Feeding Strategies to Mitigate Enteric Methane Emission from Ruminants in Grassland Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Research on Methane Emission Abatement Strategies
- i.
- Non-experimental: Represented by documents that did not involve original research data collection, for example, reviews, meta-analyses, life cycle assessments, inventory estimations, or methodology description.
- ii.
- In vitro: This category comprised research that evaluated CH4 emissions in batch or semi-continuous in vitro cultures.
- iii.
- Confined studies: Represented by documents that evaluated in vivo CH4 emissions, where ruminants were restricted to confined facilities.
- iv.
- Grazing studies: This category includes research that determined in vivo CH4 emissions under grazing conditions.
3. Methane Emissions in Grassland Systems
3.1. Grazing Management Strategies to Mitigate Methane Emissions from Ruminants
3.2. Supplementation Strategies to Mitigate Methane Emissions from Ruminants in Grasslands Systems
4. Perspectives on Methane Mitigation Strategies in Grasslands Systems
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubeux, J.C.B.; Sollenberger, L.E.; Mathews, B.W.; Scholberg, J.M.; Santos, H.Q. Nutrient cycling in warm-climate grasslands. Crop Sci. 2007, 47, 915–928. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [Green Version]
- Godde, C.M.; Garnett, T.; Thornton, P.K.; Ash, A.J.; Herrero, M. Grazing systems expansion and intensification: Drivers, dynamics, and trade-offs. Glob. Food Secur. 2018, 16, 93–105. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). Livestock and the Environment. Meeting the Challenge; FAO: Rome, Italy, 1999; Available online: http://www.fao.org/docrep/x5304e/x5304e00.htm (accessed on 15 November 2021).
- Weindl, I.; Bodirsky, B.J.; Rolinski, S.; Biewald, A.; Lotze, H.; Müller, C.; Dietrich, J.P.; Humpenöder, F.; Stevanović, M.; Schaphoff, S.; et al. Livestock production and the water challenge of food supply: Implications of food agricultural management and dietary choices. Global Environ. Chang. 2017, 47, 121–132. [Google Scholar] [CrossRef]
- Ramankutty, N.; Mehrabi, Z.; Waha, K.; Jarvis, L.; Kremer, C.; Herrero, M.; Rieseberg, L.H. Trends in global agricultural land use: Implications for environmental health and food security. Annu. Rev. Plant Biol. 2018, 69, 789–815. [Google Scholar] [CrossRef] [Green Version]
- Gerber, P.L.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Migration Opportunities; Food and Agricultural Organizations of the United Nations (FAO): Rome, Italy, 2013. Available online: https://www.fao.org/3/i3437e/i3437e00.htm (accessed on 15 November 2021).
- FAO (Food and Agriculture Organization of the United Nations). Global Livestock Environmental Assessment Model (GLEAM); FAO: Rome, Italy, 2021; Available online: https://www.fao.org/gleam/en (accessed on 10 November 2021).
- Leng, R.A. Quantitative ruminant nutrition—A green science. Aust. J. Agric. Res. 1993, 44, 363–380. [Google Scholar] [CrossRef]
- Guyader, J.; Janzen, H.H.; Kroebel, R.; Beauchemin, K.A. Forage use to improve environmental sustainability of ruminant production. J. Anim. Sci. 2016, 94, 3147–3158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. Mitigation of methane and nitrous oxide from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Eckard, R.J.; Grainger, C.; de Klein, C.A.M. Options for the abatement of methane and nitrous oxide from ruminant production: A review. Liv. Sci. 2010, 130, 47–56. [Google Scholar] [CrossRef]
