Fatty Acids Composition of Stomach Oil of Scopoli’s Shearwater (Calonectris diomedea) from Linosa’s Colony
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Plan
2.2. Fatty Acids Analysis
2.3. Statistical Analysis
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashmole, N.P. Sea Bird Ecology and the Marine Environment. In Avian Biology; Farner, D.S., King, J.R., Eds.; Academic Press: New York, NY, USA, 1971; pp. 223–286. [Google Scholar]
- Lack, D.L. Ecological Adaptations for Breeding in Birds; Methuen and Co., Ltd.: London, UK, 1968; p. 409. [Google Scholar]
- Connan, M.; Mayzaud, P.; Boutoute, M.; Weimerskirch, H.; Cherel, Y. Lipid composition of stomach oil in a procellariiform seabird Puffinus tenuirostris: Implications for food web studies. Mar. Ecol. Prog. Ser. 2005, 290, 277–290. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.W.; Iverson, S.J.; Springer, A.M.; Hatch, S.A. Fatty Acid Signatures of Stomach Oil and Adipose Tissue of Northern Fulmars (Fulmarus glacialis) in Alaska: Implications for Diet Analysis of Procellariiform Birds. J. Comp. Physiol. B 2007, 177, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Costantini, D.; Dell’Omo, G. Oxidative Stress Predicts Long-Term Resight Probability and Reproductive Success in Scopoli’s Shearwater (Calonectris diomedea). Conserv. Physiol. 2015, 3, cov024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granadeiro, J.; NUNES, M.; Silva, M.; Furness, R. Flexible Foraging Strategy of Cory’s Shearwater, Calonectris Diomedea, during the Chick-Rearing Period. Anim. Behav. 1998, 56, 1169–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hays, G.C. A Review of the Adaptive Significance and Ecosystem Consequences of Zooplankton Diel Vertical Migrations. In Migrations and Dispersal of Marine Organisms; Jones, M.B., Ingólfsson, A., Ólafsson, E., Helgason, G.V., Gunnarsson, K., Svavarsson, J., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 163–170. [Google Scholar]
- Clarke, A.; Prince, P.A. The Origin of Stomach Oil in Marine Birds: Analyses of the Stomach Oil from Six Species of Subantarctic Procellariiform Birds. J. Exp. Mar. Biol. Ecol. 1976, 23, 15–30. [Google Scholar] [CrossRef]
- Roby, D.D.; Place, A.R. Significance of Stomach Oil for Reproduction in Seabirds: An Interspecies Cross-Fostering Experiment. Auk 1997, 114, 725–736. [Google Scholar] [CrossRef]
- Warham, J. The Behaviour, Population Ecology & Physiology of the Petrels; Academic Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Warham, J. The Incidence, Functions and Ecological Significance of Petrel Stomach Oils. Proc. N. Z. Ecol. Soc. 1977, 24, 84–93. [Google Scholar]
- Williams, C.T.; Buck, C.L. Using Fatty Acids as Dietary Tracers in Seabird Trophic Ecology: Theory, Application and Limitations. J. Ornithol. 2010, 151, 531–543. [Google Scholar] [CrossRef]
- Niizuma, Y.; Araki, Y.; Mori, H.; Takahashi, A.; Watanuki, Y. Responses of Body Components to Changes in the Energetic Demand throughout the Breeding Stages of Rhinoceros Auklets. Can. J. Zool. 2002, 80, 1549–1555. [Google Scholar] [CrossRef]
