circulating in companion and domestic farm animals in Mwanza, Tanzania, harbor commonly occurring plasmids. Front. Microbiol. 2016, 7, 142. [Google Scholar] [CrossRef]
- Kimera, Z.I.; Mshana, S.E.; Rweyemamu, M.M.; Mboera, L.E.; Matee, M.I. Antimicrobial use and resistance in food-producing animals and the environment: An African perspective. Antimicrob. Resist. Infect. Control. 2020, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Kimera, Z.I.; Mgaya, F.X.; Misinzo, G.; Mshana, S.E.; Moremi, N.; Matee, M.I.N. Multidrug-Resistant, Including Extended-Spectrum Beta Lactamase-Producing and Quinolone-Resistant, Escherichia coli Isolated from Poultry and Domestic Pigs in Dar es Salaam, Tanzania. Antibiotics 2021, 10, 406. [Google Scholar] [CrossRef]
- Doidge, C.; West, H.; Kaler, J. Antimicrobial Resistance Patterns of Escherichia coli Isolated from Sheep and Beef Farms in England and Wales: A Comparison of Disk Diffusion Interpretation Methods. Antibiotics 2021, 10, 453. [Google Scholar] [CrossRef]
- Varga, C.; Rajić, A.; McFall, M.E.; Reid-Smith, R.J.; Deckert, A.E.; Pearl, D.L.; Avery, B.P.; Checkley, S.L.; McEwen, S.A. Comparison of antimicrobial resistance in generic Escherichia coli and Salmonella spp. cultured from identical fecal samples in finishing swine. Can. J. Vet. Res. 2008, 72, 181. [Google Scholar] [PubMed]
- Organization WHO. WHO Global Principles for the Containment of Antimicrobial Resistance in Animals Intended for Food: Report of a WHO Consultation with the Participation of the Food and Agriculture Organization of the United Nations and the Office International Des Epizooties; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Murray, B.E. Antibiotic resistance. Adv. Intern. Med. 1997, 42, 339–367. [Google Scholar] [PubMed]
- van den Bogaard, A.E.; Stobberingh, E.E. Epidemiology of resistance to antibiotics: Links between animals and humans. Int. J. Antimicrob. Agents 2000, 14, 327–335. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; Bager, F.; Jensen, N.; Madsen, M.; Meyling, A.; Wegener, H.C. Resistance to antimicrobial agents used for animal therapy in pathogenic-, zoonotic-and indicator bacteria isolated from different food animals in Denmark: A baseline study for the Danish Integrated Antimicrobial Resistance Monitoring Programme (DANMAP). Apmis 1998, 106, 745–770. [Google Scholar] [CrossRef] [PubMed]
- Procop, G.W.; Church, D.L.; Hall, G.S.; Janda, W.M. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology; Jones & Bartlett Publishers: Burlington, MA, USA, 2020. [Google Scholar]
- Biemer, J.J. Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Ann. Clin. Lab. Sci. 1973, 3, 135–140. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI: Wayne, PA, USA, 2020. [Google Scholar]
- Silago, V.; Kovacs, D.; Samson, H.; Seni, J.; Matthews, L.; Oravcová, K.; Lupindu, A.M.; Hoza, A.S.; Mshana, S.E. Existence of Multiple ESBL Genes among Phenotypically Confirmed ESBL Producing Klebsiella pneumoniae and Escherichia coli Concurrently Isolated from Clinical, Colonization and Contamination Samples from Neonatal Units at Bugando Medical Center, Mwanza, Tanzania. Antibiotics 2021, 10, 476. [Google Scholar]
- Turnidge, J.; Kahlmeter, G.; Kronvall, G. Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin. Microbiol. Infect. 2006, 12, 418–425. [Google Scholar] [CrossRef]
- Kronvall, G.; Karlsson, I.; Walder, M.; Sörberg, M.; Nilsson, L.E. Epidemiological MIC cut-off values for tigecycline calculated from Etest MIC values using normalized resistance interpretation. J. Antimicrob. Chemother. 2006, 57, 498–505. [Google Scholar] [CrossRef]