- Hristov, A.N.; Ott, T.; Tricarico, J.M.; Rotz, A.; Waghorn, G.; Adesonga, A.T.; Dijkstra, J.; Montes, F.; Oh, J.; Kebreab, E.; et al. Mitigation of methane and nitrous oxide from animal operations: III. A review of animal management mitigation options. J. Anim. Sci. 2013, 91, 5095–5113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yañez-Ruiz, D.R.; Bannink, A.; Dijkstra, J.; Kebreab, E.; Morgavi, D.; O’kiely, P.; Reynolds, C.K.; Schwarm, K.J.; Yu, Z.; Hristov, A.N. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—A review. Anim. Feed Sci. Technol. 2016, 216, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.N.; Kebreab, E.; Niu, M.; Oh, J.; Bannink, A.; Bayat, A.R.; Boland, T.M.; Brito, A.F.; Casper, D.P.; Crompton, L.A.; et al. Uncertainties in enteric methane inventories, measurement techniques, and prediction models. J. Dairy Sci. 2018, 101, 6655–6674. [Google Scholar] [CrossRef]
- Hammond, K.; Crompton, L.; Bannink, A.; Dijkstra, J.; Yáñez-Ruiz, D.; O’Kiely, P.; Kebreab, E.; Eugène, M.A.; Yu, Z.; Shingfield, K.J.; et al. Review of current in vivo measurement techniques for quantifying enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 2016, 219, 13–30. [Google Scholar] [CrossRef] [Green Version]
- De La Torre, S.; Royo, L.; Martinez, A.; Chocarro, C.; Vicente, F. The mode of grass supply to dairy cows impacts on fatty acid and antioxidant profile on milk. Foods 2020, 9, 1256. [Google Scholar] [CrossRef]
- Llonch, P.; Troy, S.; Duthie, C.; Somarriba, M.; Rooke, J.; Haskell, M.; Roehe, R.; Turner, S. Changes in feed intake during isolation stress in respiration chambers may impact methane emissions assessment. Anim. Prod. Sci. 2018, 58, 1011–1016. [Google Scholar] [CrossRef] [Green Version]
- Beck, M.; Gregorini, P. Animal design through functional dietary diversity for production landscapes. Front. Sustain. Food Syst. 2021, 5, 546581. [Google Scholar] [CrossRef]
- Palacio, S.; Bergeron, R.; Lachance, S.; Vasseur, E. The effects of providing portable shade at pasture on dairy cow behavior and physiology. J. Dairy Sci. 2015, 98, 6085–6093. [Google Scholar] [CrossRef]
- Sollenberger, L.E.; Burns, J.C. Canopy Characteristics, Ingestive Behavior and Herbage Intake in Cultivated Tropical Grasslands. In Proceedings of the Grasslands International Congress, Sao Paulo, Brazil, 11–21 February 2001; Available online: https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=4128&context=igc (accessed on 15 November 2021).
- Biswas, A.; Jonker, A. Circadian variation in methane emissions by cattle and correlation with level and composition of ryegrass-based pasture eaten. N. Z. J. Anim. Sci. Prod. 2019, 79, 61–64. [Google Scholar]
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Review: Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 2020, 14, s2–s16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacheco, D.; Waghorn, G.; Janssen, P.H. Decreasing methane emissions from ruminants grazing forages: A fit with productive and financial realities? Anim. Prod. Sci. 2014, 54, 1141–1154. [Google Scholar] [CrossRef]
- Dorich, C.D.; Varner, R.K.; Pereira, A.B.D.; Martineau, R.; Soder, K.J.; Brito, A.F. Use of a portable, automated, open-circuit gas quantification system and the sulphur hexafluoride tracer technique for measuring enteric methane emissions in Holstein cow fed ad libitum or restricted. J. Dairy Sci. 2015, 98, 2676–2681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sollenberger, L.E.; Newman, Y.C.; Macoon, B. Pasture Design and Grazing Management. In Forages: The Science of Grasslands Agriculture, 7th ed.; Moore, K., Collins, M., Nelson, C.J., Redfearn, D.D., Eds.; John Wiley & Sons Ltd.: Sussex, UK, 2020; Chapter 44; pp. 803–814. [Google Scholar]
- Hernández, A.; Sollenberger, L.E.; McDonald, D.C.; Ruegsegger, G.J.; Kalmbacher, R.S.; Mislevy, P. Nitrogen fertilization and stocking rate affect stargrass pasture and cattle performance. Crop. Sci. 2004, 44, 1348–1354. [Google Scholar]