- Cumbo, V.; Galluzzo, F.G.; Cammilleri, G.; Mascetti, A.; Lo Cascio, G.; Giangrosso, I.E.; Pulvirenti, A.; Seminara, S.; Ferrantelli, V. Trace Elements in Stomach Oil of Scopoli’s Shearwater (Calonectris diomedea) from Linosa’s Colony. Mar. Pollut. Bull. 2022, 174, 113242. [Google Scholar] [CrossRef]
- Baccetti, N.; Capizzi, D.; Corbi, F.; Massa, B.; Nissardi, S.; Spano, G.; Sposimo, P. Breeding Shearwaters on Italian Islands: Population Size, Island Selection and Coexistence with Their Main Alien Predator, the Black Rat. Riv. Ital. Orn. 2009, 78, 83–100. [Google Scholar]
- Cecere, J.G.; Gaibani, G.; Imperio, S. Effects of Environmental Variability and Offspring Growth on the Movement Ecology of Breeding Scopoli’s Shearwater Calonectris Diomedea. Curr. Zool. 2014, 60, 622–630. [Google Scholar] [CrossRef]
- Michel, L.; Cianchetti-Benedetti, M.; Catoni, C.; Dell’Omo, G. How Shearwaters Prey. New Insights in Foraging Behaviour and Marine Foraging Associations Using Bird-Borne Video Cameras. Mar. Biol. 2022, 169, 7. [Google Scholar] [CrossRef]
- Galluzzo, F.G.; Cammilleri, G.; Ulrici, A.; Calvini, R.; Pulvirenti, A.; Lo Cascio, G.; Macaluso, A.; Vella, A.; Cicero, N.; Amato, A.; et al. Land Snails as a Valuable Source of Fatty Acids: A Multivariate Statistical Approach. Foods 2019, 8, 676. [Google Scholar] [CrossRef] [Green Version]
- Taverniers, I.; De Loose, M.; Van Bockstaele, E. Trends in Quality in the Analytical Laboratory. I. Traceability and Measurement Uncertainty of Analytical Results. TrAC Trends Anal. Chem. 2004, 23, 480–490. [Google Scholar] [CrossRef]
- van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, Scaling, and Transformations: Improving the Biological Information Content of Metabolomics Data. BMC Genomics 2006, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Kabacoff, R. R in Action: Data Analysis and Graphics with R, 2nd ed.; Manning: Shelter Island, NY, USA, 2015; ISBN 978-1-61729-138-8. [Google Scholar]
- Kühnast, C.; Neuhäuser, M. A Note on the Use of the Non-Parametric Wilcoxon-Mann-Whitney Test in the Analysis of Medical Studies. GMS Ger. Med. Sci. 2008, 6, Doc02. [Google Scholar]
- Richdale, L.E. Biology of the Sooty Shearwater Puffinus Griseus. Proc. Zool. Soc. Lond. 1963, 141, 1–117. [Google Scholar] [CrossRef]
- Harper, P.C. Breeding Biology of the Fairy Prion (Pachyptila Turtur) at the Poor Knights Islands, New Zealand. N. Z. J. Zool. 1976, 3, 351–371. [Google Scholar] [CrossRef] [Green Version]
- Boersma, P.D.; Wheelwright, N.T.; Nerini, M.K.; Wheelwright, E.S. The Breeding Biology of the Fork-Tailed Storm-Petrel (Oceanodroma furcata). Auk Ornithol. Adv. 1980, 97, 268–282. [Google Scholar] [CrossRef]
- Ricklefs, R.E.; Day, C.H.; Huntington, C.E.; Williams, J.B. Variability in Feeding Rate and Meal Size of Leach’s Storm-Petrel at Kent Island, New Brunswick. J. Anim. Ecol. 1985, 54, 883–898. [Google Scholar] [CrossRef]
