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Simple Summary: LPS is one of the main virulence factors of Gram-negative bacteria. In the breeding
process of geese, due to the influence of environmental factors, harmful bacteria easily breed in the
water body, resulting in an increase in the concentration of LPS in the goose. The liver has an important
function of clearing LPS, but excess LPS can induce liver damage, resulting in a reduced production
performance for the goose. In our study, we found that LPS induces inflammatory damage in the
liver. Further, through transcriptome sequencing analysis, we screened 727 differentially expressed
genes for LPS-induced liver injury, and we performed enrichment analysis. The results showed that
LPS-induced liver injury in geese may be the result of the joint action of Toll-like receptor, MAPK,
NOD-like receptor, FoxO, and PPAR signaling pathway. Among them, the TLR7-mediated MAPK
signaling pathway plays a major role.

Abstract: Lipopolysaccharide (LPS) is one of the main virulence factors of Gram-negative bacteria. In
the process of waterfowl breeding, an inflammatory reaction due to LPS infection is easily produced,
which leads to a decline in waterfowl performance. The liver plays a vital role in the immune
response and the removal of toxic components. Therefore, it is necessary to study the mechanism of
liver injury induced by LPS in goose. In this study, a total of 100 1-day-old goslings were randomly
divided into a control group and LPS group after 3 days of pre-feeding. On days 21, 23, and 25 of
the formal experiment, the control group was intraperitoneally injected with 0.5 mL normal saline,
and the LPS group was intraperitoneally injected with LPS 2 mg/(kg body weight) once a day. On
day 25 of the experiment, liver samples were collected 3 h after the injection of saline and LPS. The
results of histopathology and biochemical indexes showed that the livers of the LPS group had liver
morphological structure destruction and inflammatory cell infiltration, and the levels of ALT and
AST were increased. Next, RNA sequencing analysis was used to determine the abundances and
characteristics of the transcripts, as well as the associated somatic mutations and alternative splicing.
We screened 727 differentially expressed genes (DEGs) with p < 0.05 and |log2(Fold Change)| ≥ 1,
as the thresholds; GO and KEGG enrichment analysis showed that LPS-induced liver injury may be
involved in the Toll-like receptor signaling pathway, MAPK signaling pathway, NOD-like receptor
signaling pathway, FoxO, and PPAR signaling pathway. Finally, we intersected the genes enriched in
the key pathway of LPS-induced liver injury with the top 50 key genes in protein–protein interaction
networks to obtain 28 more critical genes. Among them, 17 genes were enriched in Toll-like signaling
pathway and MAPK signaling pathway. Therefore, these results suggest that LPS-induced liver injury
in geese may be the result of the joint action of Toll-like receptor, MAPK, NOD-like receptor, FoxO,
and PPAR signaling pathway. Among them, the TLR7-mediated MAPK signaling pathway plays a
major role.
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1. Introduction

In 2021, the world’s meat goose production was about 660 million geese, among
which Asia accounts for 96%. China is the central region of goose raising, and it is also the
world’s largest meat goose production country [1]. Magang goose enjoys a high reputation
in Guangdong Province for its excellent growth performance and meat quality, and its
breeding scale is the largest, accounting for about 80% of the total number of geese raised
in the province [2]. In the process of goose breeding, due to the influence of environmental
factors, such as temperature and breeding scale, more harmful bacteria easily breed in
water, which leads to an increase in lipopolysaccharide (LPS) concentration in goose
blood, reducing the reproductive performance of geese and the quality of the goslings [3].
Gram-negative bacteria produce the toxic substance LPS, which can seriously damage
the normal physiological activities of mammals and birds, significantly reduce the feed
intake, body weight, daily egg production, and egg weights of laying hens, and reduce
body immunity and even lead to the death of the geese or goose embryos [4–6]. LPS is a
powerful activator of innate immune responses. After LPS enters the body, it stimulates an
innate immune response, inducing cells to produce and release a series of inflammatory
mediators, resulting in the rapid spread of toxicity in the body and accelerating the process
of inflammation [7,8].