- Pinares, C.S.; D’Hour, P.; Jounary, J.P.; Martin, C. Effect of stocking rate on methane and carbon dioxide emissions from grazing cattle. Agric. Ecosyst. Environ. 2007, 121, 30–46. [Google Scholar] [CrossRef]
- Savian, J.V.; Neto, A.B.; David, D.B.; Bremm, C.; Schons, R.M.T.; Moraes, T.C.; Amaral, G.; Gere, J.; McManus, C.; Bayer, C.; et al. Grazing intensity and stocking methods on animal production and methane emissions by grazing sheep: Implications for integrated crop-livestock system. Agric. Ecosyst. Environ. 2014, 190, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Souza, W.; Albuquerque, P.A.; Barro, R.S.; Kunrath, T.R.; Almeida, G.M.; Moraes, T.C.; Bayer, C.; Carvalho, P.C. Mitigation of enteric methane emissions through pasture management in integrated crop-livestock systems: Trade-offs between animal performance and environmental impacts. J. Clean. Prod. 2019, 213, 968–975. [Google Scholar]
- Chiavegato, M.B.; Rowntree, J.E.; Carmichael, D.; Powers, W.J. Enteric methane from lactating beef cows managed with high and low input grazing systems. J. Anim. Sci. 2015, 93, 1365–1375. [Google Scholar] [CrossRef]
- McCaughey, W.P.; Wittenberg, K.; Corrigan, D. Methane production by steers on pastures. Can. J. Anim. Sci. 1997, 77, 519–524. [Google Scholar] [CrossRef]
- Waghorn, G.C.; Jonker, A.; Macdonal, K.A. Measuring methane from grazing dairy cows using Greenfeed. Anim. Prod. Sci. 2016, 56, 252–257. [Google Scholar] [CrossRef]
- Boland, T.M.; Quinlan, C.; Pierce, K.M.; Lynch, M.B.; Kenny, D.A.; Kelly, A.K.; Purcell, P.J. The effect of pasture pregrazing herbage mass on methane emissions, ruminal fermentation, and average daily gain of grazing beef heifers. J. Anim. Sci. 2013, 91, 3867–3874. [Google Scholar] [CrossRef] [PubMed]
- Koscheck, J.F.W.; Romanzini, E.P.; Barbero, R.P.; Delevatti, L.M.; Ferrari, A.C.; Mulliniks, J.T.; Mousquer, C.J.; Berchielli, T.T.; Reis, R.A. How do animal performance and methane emissions vary with forage management intensification and supplementation? Anim. Prod. Sci. 2020, 60, 1201–1209. [Google Scholar] [CrossRef]
- Muñoz, C.; Letelier, P.A.; Ungerfeld, E.M.; Morales, J.M.; Hube, S.; Pérez-Priento, L.A. Effect of pregrazing herbage mass in late spring on enteric methane emissions, dry matter intake, and milk production of dairy cows. J. Dairy Sci. 2016, 99, 7945–7955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, B.F.; Deighton, M.H.; O’Loughlin, B.M.; Galvin, N.; O’Donovan, M.; Lewis, E. The effects of supplementing grazing dairy cows with partial mixed ration on enteric methane emissions and milk production during mid to late lactation. J. Dairy Sci. 2012, 95, 6582–6590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savian, J.V.; Schons, R.M.T.; Marchi, D.E.; Freitas, T.S.; Silva, G.F.; Mezzalira, J.C.; Berndt, A.; Bayer, C.; Carvalho, P.C. Rotatinuous stocking: A grazing management innovation that has high potential to mitigate methane emissions by sheep. J. Clean. Prod. 2018, 213, 968–975. [Google Scholar] [CrossRef]
- Wims, C.M.; Deighton, M.H.; Lewis, E.; O’Loughlin, B.; Delaby, L.; Boland, T.M.; O’Donovan, M. Effect of pregrazing herbage mass on methane production, dry matter intake, and milk production of grazing dairy cows during the mid-season period. J. Dairy Sci. 2010, 93, 4976–4985. [Google Scholar] [CrossRef] [PubMed]
- Boadi, D.A.; Wittenberg, K.M.; McCaughey, W. Effect of grain supplementation of methane production of grazing steers using the sulphur (SF6) tracer gas technique. Can. J. Anim. Sci. 2002, 82, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Pinares, C.S.; Baumont, R.; Martin, C. Methane emissions by Charolais cows grazing a monospecific pasture of timothy at four stages of maturity. Can. J. Anim. Sci. 2003, 82, 151–157. [Google Scholar]