- Sjölund, M.; Bengtsson, S.; Bonnedahl, J.; Hernandez, J.; Olsen, B.; Kahlmeter, G. Antimicrobial susceptibility in Escherichia coli of human and avian origin—A comparison of wild-type distributions. Clin. Microbiol. Infect. 2009, 15, 461–465. [Google Scholar] [CrossRef] [Green Version]
- Katakweba, A.A.; Muhairwa, A.P.; Lupindu, A.M.; Damborg, P.; Rosenkrantz, J.T.; Minga, U.M.; Mtambo, M.M.A.; Olsen, J.E. First report on a randomized investigation of antimicrobial resistance in fecal indicator bacteria from livestock, poultry, and humans in Tanzania. Microb. Drug Resist. 2018, 24, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Yassin, A.K.; Gong, J.; Kelly, P.; Lu, G.; Guardabassi, L.; Wei, L.; Han, X.; Qiu, H.; Price, S.; Cheng, D.; et al. Antimicrobial resistance in clinical Escherichia coli isolates from poultry and livestock, China. PLoS ONE 2017, 12, e0185326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hvistendahl, M. China Takes Aim at Rampant Antibiotic Resistance; American Association for the Advancement of Science: Washington, DC, USA, 2012. [Google Scholar]
- Zhang, H.-L.; Wu, S.-L.; Fu, J.-L.; Jiang, H.-X.; Ding, H.-Z. Research Note: Epidemiological cutoff values and acquired resistance mechanisms of three veterinary antibiotics against Escherichia coli from chicken respiratory tract infections. Poult. Sci. 2021, 100, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, Y.; Li, J.; Cheng, P.; Xiao, T.; Muhammad, I.; Yu, H.; Liu, R.; Zhang, X. Susceptibility breakpoint for Danofloxacin against swine Escherichia coli. BMC Vet. Res. 2019, 15, 51. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; Carrique-Mas, J.J.; Ngo, T.H.; Ho, H.M.; Ha, T.T.; Campbell, J.I.; Nguyen, T.N.; Hoang, N.N.; Pham, V.M.; Wagenaar, J.A.; et al. Prevalence and risk factors for carriage of antimicrobial-resistant Escherichia coli on household and small-scale chicken farms in the Mekong Delta of Vietnam. J. Antimicrob. Chemother. 2015, 70, 2144–2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Frequency (n) | Percentage (%) | |
---|---|---|---|
Livestock | Broiler | 191 | 27.6 |
Layers | 203 | 29.4 | |
Pigs | 297 | 42.9 | |
Breed | Exotic | 493 | 71.4 |
Local | 198 | 28.7 | |
Recent antimicrobial date | 2 months ago | 48 | 6.9 |
1 month ago | 30 | 4.3 | |
2 weeks ago | 100 | 14.5 | |
1 week ago | 79 | 11.4 | |
Not known | 434 | 62.8 | |
Purpose of antimicrobial use | Prophylaxis and Therapeutic | 94 | 13.6 |
Therapeutic | 597 | 86.4 | |
Antimicrobial prescription | Agro vet shop/Vet shop | 60 | 8.7 |
Another farmer | 45 | 6.5 | |
Myself/family member | 142 | 20.6 | |
Paraveterinarian | 115 | 16.6 | |
Paraveterinarian/Vet shop | 25 | 3.6 | |
Veterinary officer | 284 | 41.1 | |
Vet officer/myself/family member | 20 | 2.9 |
Antimicrobial Class | Poultry | Pigs | ||
---|---|---|---|---|
Frequency (n) | Percentage (%) | Frequency (n) | Percentage (%) | |
Tetracycline, sulfonamides | 121 | 30.72 | 161 | 54.2 |
Tetracycline, quinolones | 202 | 51.29 | ||
Tetracycline, sulfonamides, macrolides | 20 | 5.08 | - | - |
Tetracycline, macrolides | 10 | 2.54 | - | - |
Tetracycline, aminoglycosides | 21 | 5.33 | - | - |
Quinolones, aminoglycosides | 20 | 5.08 | - | - |
Not known | - | - | 136 | 45.8 |
Antibiotics | Broilers (n = 190) | Layers (n = 184) | Pigs (n = 283) | p Value |
---|---|---|---|---|
R | R | R | ||
CIP | 180 (94.7%) | 165 (89.7%) | 67 (23.7%) | 0.001 |
AMP | 134 (70.5%) | 115 (62.5%) | 80 (28.2%) | 0.001 |
MEM | 6 (3.2%) | 11 (6%) | 37 (13.1%) | 0.001 |