- Dee Boersma, P.; Parrish, J.K. Flexible Growth Rates in Fork-Tailed Storm-Petrels: A Response to Environmental Variability on JSTOR. Auk 1998, 115, 67–75. [Google Scholar] [CrossRef]
- Thibault, J.C.; Bretagnolle, V.; Rabouam, C. Cory’s Shearwater. Birds of the Western Palearctic (BWP) Update; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Ackman, R.G. Marine Biogenic Lipids, Fats and Oils; CRC Press: Boca Raton, FL, USA, 1989; ISBN 978-0-8493-4890-7. [Google Scholar]
- Dahl, T.M.; Lydersen, C.; Kovacs, K.M.; Falk-Petersen, S.; Sargent, J.; Gjertz, I.; Gulliksen, B. Fatty Acid Composition of the Blubber in White Whales (Delphinapterus leucas). Polar Biol. 2000, 23, 401–409. [Google Scholar] [CrossRef]
- Magalhães, M.C.; Santos, R.S.; Hamer, K.C. Dual-Foraging of Cory’s Shearwaters in the Azores: Feeding Locations, Behaviour at Sea and Implications for Food Provisioning of Chicks. Mar. Ecol. Prog. Ser. 2008, 359. [Google Scholar] [CrossRef] [Green Version]
- Ottosson, U.; Bäckman, J.; Smith, H.G. Begging Affects Parental Effort in the Pied Flycatcher, Ficedula Hypoleuca. Behav. Ecol. Sociobiol. 1997, 41, 381–384. [Google Scholar] [CrossRef]
- Maldjian, A.; Farkas, K.; Noble, R.C.; Cocchi, M.; Speake, B.K. The Transfer of Docosahexaenoic Acid from the Yolk to the Tissues of the Chick Embryo. Biochim. Biophys. Acta BBA-Lipids Lipid Metab. 1995, 1258, 81–89. [Google Scholar] [CrossRef]
- Gladyshev, M.I.; Arts, M.T.; Sushchik, N.N. Preliminary Estimates of the Export of Omega-3 Highly Unsaturated Fatty Acids (EPA+DHA) from Aquatic to Terrestrial Ecosystems. In Lipids in Aquatic Ecosystems; Kainz, M., Brett, M.T., Arts, M.T., Eds.; Springer: New York, NY, USA, 2009; pp. 179–210. ISBN 978-0-387-89366-2. [Google Scholar]
- Hayes, B.P.; Brooke, M.D.L. Retinal Ganglion Cell Distribution and Behaviour in Procellariiform Seabirds. Vision Res. 1990, 30, 1277–1289. [Google Scholar] [CrossRef]
- BLEM, C.R. Patterns of Lipid Storage and Utilization in Birds. Am. Zool. 1976, 16, 671–684. [Google Scholar] [CrossRef]
- McWilliams, S.R.; Guglielmo, C.; Pierce, B.; Klaassen, M. Flying, Fasting, and Feeding in Birds during Migration: A Nutritional and Physiological Ecology Perspective. J. Avian Biol. 2004, 35, 377–393. [Google Scholar] [CrossRef] [Green Version]
- Puskic, P.S.; Lavers, J.L.; Adams, L.R.; Grünenwald, M.; Hutton, I.; Bond, A.L. Uncovering the Sub-Lethal Impacts of Plastic Ingestion by Shearwaters Using Fatty Acid Analysis. Conserv. Physiol. 2019, 7, coz017. [Google Scholar] [CrossRef] [Green Version]
- Chaurand, T.; Weimerskirch, H. The Regular Alternation of Short and Long Foraging Trips in the Blue Petrel Halobaena Caerulea: A Previously Undescribed Strategy of Food Provisioning in a Pelagic Seabird. J. Anim. Ecol. 1994, 63, 275–282. [Google Scholar] [CrossRef]
- Owen, E.; Daunt, F.; Moffat, C.; Elston, D.A.; Wanless, S.; Thompson, P. Analysis of Fatty Acids and Fatty Alcohols Reveals Seasonal and Sex-Specific Changes in the Diets of Seabirds. Mar. Biol. 2013, 160, 987–999. [Google Scholar] [CrossRef] [Green Version]