- DeRamus, A.; Clement, T.C.; Giampola, D.D.; Dickison, P.C. Methane emissions of beef cattle on forage: Efficiency of grazing management systems. J. Environ. Qual. 2003, 32, 269–277. [Google Scholar] [CrossRef]
- Amaral, G.A.; David, D.B.; Gere, J.I.; Savian, J.V.; Kohmann, M.M.; Nadin, L.B.; Sánchez, F.; Bayer, C.; Carvalho, P.C. Methane emissions from sheep grazing pearl millet (Pennisetum americanum (L.) Leek) swards fertilized with increasing nitrogen levels. Small Rumin. Res. 2016, 141, 118–123. [Google Scholar] [CrossRef]
- Berça, A.S.; Cardoso, A.D.S.; Longhini, V.Z.; Tedeschi, L.O.; Boddey, R.M.; Berndt, A.; Reis, R.A.; Ruggieri, A.C. Methane production and nitrogen balance of dairy heifers grazing palisade grass cv. Marandu alone or with forage peanut. J. Anim. Sci. 2019, 97, 4625–4634. [Google Scholar] [CrossRef] [PubMed]
- Pontes, L.S.; Barro, R.S.; Savia, J.; Berndt, A.; Moletta, J.L.; Silva, V.P.; da Silva, V.; Bayer, C.; Carvalho, P.C. Performance and methane emissions by beef heifer grazing in temperate pastures and in integrated crop-livestock systems: The effect of shade and nitrogen fertilization. Agric. Ecosyst. Environ. 2018, 253, 90–97. [Google Scholar] [CrossRef]
- Andrade, E.A.; Ribeiro, H.M.N.; Liz, D.M.; Almeida, J.G.R.; Miguel, M.F.; Raupp, G.T.; Ramos, F.R.; Almeida, E.X. Herbage intake, methane emissions and animal performance of steers grazing dwarf elephant grass with or without access to Arachis pintoi pastures. Trop. Grassl. 2014, 2, 4–5. [Google Scholar] [CrossRef] [Green Version]
- Chaves, A.V.; Thompson, L.C.; Iwaasa, A.D.; Scott, S.L.; Olson, M.E.; Benchaar, C.; Veira, D.M.; McAllister, T.A. Effect of pasture type (alfalfa vs grass) on methane and carbon dioxide production by yearling beef heifers. Can. J. Anim. Sci. 2006, 79, 221–226. [Google Scholar] [CrossRef]
- Dini, Y.; Gere, J.; Briano, C.; Manetti, M.; Juliarena, P.; Picasso, V.; Gratton, R.; Astigarraga, L. Methane emissions and milk production of dairy cows under grazing pastures rich in legumes or rich in grasses in Uruguay. Animals 2012, 2, 288–300. [Google Scholar] [CrossRef] [Green Version]
- Enriquez, D.; Gilliland, T.; Deighton, M.H.; O’Donovan, M.; Hennessy, D. Milk production and enteric methane emissions by dairy cows grazing fertilized perennial ryegrass pasture with or without inclusion of white clover. J. Dairy Sci. 2014, 97, 1400–1412. [Google Scholar] [CrossRef]
- McCaughey, W.P.; Wittenberg, K.; Corrigan, D. Impact of pasture type on methane production by lactating beef cows. Can. J. Anim. Sci. 1999, 79, 221–226. [Google Scholar] [CrossRef]
- Wilson, R.L.; Bionaz, M.; MacAdam, J.W.; Beauchemin, K.A.; Naumann, H.D.; Ates, S. Milk production, nitrogen utilization, and methane emissions of dairy cows grazing grass, forb, and legume-based pastures. J. Anim. Sci. 2020, 98, 1–13. [Google Scholar] [CrossRef]
- Andrade, E.A.; Almeida, E.X.; Raupp, G.T.; Miguel, M.F.; de Liz, D.M.; Carvalho, P.C.F.; Bayer, C.; Ribeiro, H.M.N. Herbage intake, methane emissions and animal performance of steers grazing dwarf elephant grass v. dwarf elephant grass and peanut pastures. Animal 2016, 10, 1684–1688. [Google Scholar] [CrossRef]
- Woodward, S.L.; Waghorn, G.C.; Laboyrie, P.G. Condensed tannins in birdsfoot trefoil (Lotus corniculatus) reduce methane emissions from dairy cows. N. Z. Soc. Anim. Sci. Prod. 2004, 64, 160–164. [Google Scholar]
- Frota, M.N.L.; Carneiro, M.S.S.; Pereira, E.S.; Berndt, A.; Frighetto, R.T.S.; Sakamoto, L.S.; Moreira, M.A.; Alves, J.A.; Côrtes, G.M. Enteric methane in grazing beef cattle under full sun, and in a silvopastoral system in the Amazon. Pesq. Agropec. Bras. 2017, 52, 1099–1108. [Google Scholar] [CrossRef] [Green Version]