TET | 166 (87.4%) | 165 (89.7%) | 140 (49.5%) | 0.001 |
CAZ | 36 (18.9%) | 80 (43.5%) | 76 (26.9%) | 0.001 |
SXT | 131 (68.9%) | 161 (87.5%) | 63 (22.3%) | 0.001 |
CN | 44 (23.2%) | 41 (22.3%) | 30 (10.6%) | 0.001 |
FEP | 35 (18.4%) | 71 (38.6%) | 69 (24.4%) | 0.001 |
Antimicrobials | Disk Content | Broiler ECVs | SD | Layer ECVs | SD | Pigs ECVs | SD |
---|---|---|---|---|---|---|---|
CIP | 5 μg | 18 * | 5.55 | 17 | 2.29 | 22 | 4.18 |
TET | 30 μg | 11 * | 4.13 | 9 * | 9.14 | 9 | 4.65 |
AMP | 10 μg | 17 | 2.00 | 15 | 3.62 | 24 | 1.85 |
MEM | 10 μg | 16 | 3.94 | 18 | 4.29 | 18 | 5.25 |
CAZ | 30 μg | 15 | 3.15 | 10 | 4.39 | 12 | 4.08 |
FEP | 30 μg | 18 | 3.26 | 11 | 5.19 | 18 | 4.36 |
CN | 30 μg | 15 * | 3.04 | 10 | 2.95 | 16 | 2.84 |
SXT | 1.25/23.75 μg | 15 * | 6.41 | 12 * | 4.63 | 30 | 2.97 |
Antimicrobial Agents | Broilers: ECVs (%WT) | Broilers: CBs (%S) | Layers: ECVs (%WT) | Layers: CBs (%S) | Pigs: ECVs(%WT) | Pigs: CBs (%S) |
---|---|---|---|---|---|---|
CIP | 31.1 | 5.3 | 51.1 | 10.3 | 84.5 | 76.3 |
TE | 51.6 | 12.6 | 48.4 | 10.3 | 70.3 | 50.5 |
AMP | 29.5 | 29.5 | 57.6 | 37.5 | 38.5 | 71.7 |
MEM | 100 | 96.8 | 96.2 | 94.02 | 98.6 | 86.9 |
CAZ | 99.5 | 81.1 | 95.7 | 56.5 | 97.2 | 73.1 |
FEP | 100 | 81.6 | 97.3 | 61.4 | 96.8 | 75.3 |
CN | 77.4 | 76.8 | 95.1 | 77.7 | 83.7 | 89.4 |
SXT | 36.8 | 31.1 | 41.3 | 12.5 | 63.3 | 77.7 |
Variables | MDR | CHI ANALYSIS | |||
---|---|---|---|---|---|
Positive n (%) | Negative n (%) | χ2 | p Value | ||
Livestock | Broiler | 164 (86.3) | 26 (13.7) | 210.24 | <0.001 |
Layers | 161 (87.5) | 23 (12.5) | |||
Pigs | 90 (31.8) | 193 (68.2) | |||
Breed | Exotic | 353 (75.6) | 114 (24.4) | 107.11 | <0.001 |
Local | 62 (32.6) | 128 (67.4) | |||
Recent antimicrobial use | 2 months ago | 22 (52.4) | 20 (47.6) | 153.51 | <0.001 |
1 month ago | 22 (78.6) | 6 (21.4) | |||
2 weeks ago | 89 (91.8) | 8 (8.3) | |||
1 week ago | 68 (86.1) | 11 (13.9) | |||
Not known | 214 (52.1) | 197 (47.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mtemisika, C.I.; Nyawale, H.; Benju, R.J.; Genchwere, J.M.; Silago, V.; Mushi, M.F.; Mwanga, J.; Konje, E.; Mirambo, M.M.; Mshana, S.E. Epidemiological Cut-Off Values and Multidrug Resistance of Escherichia coli Isolated from Domesticated Poultry and Pigs Reared in Mwanza, Tanzania: A Cross-Section Study. Animals 2022, 12, 835. https://doi.org/10.3390/ani12070835
Mtemisika CI, Nyawale H, Benju RJ, Genchwere JM, Silago V, Mushi MF, Mwanga J, Konje E, Mirambo MM, Mshana SE. Epidemiological Cut-Off Values and Multidrug Resistance of Escherichia coli Isolated from Domesticated Poultry and Pigs Reared in Mwanza, Tanzania: A Cross-Section Study. Animals. 2022; 12(7):835. https://doi.org/10.3390/ani12070835
Chicago/Turabian StyleMtemisika, Conjester I., Helmut Nyawale, Ronald J. Benju, Joseph M. Genchwere, Vitus Silago, Martha F. Mushi, Joseph Mwanga, Eveline Konje, Mariam M. Mirambo, and Stephen E. Mshana. 2022. "Epidemiological Cut-Off Values and Multidrug Resistance of Escherichia coli Isolated from Domesticated Poultry and Pigs Reared in Mwanza, Tanzania: A Cross-Section Study" Animals 12, no. 7: 835. https://doi.org/10.3390/ani12070835
APA StyleMtemisika, C. I., Nyawale, H., Benju, R. J., Genchwere, J. M., Silago, V., Mushi, M. F., Mwanga, J., Konje, E., Mirambo, M. M., & Mshana, S. E. (2022). Epidemiological Cut-Off Values and Multidrug Resistance of Escherichia coli Isolated from Domesticated Poultry and Pigs Reared in Mwanza, Tanzania: A Cross-Section Study. Animals, 12(7), 835. https://doi.org/10.3390/ani12070835