Due to its anatomical location, the liver is constantly exposed to a variety of antigens
from the gut, including bacteria and/or their toxic products, such as LPS [9]. Therefore, the
liver not only plays a crucial role in metabolizing immune responses, fighting bacterial/viral
infections, and removing toxic components, but it also has a variety of functions, such as
synthesis, storage, decomposition, and excretion, and regulating the balance of the body’s
internal environment [10,11]. Moreover, different cell groups in the liver can be involved
in adjusting the balance between innate immunity and adaptive immunity, which is an
important natural barrier for the body to defend against aggression [12,13]. Immune cells
in the liver can eliminate antigens from the gut via powerful phagocytosis and the secretion
of a variety of cytokines and chemokines, and inactivate antigens in the presence of bacteria
or their metabolites to avoid the imbalance of innate immunity and adaptive immunity
caused by a large number of antigenic substances [9]. Increased LPS levels in the liver
stimulate hepatic macrophages, leading to the release of inflammatory factors, such as
interleukin-1, interleukin-6, and tumor necrosis factor-α, leading to liver inflammation
and liver injury. [14,15]. In patients with acute liver failure, persistent infection also
leads to a decrease in the liver’s ability to clear LPS, a 2- to 7-fold increase in the release
of inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and
interleukin 6 (IL6), and an increase in circulating aminotransferases, thus aggravating
liver function injury [16]. In addition, LPS activates macrophages to produce TNF-α and
other potential cytotoxic pro-inflammatory mediators, it can increase the neurological
complications caused by liver disease, and it may be involved in the pathogenesis of
hepatic encephalopathy [17,18]. LPS-induced liver injury will further lead to a decline
in all aspects of goose production performance. However, the underlying mechanism of
LPS-induced liver injury in geese remains poorly understood.

In this study, 100 Magang geese were randomly divided into a control group and
an LPS group. After different treatments, the livers of the two groups of Magang geese
were examined for biochemical indicators, histopathology, and RNA sequencing (RNA-seq)
analysis to grasp the effects of LPS on goose livers and the potential mechanisms, which
provide a new theoretical basis for the prevention and treatment of LPS-induced liver
in-jury in goose.

2. Materials and Methods
2.1. Ethics Statement

The experiments involved in this study are in full compliance with the relevant
specifications formulated by the Ministry of Agriculture of China. For all geese (Anser
cygnoides), the care, slaughter, and experimental procedures were evaluated and approved
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by the Animal Ethics Committee of Zhongkai University of Agriculture and Engineering
(Approval code: NO. 202112-01).

2.2. Animals and Sample Preparation

One hundred 1-day-old Magang geese, half of them male and half of them female,
were purchased from Qingyuan Shixing Biotechnology Co., LTD (Qingyuan, China). The
goslings were fed freely (including regular feed and vegetables) and water from 1 day of
age. The daily light environment is 12/12 h light/dark cycle. After 3 days of prefeeding,
the geese were randomly divided into two groups, with 5 replicates per group and 10 geese
per replicate. There was no significant difference in body weight between each replicate.
On days 21, 23, and 25 of the formal experiment, the control group was intraperitoneally
injected with 0.5 mL normal saline, and the LPS group was intraperitoneally injected with
LPS (Sigma, St. Louis, MO, USA) (2 mg/kg body weight) once a day. On day 25 of the
experiment, 3 h after injection of saline and LPS, one goose was randomly selected from
each replicate in two groups for carbon dioxide anesthesia and painless death for liver
collection (n = 5). All geese were fasted for 12 h before sampling. The obtained liver samples
were partially snap-frozen in liquid nitrogen and stored in a refrigerator at −80 ◦C, and
partially stored in 4% paraformaldehyde (PFA, BL539A, Biosharp, Guangzhou, China).

2.3. Histopathological Examination of the Liver

The livers of the geese were fixed in 4% paraformaldehyde for 3 days, then the livers
were dehydrated, embedded in paraffin, and cut into 5 µm before hematoxylin and eosin
(H.E.) staining (n = 3). Finally, the changes in liver structure and cellular substructure were
observed and photographed using a light microscope (OLYMPUS, Tokyo, Japan).