- Pontes, L.S.; Barro, R.S.; Camargo, E.F.; Silva, V.P.; Cezimbra, I.M.; Berndt, A.; Bayer, C.; Carvalho, P.C. Methane emissions from ruminants in integrated crop-livestock systems. Trop. Grassl. 2014, 2, 124–126. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, C.A.; Barry, T.N.; Marriner, A.; Lopez, N.; McWilliam, A.L.; Lassey, K.R.; Clark, H. Effect of grazing willow fodder blocks upon methane production and blood composition in young sheep. Anim. Feed Sci. Technol. 2010, 155, 33–43. [Google Scholar] [CrossRef]
- Sollenberger, L.E.; Vanzant, E. Interrelationship among forage nutritive value and quantity and individual animal performance. Crop Sci. 2011, 51, 420–432. [Google Scholar] [CrossRef]
- Pinares, C.S.; Ulyatt, M.J.; Lassey, K.R.; Barry, T.N.; Holmes, C.W. Rumen function and digestion parameters associated with differences between sheep in methane emissions fed chaffed Lucerne hay. J. Agric. Sci. 2003, 140, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, J.N.; Conrad, B.E.; Holt, E.C.; Wu, H. Prediction of animal performance on Bermudagrass pasture from available forage. Agron. J. 1984, 76, 577–580. [Google Scholar] [CrossRef]
- Wilson, J.R.; Akin, D.E.; McLeod, M.N.; Minson, D.J. Particle size reduction of the leaves of a tropical and temperate grass by cattle: II, Relation of anatomical structure to the process of leaf breakdown through chewing and digestion. Grass Forage Sci. 1989, 44, 65–75. [Google Scholar] [CrossRef]
- Moe, P.W.; Tyrrell, H.F. Methane production in dairy cows. J. Dairy Sci. 1979, 62, 1583–1586. [Google Scholar] [CrossRef]
- Sollenberger, L.E.; Newman, Y.C. Grazing Management. In Forages: The Science of Grassland Agriculture; Barnes, R.F., Ed.; Blackwell Publishing: Ames, IA, USA, 2007; Chapter 42; pp. 651–659. [Google Scholar]
- Chapman, D.F. Using ecophysiology to improve farm efficiency: Application in temperate dairy grazing systems. Agriculture 2016, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Sierra, A.; Moreno, Y.; Mancipe, E.; Avellaneda, Y.; Vargas, J. Efecto de la fertilización nitrogenada y fosfatada de raigrases perennes y tréboles rojos. Agronom. Mesoam. 2019, 30, 841–854. [Google Scholar] [CrossRef] [Green Version]
- Cooke, R.F.; Caigle, C.L.; Moriel, P.; Smith, S.B.; Tedeschi, L.O.; Vendramini, J.M.B. Cattle adapted to tropical and subtropical environments: Social, nutritional, and carcass quality considerations. J. Anim. Sci. 2020, 98, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Coleman, S.; Moor, J.E.; Wilson, J.R. Quality and Utilization. In Warm-Season (C4) Grasses; Moser, L.E., Burson, B.L., Sollenberger, L.E., Eds.; American Society of Agronomy, Inc.: Madison, WN, USA; Crop Science Society of America, Inc.: Madison, WN, USA; Social Science Society of America, Inc.: Madison, WN, USA, 2004; p. 1171. [Google Scholar]
- Lee, J.M.; Woodward, S.L.; Waghorn, G.C.; Clark, D.A. Methane emissions by dairy cows fed increasing proportions of white clover (Trifolium repens) in pasture. N. Z. Grassl. Assoc. 2004, 66, 151–155. [Google Scholar] [CrossRef]
- Aboagye, I.A.; Beauchemin, K.A. Potential of molecular weight and structure of tannins to reduce methane emissions from ruminants: A review. Animals 2019, 9, 856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waghorn, G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production—Progress and challenges. Anim. Feed Sci. Technol. 2008, 147, 116–139. [Google Scholar] [CrossRef]
- Tavendale, M.H.; Meagher, L.P.; Pacheco, D.; Walker, N.; Attwood, G.T.; Sivakumaran, S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 2005, 123–124, 403–419. [Google Scholar] [CrossRef]