- Hamer, K.C.; Thompson, D.R.; Gray, C.M. Spatial Variation in the Feeding Ecology, Foraging Ranges, and Breeding Energetics of Northern Fulmars in the North-East Atlantic Ocean. ICES J. Mar. Sci. 1997, 54, 645–653. [Google Scholar] [CrossRef]
- Ojowski, U.; Eidtmann, C.; Furness, R.; Garthe, S. Diet and Nest Attendance of Incubating and Chick-Rearing Northern Fulmars (Fulmarus glacialis) in Shetland. Mar. Biol. 2001, 139, 1193–1200. [Google Scholar] [CrossRef]
- Ramos, J.A.; Moniz, Z.; Solá, E.; Monteiro, L.R. Reproductive Measures and Chick Provisioning of Cory’s Shearwater Calonectris Diomedea Borealis in the Azores. Bird Study 2003, 50, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Schaffner, F.C. Food Provisioning by White-Tailed Tropicbirds: Effects on the Developmental Pattern of Chicks. Ecology 1990, 71, 375–390. [Google Scholar] [CrossRef]
- Freites, L.; Fernández-Reiriz, M.J.; Labarta, U. Fatty Acid Profiles of Mytilus Galloprovincialis (Lmk) Mussel of Subtidal and Rocky Shore Origin. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2002, 132, 453–461. [Google Scholar] [CrossRef]
- Fernández-Reiriz, M.-J.; Garrido, J.L.; Irisarri, J. Fatty Acid Composition in Mytilus Galloprovincialis Organs: Trophic Interactions, Sexual Differences and Differential Anatomical Distribution. Mar. Ecol. Prog. Ser. 2015, 528, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Stratev, D.; Popova, T.; Zhelyazkov, G.; Vashin, I.; Dospatliev, L.; Valkova, E. Seasonal Changes in Quality and Fatty Acid Composition of Black Mussel (Mytilus galloprovincialis). J. Aquat. Food Prod. Technol. 2017, 26, 871–879. [Google Scholar] [CrossRef]
- Niebuhr, V. Feeding Strategies and Incubation Behaviour of Wild Herring Gulls: An Experiment Using Operant Feeding Boxes. Anim. Behav. 1983, 31, 708–717. [Google Scholar] [CrossRef]
- Alonso, H.; Granadeiro, J.P.; Waap, S.; Xavier, J.; Symondson, W.O.C.; Ramos, J.A.; Catry, P. An Holistic Ecological Analysis of the Diet of Cory’s Shearwaters Using Prey Morphological Characters and DNA Barcoding. Mol. Ecol. 2014, 23, 3719–3733. [Google Scholar] [CrossRef] [PubMed]
- Remsen, J.V. Review of HBW and BirdLife International Illustrated Checklist of the Birds of the World Volume 1: Non-Passerines. J. Field Ornithol. 2015, 86, 182–187. [Google Scholar]
- Navarro, J.C.; Villanueva, R. Lipid and Fatty Acid Composition of Early Stages of Cephalopods: An Approach to Their Lipid Requirements. Aquaculture 2000, 183, 161–177. [Google Scholar] [CrossRef]
- Sinanoglou, V.J.; Meimaroglou, D.; Miniadis-Meimaroglou, S. Triacylglycerols and Their Fatty Acid Composition in Edible Mediterranean Molluscs and Crustacean. Food Chem. 2008, 110, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Reis, D.F.B. Fatty Acid and Lipid Class Metabolism of Common Octopus (Octopus vulgaris) and of European Cuttlefish (Sepia officinalis) at Early Life Stages; Universidade do Algarve: Faro, Portugal, 2016. [Google Scholar]