2.4. Liver Biochemical Index Detection

The liver sample was weighed, and pre-cooled normal saline was added according
to the ratio of weight (g): volume (mL) = 1:9 (n = 5). The liver was then fully ground
with a sample breaker and centrifuged at 3000 rpm for 10 min to collect the supernatant.
Subsequently, the levels of alanine transaminase (ALT, Nanjing Jiancheng Corp., Nanjing,
China) and aspartate aminotransferase (AST, Nanjing Jiancheng Corp., Nanjing, China)
were measured using the corresponding kits. The results were statistically analyzed and
mapped using GraphPad Prism 7.00 software (Prism, San Diego, CA, USA). The differences
between groups were analyzed using Student’s t-tests, and the values are expressed as
means ± standard deviation (SD). * indicated p < 0.05, and ** indicated p < 0.01.

2.5. RNA Extraction, Library Construction, and Sequencing

In order to explore the mechanism of LPS-induced liver injury, we constructed six
cDNA libraries (three biological replicates in each control group and LPS group). First, total
RNA was extracted, isolated, and purified with Trizol reagent (Invitrogen, Carlsbad, CA,
USA). A NanoDrop ND1000 (NanoDrop, Wilmington, DE, USA) and NanoDrop ND1000
(NanoDrop, Wilmington, DE, USA) were used to conduct quality control on the amount and
purity of total RNA, and the integrity of the RNA was tested. We selected total RNA with a
concentration > 50 ng/µL and a RIN value > 7.0, OD260/280 > 1.8, detected via agarose
gel electrophoresis integrity, and then we purified mRNA from the total RNA (5 ug) using
Dynabeads Oligo (DT) (Thermo Fisher, San Jose, CA, USA). Two rounds of purification
were followed by fragmentation using the Magnesium RNA Fragmentation Module (NEB,
CAT.E6150, Ipswich, MA, USA) at high temperature. The RNA fragments were then reverse
transcribed using SuperScript™ II Reverse Transcriptase (Invitrogen, Cat. Carlsbad, CA,
USA) to generate cDNA. Then, we used the synthesized U-labeled second-stranded DNAs
with E. coli DNA polymerase I (NEB, the m0209, Ipswich, MA, USA), RNase H (NEB,
Cat.m0297, Ipswich, MA, USA), and dUTP solution (Thermo Fisher, CAT.R0133, San Jose,
CA, USA) to form a library with a fragment size of 300 bp ± 50 bp. Finally, these cDNAs
were sent to LC-Bio Biotechnology, Inc. Six gene libraries were obtained via double-ended



Animals 2022, 13, 127 4 of 16

sequencing (sequencing mode PE150) using Illumina Novaseq™ 6000 (LC Bio Technology
CO., Ltd. Hangzhou, China).

2.6. Sequencing Analysis

After sequencing, the raw data were filtered using Cutadapt (https://cutadapt.readthedocs.
io/en/stable/, version:cutadapt-1.9, accessed on 6 May 2022) to obtain clean readings with
the removal of the adapters, polyA and polyG, more than 5% of unknown nucleotides (N),
and more than 20% of low-quality (Q-value ≤ 20) bases [19]. Then, FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/, 0.11.9, accessed on 11 May 2022) was used to
verify and to obtain high-quality cleaning data (including Q20, Q30, and the GC contents of clean
data) [20]. The high-quality cleaning data were mapped to the Anas cygnoides genome sequence
(https://www.ncbi.nlm.nih.gov/genome/?term=Anser+cygnoides, accessed on 12 May 2022),
and also based on the Anas cygnoides genome, using the HISAT2 (https://daehwankimlab.
github.io/hisat2/, version:hisat2-2.0.4, accessed on 25 May 2022) package map with the Anas
cygnoides genome [21].

2.7. Analysis of SNP/InDel and the Prediction of Alternative Splices (AS)

According to the HISAT2 comparison results between reads and the Ac genomic
sequences, Samtools (0.1.19) was used to call the variants of transcripts, and ANNOVAR
was used to annotate single nucleotide variants (SNVs) and insertion–deletion (INDEL)
and to analyze the functions, genomic loci, and variant types of SNVs [22,23]. In addition,
we used the comparison results to identify alternative splicing events via rMATS (version
4.1.1) (http://rnaseq-mats.sourceforge.net, accessed on 28 May 2022) and analyzed the
differences between samples. We identified AS events with a false discovery rate (FDR) of
<0.05 in a comparison as significant AS events. The categories of alternative splicing are SE
(skip exon), A3SS (substitute for 3′ splicing site), A5SS (substitute for 5′ splicing site), MXE
(mutually exclusive exon), and RI (retain intron).