- Dubeux, J.C.B.; Muir, J.P.; Apolinário, V.X.O.; Mair, P.K.R.; Lira, M.A.; Sollenberger, L.E. Tree legumes: An underexploited resource in warm-climate silvopastures. Brazil. J. Anim. Sci. 2017, 46, 689–703. [Google Scholar]
- Jose, S.; Dollinger, J. Silvopasture: A sustainable livestock production system. Agroforest. Syst. 2019, 93, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gommers, C.M.M.; Visses, E.J.W.; St Onge, K.R.; Voesenek, L.A.C.J.; Pierik, R. Shade tolerance: When growing tall is not an option. Trends Plant Sci. 2013, 18, 65–71. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 2010, 71, 1198–1222. [Google Scholar] [CrossRef]
- Garg, M.R.; Sherasia, P.L.; Bhanderi, B.M.; Phondba, B.T.; Shelke, S.K.; Makkar, H.P.S. Effects of feeding nutritionally balanced rations on animal productivity, feed conversion efficiency, feed nitrogen use efficiency, rumen microbial protein supply, parasitic load, immunity and enteric methane emissions of milking animals under field conditions. Anim. Feed Sci. Technol. 2013, 179, 24–35. [Google Scholar]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminant: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Janssen, P.H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 2010, 160, 1–22. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Limits to dihydrogen incorporation into electron sinks alternative to methanogenesis in ruminal fermentation. Front. Microbiol. 2015, 6, 1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Nevel, C.J.; Demeyer, D.I. Control of rumen methanogenesis. Environ. Monit. Assess. 1996, 42, 73–97. [Google Scholar] [CrossRef] [PubMed]
- Lovett, D.K.; Stack, L.J.; Lovell, S.; Callan, J.; Flynn, B.; Hawkins, M.; O’Mara, F.P. Manipulating enteric methane emissions and animal performance of late-lactation dairy cows through concentrate supplementation at pasture. J. Dairy Sci. 2005, 88, 2836–2842. [Google Scholar] [CrossRef]
- Muñoz, C.; Hube, S.; Morales, J.M.; Yan, T.; Ungerfeld, E. Effects of concentrate supplementation on enteric methane emissions and milk production of grazing dairy cows. Liv. Sci. 2015, 175, 37–46. [Google Scholar] [CrossRef]
- Muñoz, C.; Herrera, D.; Hube, S.; Morales, J.; Ungerfeld, E.M. Effect of dietary concentrate supplementation on enteric methane emissions and performance of lactating dairy cows. Chil. J. Agric. Res. 2018, 78, 429–437. [Google Scholar] [CrossRef]
- Moscoso, J.E.; Franco, F.; San Martín, F.; Olazábal, J.; Chino, L.; Pinares, C. Producción de metano en vacunos al pastoreo suplementados con ensilado, concentrado y taninos en el altiplano peruano en época seca. Rev. Investig. Vet. Perú 2017, 28, 822–833. [Google Scholar] [CrossRef] [Green Version]
- Jiao, H.O.; Dale, A.J.; Carson, A.F.; Murray, S.; Gordon, A.W.; Ferris, C.P. Effect of concentrate feed level on methane emissions from grazing dairy cows. J. Dairy Sci. 2014, 97, 7043–7053. [Google Scholar] [CrossRef]
- Van Wyngaard, J.D.V.; Meeske, R.; Erasmus, L.J. Effect of concentrate feeding level on methane emissions, production performance and rumen fermentation of Jersey cows grazing ryegrass pasture during spring. Anim. Feed Sci. Technol. 2018, 241, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Neto, A.J.; Messana, J.D.; Ribeiro, A.F.; Vito, E.S.; Rossi, L.G.; Berchielli, T.T. Effect of starch-based supplementation level with oil on intake, performance, and methane emissions of growing Nellore bulls on pasture. J. Anim. Sci. 2015, 93, 2275–2284. [Google Scholar] [CrossRef] [Green Version]