- Özyurt, G.; Duysak, Ö.; Akamca, E.; Tureli, C. Seasonal Changes of Fatty Acids of Cuttlefish Sepia officinalis L. (Mollusca: Cephalopoda) in the North Eastern Mediterranean Sea. Food Chem. 2006, 95, 382–385. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Venegas-Venegas, E.; Rincón-Cervera, M.Á.; Suárez, M.D. Fatty Acid Profiles of Livers from Selected Marine Fish Species. J. Food Compos. Anal. 2011, 24, 217–222. [Google Scholar] [CrossRef]
- Kartal, M.; Kurucu, S.; Aslan Erdem, S.; Özbay, Ö.; Ceyhan, T.; Sayar, E.; Cevheroǧlu, Ş. Comparison of ω-3 Fatty Acids by GC-MS in Frequently Consumed Fish and Fish Oil Preparations on the Turkish Market. Fabad J. Pharm. Sci. 2003, 28, 201–205. [Google Scholar]
- Kolade, O.Y. Fatty Acid Profile Investigation of Blue Whiting Fish (Micromesistius poutassou) Flesh from Agbalata Market Badagry, Lagos West, Nigeria. Emer. Life Sci. Res. 2015, 2, 20–25. [Google Scholar]
- Orban, E.; Di Lena, G.; Nevigato, T.; Masci, M.; Casini, I.; Caproni, R. Proximate, Unsaponifiable Lipid and Fatty Acid Composition of Bogue (Boops boops) and Horse Mackerel (Trachurus trachurus) from the Italian Trawl Fishery. J. Food Compos. Anal. 2011, 24, 1110–1116. [Google Scholar] [CrossRef]
Fatty Acid | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | Mean ± SD |
---|---|---|---|---|---|---|---|---|---|
C14:0 | 5.4 | 6.6 | 7.3 | 5.6 | 6.5 | 6.0 | 6.8 | 6.1 | 6.29 ± 0.63 |
C16:0 | 25.8 | 26.8 | 24.3 | 25.9 | 25.6 | 25.1 | 26.1 | 25.5 | 25.64 ± 0.73 |
C17:0 | 1.7 | 2.0 | 1.7 | 1.7 | 1.8 | 1.7 | 1.8 | 1.8 | 1.78 ± 0.10 |
C18:0 | 6.4 | 7.2 | 6.8 | 6.7 | 6.6 | 6.5 | 6.6 | 6.9 | 6.71 ± 0.25 |
C20:0 | 0.8 | 0.9 | 0.7 | 0.9 | 0.8 | 0.8 | 1.0 | 0.9 | 0.85 ± 0.09 |
C22:0 | 0.4 | 0.4 | 0.3 | 0.4 | n.d. | n.d. | 0.9 | 0.7 | 0.52 ± 0.23 |
ΣSFA 1 | 40.5 | 43.9 | 41.1 | 41.2 | 41.3 | 40.1 | 43.2 | 41.9 | 41.65 ± 1.30 |
C16:1 | 4.9 | 4.2 | 5.5 | 4.1 | 4.1 | 4.4 | 3.9 | 3.7 | 4.35 ± 0.59 |
C17:1 | 0.8 | 0.3 | 0.4 | 0.4 | 0.4 | 0.5 | 0.4 | 0.4 | 0.45 ± 0.15 |
C18:1ω9 | 13.4 | 12.8 | 13.8 | 13.8 | 11.6 | 15.6 | 10.6 | 10.7 | 12.79 ± 1.73 |
C20:1 | 1.7 | n.d. | 2.6 | 1.8 | 1.6 | 1.6 | 1.4 | 1.7 | 1.77 ± 0.39 |
C22:1 | 0.5 | 0.5 | 0.7 | 0.4 | 0.6 | 0.7 | 0.3 | 0.5 | 0.53 ± 0.14 |
ΣMUFA 2 | 21.3 | 17.8 | 23. | 20.5 | 18.3 | 22.8 | 16.6 | 17. | 19.66 ± 2.57 |
C18:2ω6 | 1.8 | 2.2 | 1.6 | 2.0 | 2.1 | 1.9 | 2.1 | 2.0 | 1.96 ± 0.19 |
C18:3ω3 | 1.2 | 0.9 | 0.9 | 0.9 | 1.0 | 0.8 | 1.0 | 0.9 | 0.95 ± 0.12 |
C20:2ω6 | 0.5 | n.d. | 0.4 | 0.4 | 0.5 | 0.4 | n.d. | 0.4 | 0.43 ± 0.05 |
C20:4ω3 | 1.5 | 1.4 | 1.1 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.38 ± 0.12 |
C20:5ω3 | 8.6 | 8.3 | 8.4 | 8.2 | 8.6 | 8.3 | 8.6 | 8.4 | 8.43 ± 0.16 |
C22:2ω6 | n.d. | 0.2 | 0.3 | n.d. | 0.3 | 0.3 | n.d. | n.d. | 0.28 ± 0.05 |
C22:5ω3 | 1.5 | 1.8 | 1.1 | 1.7 | 1.6 | 1.5 | 1.7 | 1.9 | 1.60 ± 0.24 |
C22:6ω3 | 23.1 | 23.5 | 22.1 | 23.7 | 24.9 | 22.5 | 25.4 | 26.1 | 23.91 ± 1.42 |
ΣPUFA 3 | 38.2 | 38.3 | 35.9 | 38.3 | 40.4 | 37.1 | 40.2 | 41.1 | 38.69 ± 1.77 |
ratio ω3/ω6 | 15.61 | 14.96 | 14.61 | 14.96 | 12.93 | 13.27 | 18.14 | 16.13 | 15.08 ± 1.54 |