2.8. Analysis of Differentially Expressed Genes

All transcriptomes from all samples were merged to reconstruct a comprehensive
transcriptome using StringTie (http://ccb.jhu.edu/software/stringtie/, version:stringtie-
1.3.4d, accessed on 2 June 2022) and gffcompare software (http://ccb.jhu.edu/software/
stringtie/gffcompare.shtml, version:gffcompare-0.9.8, accessed on 2 June 2022) [21,24].
The expression levels of all transcripts were then estimated using StringTie and ballgown
(http://www.bioconductor.org/packages/release/bioc/html/ballgown.html, accessed on
2 June 2022), and the mRNA expression levels were estimated by calculating the FPKM
(fragment per kilobase of transcript per million mapped reads) value. DESeq2 software
was used to analyze the gene differential expression between the control group and LPS
group; p < 0.05, fold change (FC) > 2 or FC < 0.5 were considered as differentially expressed
genes (DEGs) [25].

2.9. GO Enrichment and KEGG Pathway Enrichment Analysis

DEGs performed Gene Ontology (GO) and KEGG functional enrichment analysis using
the Goseq R software package and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis using the KOBAS online tool (http://kobas.cbi.pku.edu.cn/genelist/,
accessed on 13 July 2022), respectively. A value of p < 0.05 represented a significant
difference. Finally, we visualized the enrichment analysis results of GO (top 13 biological
processes, 6 cellular components, and 5 molecular functions) and KEGG (top 25), based
on the p-values. GO enrichment analysis circle plot is plotted by the online site ChiPlot
(https://www.chiplot.online/, accessed on 13 July 2022). The outermost layer of the GO
enrichment analysis circle plot represents the enriched GO ID. The second layer represents
the number of background genes in the pathway, and the depth of the color represents the
size of the p value. The third layer represents the Rich factor, with red representing the
biological process, light green representing the cellular component, and earthier yellow

https://cutadapt.readthedocs.io/en/stable/
https://cutadapt.readthedocs.io/en/stable/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.ncbi.nlm.nih.gov/genome/?term=Anser+cygnoides
https://daehwankimlab.github.io/hisat2/
https://daehwankimlab.github.io/hisat2/
http://rnaseq-mats.sourceforge.net
http://ccb.jhu.edu/software/stringtie/
http://ccb.jhu.edu/software/stringtie/gffcompare.shtml
http://ccb.jhu.edu/software/stringtie/gffcompare.shtml
http://www.bioconductor.org/packages/release/bioc/html/ballgown.html
http://kobas.cbi.pku.edu.cn/genelist/
https://www.chiplot.online/
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representing the molecular function. The KEGG pathways plot was created using the R
package ggplot2 (https://ggplot2.tidyverse.org, accessed on 14 July 2022).

2.10. Construction of a Gene Network

We selected significant KEGG pathways related to LPS-induced liver injury, including
the cytokine–cytokine receptor interaction, Toll-like receptor signaling pathway, NOD-like
receptor signaling pathway, MAPK signaling pathway, FoxO signaling pathway, PPAR
signaling pathway, p53 signaling pathway and Apoptosis. Then, the genes enriched
in the pathways were imported into the String database (V 11.5) [26]. The minimum
comprehensive score of the key gene network was set as 0.4, and the nodes interrupted
in the network were hidden. The obtained analysis was further imported into Cytoscape
software (V 3.9.1) for a better visualization and analysis of the gene networks [27]. In
this gene network, each node represents a biomolecule, the edges represent interactions
between nodes, and the sizes of the nodes are adjusted according to the number of edges
linked to other genes (node degree): the larger the node degree, the larger the node.