- Neto, A.J.; Messana, J.D.; Rossi, L.G.; Carvalho, I.P.C.; Berchielli, T.T. Methane emissions from Nellore bulls on pasture-fed two levels of starch-based supplement with or without a source of oil. Anim. Prod. Sci. 2019, 59, 654–663. [Google Scholar] [CrossRef]
- Carvalho, I.P.C.; Fiorentini, G.; Berndt, A.; Castagnino, P.S.; Messana, J.D.; Frighetto, R.T.S.; Reis, R.; Berchielli, T.T. Performance and methane emissions of Nellore steers grazing tropical pasture supplemented with lipid sources. R. Bras. Zootec. 2016, 45, 760–767. [Google Scholar] [CrossRef] [Green Version]
- Pinares, C.S.; Franco, F.E.; Molano, G.; Kjestrup, H.; Sandoval, E.; MacLean, S.; Battistotti, M.; Koolaard, J.; Laubach, J. Feed intake and methane emissions from cattle grazing pasture sprayed with canola oil. Liv. Sci. 2016, 184, 7–12. [Google Scholar] [CrossRef]
- Silva, B.C.; Lopes, F.C.F.; Pereira, L.G.R.; Tomich, T.R.; Morenz, M.J.F.; Martins, C.E.; Gomide, C.A.M.; Paciullo, D.S.C.; Mauricio, R.M.; Chaves, A.V. Effect of sunflower oil supplementation on methane emissions of dairy cows grazing Urochloa brizantha cv. marandu. Anim. Prod. Sci. 2017, 57, 1431–1436. [Google Scholar] [CrossRef]
- Storlien, T.M.; Prestløkken, E.; Beauchemin, K.A.; McAllister, T.A.; Iwaasa, A.; Harstad, O.M. Supplementation with crushed rapeseed causes reduction of methane emissions from lactating dairy cows on pasture. Anim. Prod. Sci. 2017, 57, 81–89. [Google Scholar] [CrossRef]
- Granja, Y.T.; Fernandes, R.M.; Araujo, R.C.; Kishi, L.T.; Berchielli, T.T.; Resende, F.D.; Berndt, A.; Siqueira, G. Long-term encapsulated nitrate supplementation modulates rumen microbial diversity and rumen fermentation to reduce methane emissions in grazing steers. Front. Microbiol. 2019, 10, 614. [Google Scholar] [CrossRef]
- Van Wyngaard, J.D.V.; Meeske, R.; Erasmus, L.J. Effect of dietary nitrate on enteric methane emissions, production performance and rumen fermentation of dairy cows grazing Kikuyu-dominant pasture during summer. Anim. Feed Sci. Technol. 2018, 244, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Van Wyngaard, J.D.V.; Meeske, R.; Erasmus, L.J. Effect of dietary nitrate on enteric methane emissions, production performance and rumen fermentation of dairy cows grazing ryegrass pasture during spring. Anim. Feed Sci. Technol. 2019, 252, 64–73. [Google Scholar] [CrossRef]
- Erickson, P.S.; Murphy, M.W.; Clark, J.H. Supplementation of dairy cow diet with calcium salts of long-chain fatty acids and nicotinic acid in early lactation. J. Dairy Sci. 1992, 75, 1078–1089. [Google Scholar] [CrossRef]
- Grainger, C.; Beauchemin, K.A. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim. Feed Sci. Technol. 2011, 166–167, 308–320. [Google Scholar] [CrossRef]
- Machmüller, A. Medium-chain fatty acids and their potential to reduce methanogenesis in domestic ruminants. Agric. Ecosyst. Environ. 2006, 112, 107–114. [Google Scholar] [CrossRef]
- Zeitz, J.O.; Bucher, S.; Zhou, X.; Meile, L.; Kreuzer, M.; Soliva, C.R. Inhibitory effect of saturated fatty acids on methane production by methanogenic Archaea. J. Anim. Feed Sci. 2013, 22, 44–49. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H.G.; Baek, Y.C.; Lee, S.; Seo, J. The effects of dietary supplementation with 3-nitrooxypropanol on enteric methane emissions, rumen fermentation, and production performance in ruminants: A meta-analysis. J. Anim. Sci. Technol. 2020, 62, 31–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinley, R.D.; Martinez, G.; Matthews, M.K.; de Nys, R.; Magnusson, M.; Tomkins, N. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 2020, 259, 120836. [Google Scholar] [CrossRef]
Grazing or Pasture Management | CH4 g/d | CH4 g/kg DM or OM | CH4 g/kg Product | CH4 %GEI 1 | Source | ||||
---|---|---|---|---|---|---|---|---|---|
Effect | NE 2 | Effect | NE 2 | Effect | NE 2 | Effect | NE 2 | ||