Fatty Acid | 70A | 70B | 70C | 70D | 70E | 70F | 70G | 70H | Mean ± SD |
---|---|---|---|---|---|---|---|---|---|
C14:0 | 0.4 | 0.4 | 0.4 | 0.5 | 0.5 | 0.6 | 0.6 | n.d. | 0.5 ± 0.09 |
C16:0 | 23.9 | 27.2 | 26.6 | 22.8 | 23.8 | 24.8 | 25.8 | 30.7 | 25.7 ± 2.51 |
C17:0 | 0.3 | 0.7 | 0.7 | 0.5 | 0.6 | 0.5 | 0.5 | 0.9 | 0.59 ± 0.18 |
C18:0 | 8.3 | 13.9 | 13. | 7.4 | 7.5 | 9.2 | 8.6 | 8.5 | 9.55 ± 2.5 |
C20:0 | n.d. | 0.1 | 0.1 | n.d. | 0.1 | 0.1 | 0.1 | n.d. | 0.1 ± 0 |
ΣSFA | 32.9 | 42.3 | 40.8 | 31.2 | 32.5 | 35.2 | 35.6 | 40.0 | 36.31 ± 4.2 |
C16:1 | 2.5 | 1.3 | 1.4 | 2.6 | 2.7 | 2.3 | 2.2 | 4.1 | 2.39 ± 0.87 |
C17:1 | 0.5 | 0.5 | 0.5 | 0.7 | 0.8 | 0.6 | 0.6 | 1.1 | 0.66 ± 0.21 |
C18:1ω9 | 53.7 | 45.1 | 46.3 | 56.8 | 54.4 | 50.2 | 52.1 | 46.2 | 50.6 ± 4.36 |
C20:1 | 0.5 | 0.2 | 0.3 | n.d. | 0.2 | 0.3 | 0.2 | n.d. | 0.28 ± 0.12 |
ΣMUFA | 57.2 | 47.1 | 48.5 | 60.1 | 58.1 | 53.4 | 55.1 | 51.4 | 53.85 ± 4.64 |
C18:2ω6 | 0.6 | 0.7 | 0.7 | 1.5 | 1.4 | 0.9 | 1 | 1.3 | 1.01 ± 0.35 |
C18:3ω3 | 0.2 | 0.2 | 0.2 | n.d. | 0.4 | 0.4 | 0.3 | n.d. | 0.28 ± 0.1 |
C20:2ω6 | n.d. | 0.1 | 0.1 | n.d. | 0.2 | 0.1 | n.d. | n.d. | 0.13 ± 0.05 |
C20:4ω3 | 2.8 | 5.0 | 4.4 | 2.1 | 3.2 | 2.2 | 2.4 | 2.8 | 3.11 ± 1.05 |
C20:5ω3 | 1.6 | 1.4 | 1.4 | 1.3 | 1.0 | 1.7 | 1.8 | 1.8 | 1.50 ± 0.28 |
C22:5ω3 | n.d. | 0.1 | 0.1 | n.d. | n.d. | 0.1 | n.d. | n.d. | 0.1 ± 0 |
C22:6ω3 | 4.7 | 3.1 | 3.80 | 3.8 | 3.2 | 6.0 | 4.8 | 2.7 | 4.01 ± 1.09 |
ΣPUFA | 9.9 | 10.6 | 10.7 | 8.7 | 9.4 | 11.4 | 9.3 | 8.6 | 9.83 ± 1.01 |
ratio ω3/ω6 | 15.5 | 12.25 | 12.38 | 4.8 | 4.88 | 10.4 | 9.3 | 5.62 | 9.4 ± 3.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galluzzo, F.G.; Cumbo, V.; Cammilleri, G.; Calabrese, V.; Pulvirenti, A.; Cicero, N.; Pantano, L.; Mascetti, A.; Lo Cascio, G.; Bacchi, E.; et al. Fatty Acids Composition of Stomach Oil of Scopoli’s Shearwater (Calonectris diomedea) from Linosa’s Colony. Animals 2022, 12, 1069. https://doi.org/10.3390/ani12091069
Galluzzo FG, Cumbo V, Cammilleri G, Calabrese V, Pulvirenti A, Cicero N, Pantano L, Mascetti A, Lo Cascio G, Bacchi E, et al. Fatty Acids Composition of Stomach Oil of Scopoli’s Shearwater (Calonectris diomedea) from Linosa’s Colony. Animals. 2022; 12(9):1069. https://doi.org/10.3390/ani12091069
Chicago/Turabian StyleGalluzzo, Francesco Giuseppe, Valentina Cumbo, Gaetano Cammilleri, Vittorio Calabrese, Andrea Pulvirenti, Nicola Cicero, Licia Pantano, Antonietta Mascetti, Giovanni Lo Cascio, Emanuela Bacchi, and et al. 2022. "Fatty Acids Composition of Stomach Oil of Scopoli’s Shearwater (Calonectris diomedea) from Linosa’s Colony" Animals 12, no. 9: 1069. https://doi.org/10.3390/ani12091069
APA StyleGalluzzo, F. G., Cumbo, V., Cammilleri, G., Calabrese, V., Pulvirenti, A., Cicero, N., Pantano, L., Mascetti, A., Lo Cascio, G., Bacchi, E., Macaluso, A., Vella, A., Seminara, S., & Ferrantelli, V. (2022). Fatty Acids Composition of Stomach Oil of Scopoli’s Shearwater (Calonectris diomedea) from Linosa’s Colony. Animals, 12(9), 1069. https://doi.org/10.3390/ani12091069