2.11. RNA-seq Validation via qRT-PCR

To verify the reliability of RNA-seq results, 10 representative genes of the Toll-like
receptor signaling pathway and MAPK signaling pathway were selected for qRT-PCR
(n = 3). RNA with an A260/280 ratio of between 1.8 and 2.1 and an A260/230 ratio of
>2.0 was reverse transcribed to synthesize cDNA using the TaKaRa reverse transcription
kit (RR036A, TaKaRa, Beijing, China). Then, the SYBR Premix Ex TaqTM ii (TliRNaseH
Plus) kit was used for real-time fluorescence quantification using an ABI QuantStudio7 Q7
real-time PCR instrument. ACTB was used as the reference gene, and the primer sequences
are shown in Table S1. Each reaction mixture contained 5 µL PowerllP SYBR Green Master
Mix (2×), 0.5 µL forward primers, 0.5 µL reverse primers, 0.5 µL cDNA, and 3.5 µL ddH2O.
The reaction process of qRT-PCR was followed by 40 cycles of 50 ◦C for 2 min, 95 ◦C for
2 min, then 95 ◦C for 15 s and 55 ◦C for 1 min. The relative mRNA expression levels of each
gene were analyzed using the 2−∆∆CT method, and the results were statistically analyzed
and mapped using GraphPad Prism 7.00 software (Prism, San Diego, CA, USA).

3. Results
3.1. Effect of LPS on the Liver Histopathology of Magang Geese

The histological observation in Figure 1 shows that the livers of the control group
were normal, with intact lobules, neatly arranged liver cords, and clear nucleoli. In the
LPS group, the liver morphology structures were destroyed, hepatocyte swelling was
obvious, cytoplasmic content was absent, and liver cord structures were disordered, the
hepatic sinusoid structures could not be clearly observed, and many inflammatory cells
were infiltrated. Comparing the histological observation of the two groups, we found that
LPS significantly induced the destruction of liver morphology and structure and led to
liver inflammation.
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3.2. Effects of LPS on the Liver Biochemical Indices of Goose

In two groups, the levels of ALT and AST in the livers of geese were measured, and the
results are shown in Figure 2. The levels of AST in the livers of LPS-induced goslings were
significantly higher than those of the control group (p < 0.01), while the levels of ALT were
not significantly different but showed a tendency to increase under the induction of LPS.
ALT/AST is also an important index for evaluating liver function. LPS-induced ALT/AST
in gosling livers were significantly lower than those in the control group (p < 0.01).
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3.3. Overview of RNA Sequencing in Magang Goose Livers

In this study, six RNA-seq libraries were constructed to comprehensively analyze the
related genes involved in LPS-induced liver injury in Magang geese. A total of 292.4 million
raw reads were identified in the RNA-seq library, with an average of 48.7 million raw
reads per library. After quality control, the transcriptomes of liver yielded approximately
281 million (46,792,734 on average) clean reads, and the valid ratio ranged from 95.65% to
96.22%. As shown in Table 1, the lowest GC content (the proportion of GC content) and
Q30 (the proportion of bases with mass value ≥ 30) of the samples were 47.5% and 96.98%,
respectively. Additionally, more than 37,547,059 high-quality reads were mapped to the
Aner cygnoides domesticus (Ac) genome for gene expression analysis. Unique mapped
reads represent the number of reads that can only be mapped to one location in the genome,
while multi mapped reads are the number of reads that can be mapped to multiple locations
in the genome. The comparison found that uniq mapped reads and multiple map reads
accounted for 84.12–85.26% and 1.41–1.79%, respectively. On average, 80.70% reads were
mapped to the number of sense strands on the genome, and 42.27% reads were mapped to
the number of anti-sense strands on the genome (Table S2).

Table 1. Quality analysis of transcriptome sequencing.

Samples Raw Data Clean Data Valid Ratio GC Content Q30 Value

C1 50,056,712 47,880,158 95.65% 48.00% 96.98%
C2 50,257,844 48,360,268 96.22% 47.50% 97.27%
C3 44,899,474 43,177,160 96.16% 48.50% 97.49%
L1 45,825,564 43,990,084 95.99% 48.50% 97.33%
L2 49,605,102 47,688,432 96.14% 48.50% 97.41%
L3 51,768,960 49,660,302 95.93% 48.50% 97.39%

3.4. Annotation and Classification of SNV/InDel and the Prediction of Alternative Splicing

As shown in Table 2, 428,911 to 487,581 SNVs were detected in the livers of the control
and LPS groups. The proportion of transitional SNVs in all SNV sites was the largest,
accounting for 72.71–72.84%. The most common variation was C-T, followed by A-G and
C-G. Of the SNV and InDels mainly distributed in “intron”, “intergenic”, and “UTR3”
(Figure 3A,B). Furthermore, through sequence alignment with the Anas cygnoides genome,
we obtained the chromosomal positions of each transcript and detected five different splicing
patterns in Magang goose livers, namely SE (skipped exon), A3SS (alternative 3′ splice site),
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A5SS (alternative 5′ splice site), MXE (mutually exclusive exons), and RI (retained intron)
(Figure 3C). The number of differentially expressed AS events was 1304, and the predicted
alternative splices is mainly concentrated in skipped exon, which is over 800.