Increasing Stocking Rate | Increase | 0 | Increase | 0 | Increase | 0 | Increase | 0 | [30,31,32,33,34,35] |
No effect | 5 | No effect | 4 | No effect | 3 | No effect | 6 | ||
Decrease | 5 | Decrease | 3 | Decrease | 0 | Decrease | 1 | ||
Decreasing pre-grazing herbage mass | Increase | 2 | Increase | 1 | Increase | 1 | Increase | 1 | [36,37,38,39,40,41] |
No effect | 4 | No effect | 3 | No effect | 2 | No effect | 2 | ||
Decrease | 2 | Decrease | 3 | Decrease | 5 | Decrease | 3 | ||
Decreased forage maturity | Increase | 0 | Increase = | 0 | NR 3 | NR 3 | Increase | 0 | [42,43] |
No effect | 1 | No effect | 1 | No effect | 0 | ||||
Decrease | 1 | Decrease | 1 | Decrease | 2 | ||||
Rotational systems | Increase | 0 | Increase | 0 | Increase | 2 | Increase | 0 | [31,34,44] |
No effect | 5 | No effect | 1 | No effect | 1 | No effect | 2 | ||
Decrease | 2 | Decrease | 1 | Decrease | 0 | Decrease | 1 | ||
N fertilization | Increase | 0 | Increase | 0 | Increase | 0 | Increase | 0 | [45,46,47] |
No effect | 3 | No effect | 1 | No effect | 2 | No effect | 1 | ||
Decrease | 1 | Decrease | 0 | Decrease | 0 | Decrease | 0 | ||
Inclusion of non-tannin-containing legumes into the pastures | Increase | 1 | Increase | 1 | Increase | 0 | Increase | 1 | [46,48,49,50,51,52,53] |
No effect | 4 | No effect | 4 | No effect | 4 | No effect | 2 | ||
Decrease | 1 | Decrease | 1 | Decrease | 0 | Decrease | 1 | ||
Inclusion of tannin-containing legumes into the pastures | Increase | 1 | Increase | 0 | Increase | 0 | Increase | 0 | [54,55] |
No effect | 1 | No effect | 1 | No effect | 1 | No effect | 0 | ||
Decrease | 0 | Decrease | 1 | Decrease | 1 | Decrease | 1 | ||
Silvopastoral systems | Increase | 0 | Increase | 0 | Increase | 0 | Increase | 0 | [47,56,57,58] |
No effect | 6 | No effect | 2 | No effect | 2 | No effect | 2 | ||
Decrease | 0 | Decrease | 0 | Decrease | 0 | Decrease | 0 |
Supplementation Strategy | CH4 g/d | CH4 g/kg DM or OM | CH4 g/kg Product | CH4 %GEI 1 | Source | ||||
---|---|---|---|---|---|---|---|---|---|
Effect | NE 2 | Effect | NE 2 | Effect | NE 2 | Effect | NE 2 | ||
Concentrate inclusion | Increase | 5 | Increase | 0 | Increase | 0 | Increase | 0 | [37,42,44,82,83,84,85,86,87,88,89] |
Equal | 8 | Equal | 9 | Equal | 7 | Equal | 8 | ||
Decrease | 2 | Decrease | 3 | Decrease | 2 | Decrease | 3 | ||
Lipid supplementation | Increase | 0 | Increase | 0 | Increase | 0 | Increase | 0 | [90,91,92,93] |
Equal | 4 | Equal | 3 | Equal | 2 | Equal | 3 | ||
Decrease | 5 | Decrease | 4 | Decrease | 3 | Decrease | 2 | ||
Nitrate supplementation | Increase | 0 | Increase | 0 | Increase | 0 | Increase | 0 | [94,95,96] |
Equal | 3 | Equal | 3 | Equal | 2 | Equal | 2 | ||
Decrease | 0 | Decrease | 0 | Decrease | 0 | Decrease | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas, J.; Ungerfeld, E.; Muñoz, C.; DiLorenzo, N. Feeding Strategies to Mitigate Enteric Methane Emission from Ruminants in Grassland Systems. Animals 2022, 12, 1132. https://doi.org/10.3390/ani12091132
Vargas J, Ungerfeld E, Muñoz C, DiLorenzo N. Feeding Strategies to Mitigate Enteric Methane Emission from Ruminants in Grassland Systems. Animals. 2022; 12(9):1132. https://doi.org/10.3390/ani12091132
Chicago/Turabian StyleVargas, Juan, Emilio Ungerfeld, Camila Muñoz, and Nicolas DiLorenzo. 2022. "Feeding Strategies to Mitigate Enteric Methane Emission from Ruminants in Grassland Systems" Animals 12, no. 9: 1132. https://doi.org/10.3390/ani12091132
APA StyleVargas, J., Ungerfeld, E., Muñoz, C., & DiLorenzo, N. (2022). Feeding Strategies to Mitigate Enteric Methane Emission from Ruminants in Grassland Systems. Animals, 12(9), 1132. https://doi.org/10.3390/ani12091132