Table 2. SNV mutation types from goose livers.

Samples A-G C-T A-C A-T C-G G-T Total Transition Transversion

C1 177,194 177,322 34,263 27,889 37,250 33,663 487,581 72.71% 27.29%
C2 176,721 176,522 34,305 28,051 37,260 34,097 486,956 72.54% 27.46%
C3 155,964 156,455 29,645 24,394 32,850 29,603 428,911 72.84% 27.16%
L1 167,120 167,508 32,409 26,307 35,285 32,242 460,871 72.61% 27.39%
L2 166,199 166,149 31,905 25,918 35,061 31,666 456,898 72.74% 27.26%
L3 165,059 166,306 32,207 26,134 35,100 32,109 456,915 72.52% 27.48%
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Figure 3. Annotation and classification of SNV/InDel and the prediction of alternative splicing.
(A) The number of effects by SNV stype, (B) The number of effects by INDEL type. (C) The number
of differentially expressed AS. SE stands for skipped exon, A3SS stands for alternative 3′ splice site,
A5SS stands for alternative 5′ splice site, MXE stands for mutually exclusive exons, RI stands for
retained intron.

3.5. Identification of Differentially Expressed Genes

To identify potential candidate genes for LPS-induced liver injury, the expression levels
of genes in the livers of control and LPS groups were measured. p < 0.05 and |log2(Fold
Change)| ≥ 1 were set as the standard for differential expression. DEGs were clustered
using the pheatmap R package (https://CRAN.R-project.org/package=pheatmap, v1.0.12,
accessed on 14 July 2022) according to their fold change (Figure 4A). Additionally, a scatter
plot was produced using the R package ggplot2 (https://ggplot2.tidyverse.org, accessed on
14 July 2022), according to the p value and FPKM (Figure 4B). In the scatter plot, blue dots
indicated downregulated genes, red dots indicated upregulated genes, gray dots indicated
non-differently-expressed genes, and the sizes of the dots indicated the significance of the
genes. The larger the dots, the stronger the significance. Based on Figure 4, the DEGs for
three individuals in each group had good reproducibility and a total of 727 genes were
differently expressed between liver in the control group and the LPS group, including
424 upregulated genes and 303 downregulated genes (Table S3).

3.6. Analysis of GO Annotation and KEGG Pathway

To gain valuable insight into the molecular functions of the genes potentially associated
with LPS-induced liver injury, the identified DEGs were analyzed for enrichment according
to GO. Here, we showed the top 13 most significant biological processes, the top six most
significant cellular components, and the top five most significant molecular functions
(Figure 5A and Table 3). We found that most DEGs were involved in inflammation, such
as the Toll-like receptor 2 signaling pathway, the defense response against bacteria, the

https://CRAN.R-project.org/package=pheatmap
https://ggplot2.tidyverse.org
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regulation of the apoptosis process, and the immune response, suggesting that LPS may
induce liver injury mainly through the inflammation and immune responses.
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Figure 5. Analysis of GO and KEGG pathway enrichment of DEGs in goose liver. (A) GO enrichment
analysis circle plot: The top 13 most significant biological processes, the top 6 most significant cellular
components, and the top 5 most significant molecular functions. The outermost layer of the represents
the enriched GO ID. The second layer represents the number of background genes in the pathway,
and the depth of the color represents the size of the p value. The third layer represents the number
of significant genes. The innermost columnar represents the rich factor, with red representing the
biological process, light green representing the cellular component, and earthier yellow representing
the molecular function. (B) The top 25 KEGG enrichment bubble plot: the size of the circle represents
the number of genes, and the depth of the color represents the size of the p value.
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Table 3. GO ID associated with the GO term.

GO ID GO Term GO ID GO Term

GO:0006954 Inflammatory response GO:0006955 Immune response
GO:0034134 Toll-like receptor 2 signaling pathway GO:0005615 Extracellular space
GO:0042742 Defense response to bacterium GO:0050786 RAGE receptor binding
GO:0035879 Plasma membrane lactate transport GO:0009897 External side of plasma membrane
GO:0042981 Regulation of apoptotic process GO:0072562 Blood microparticle
GO:0052697 Xenobiotic glucuronidation GO:0005576 Extracellular region
GO:0035095 Behavioral response to nicotine GO:0031092 Platelet alpha granule membrane
GO:0006953 Acute-phase response GO:0070538 Oleic acid binding
GO:0019221 Cytokine-mediated signaling pathway GO:0008009 Chemokine activity
GO:0006526 Arginine biosynthetic process GO:0050544 Arachidonic acid binding
GO:0001706 Endoderm formation GO:0015129 Lactate transmembrane transporter activity
GO:0050679 Positive regulation of epithelial cell proliferation GO:0005887 Integral component of plasma membrane

To further explore the pathways through which LPS induces liver injury, the KOBAS
online tool was used for KEGG analysis. The top 25 enriched KEGG pathways are shown
in Figure 5B. The most enriched significantly pathways are the cytokine–cytokine receptor
interaction, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway,
and the MAPK signaling pathway. All of these pathways are involved in inflammation.
In addition, DEGs were also significantly enriched in the FoxO signaling pathway, PPAR
signaling pathway, p53 signaling pathway, endocytosis, and apoptosis, which are involved
in the body’s inflammatory and immune responses.

3.7. Analysis of Interaction Network Analysis

To further explore the key DEGs, we performed an interaction network analysis of
the DEGs. According to the STRING database analysis, an interaction network consisting
of 271 nodes and 762 edges was constructed using Cytoscape (Figure 6A). The size of
dots indicates the degree of nodes, red indicates upregulated genes, and blue indicates
downregulated genes. Subsequently, we selected the top 50 key genes based on the index
of the degree (Figure 6B), which were at the key positions in the network and might be
more critical than other genes. We found that IL6 has the highest degree of these and may
play an important role in LPS-induced liver injury. Finally, the intersection of 50 key genes
with genes enriched in key pathways in KEGG analysis, such as cytokine–cytokine receptor
interaction, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway,
MAPK signaling pathway, etc., yielded 28 key genes (Figure 6C and Table 4). Among
the 28 genes, most of them were found to be in the Toll-like receptor signaling pathway
(Figure S1) and the MAPK signaling pathway (Figure S2).

3.8. Validation of DEGs Using qRT-PCR

To further verify the accuracy of RNA-seq data, 10 DEGs that were present in 28 key DEGs
and expressed in the Toll-like receptor signaling pathway and MAPK signaling pathway
were verified via qRT-PCR. The results showed that the expression trend of RNA in qRT-
PCR was consistent with that in RNA-seq, and there were significant differences (Figure 7).
Therefore, the results indicated that LPS may induce liver injury in Magang geese through
the Toll-like receptor signaling pathway and MAPK signaling pathway.
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Figure 6. Interaction of differentially expressed gene protein network. (A) Protein–protein interaction
network (PPI). (B) The network of 50 key genes. The red dot represents upregulation, the blue
represents downregulation, and the size of the dot represents the size of the degree. The larger the
dot, the stronger the significance. (C) The intersection of top 50 PPI genes with key pathway genes.

Table 4. The 28 key genes in the intersection of top 50 PPI genes with key pathway genes.

Gene Symbol Degree Up/Down-Regulation

IL6 59 up
JUN 31 up
EGF 30 up

NFKBIA 30 up
CCND1 25 up

TNFAIP3 25 up
HSPA8 24 up

FOS 23 up
NFKB2 21 up
NOS2 21 up
TLR7 20 up
IL18 17 up

CD80 17 down
BIRC2 17 up
IRF7 17 up

TRAF3 15 up
HSP90AA1 15 up

FABP1 15 up
GADD45B 14 up

DUSP1 13 up
CDKN1A 13 down

FGF10 11 up
IKBKE 11 up
CSF3R 10 up

LPL 10 up
MAP3K8 9 up
HSPA2 9 up
TRAF1 9 up
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4. Discussion

In the process of goose breeding, due to the influence of environmental factors, such as
temperature and breeding scale, more harmful bacteria, such as E. coli and Salmonella spp., are
easily bred in water, which leads to an increase in LPS concentration in goose blood [3]. LPS
can stimulate hepatic macrophages (Kupffer cells) to produce various pro-inflammatory
cytokines, and then induce acute infection or inflammation [28], reducing the reproductive
performances of geese and the quality of the goslings, as well as the feed intakes and
growth rates of growing young geese [29]. In addition, LPS binding proteins are mainly
synthesized by hepatocytes. When LPS enters the body, LPS reacts with LBP in the liver,
forming an LPS–LBP complex to promote the recruitment of immune cells and the release
of inflammatory factors. If the LPS source cannot be removed, it will further lead to septic
shock and multiple organ failure [30].

The histomorphological structure of the liver reflects the healthy state of the liver.
In this study, compared with the control group, the morphologies of liver in the LPS
group were destroyed, hepatocyte swelling was obvious, cytoplasmic content was missing,
liver cord structures were disordered, hepatic sinusoidal structure could not be clearly
observed, and a large number of inflammatory cells were infiltrated. A similar phenomenon
was observed in previous studies of LPS-induced liver injury, which induces hepatocyte
swelling, the loss of liver cord structure, the infiltration of inflammatory cells, and the
exudation of red blood cells in mice [31]. In addition, ALT and AST levels are important
indicators for evaluating liver injury [32]. In this study, the levels of AST and ALT in the liver
of geese induced by LPS were increased, and ALT/AST were significantly downregulated.
Therefore, the histomorphological structures and biochemical criteria suggested that the
model of goose liver injury induced by LPS was successfully established.

Based on successful modeling, we further studied the molecular mechanism of LPS-
induced liver injury via RNA-seq analysis. There were 43,177,160–49,660,302 genes expressed
in the liver transcriptome of Magang geese, and an average of 40,386,605 high-quality reads
per sample were mapped to the Anas cygnoides genome. RNA-seq measures structural
variation, such as fusion transcription or mutation, along with gene expression. Somatic single
nucleotide variation (SNV) is the simplest type of mutation, involving only a single base
variation [33]. The investigation of SNV may provide an insight into its effect on gene/protein
loss and disease risk [34]. InDels are a class of major genomic variants involving the addition
or loss of one or more nucleotides of a DNA sequence throughout the genome, mainly detected
from DNA-seq data [35,36]. There were 456,898 to 487,581 SNVs in the livers of the control
and LPS-induced groups. The most common change was C-T, followed by A-G and C-G.
The annotations of SNV and InDel were mainly distributed in “intron”, “intergenic”, and
“UTR3”, indicating that the liver SNPs and InDels of LPS-induced Magang goose were mainly
in “intron”, “intergenic”, and “UTR3”. Further, the discovery of these SNVS and InDels may
improve our understanding of LPS-induced liver injury. Additionally, we found that the
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predicted number of variable splices in each sample was mainly concentrated in SE, which
indicated that the main AS in the process of LPS-induced liver injury was SE. At present,
there are few studies on SNV/INDEL and AS in geese. The screening analysis and annotation
of SNP/INDL and AS in this study improved our understanding of the potential biology
of LPS-induced liver injury in geese. LPS-induced liver injury can lead to changes in the
expression levels of related genes, and further study of DEGs can understand the regulatory
mechanisms of LPS-induced liver injury. In this study, we found a total of 727 DEGs in the
LPS-induced liver injury group and the control group, and these genes were enriched using
GO and KEGG analysis. GO analysis showed that many DEGs were significantly enriched in
GO terms related to inflammatory and immune responses, and the cellular response to LPS,
such as the Toll-like receptor 2 signaling pathway, acute-phase response, the defense response
to bacteria, and chemokine activity. Further, KEGG enrichment analysis confirmed that DEGs
were more focused and involved in the Toll-like receptor signaling pathway, MAPK signaling
pathway, NOD-like receptor signaling pathway, FoxO signaling pathway, and the PPAR
signaling pathway. It is well known that Toll-like receptors (TLRs) are pathogen recognition
receptors that coordinate innate and subsequent adaptive immune responses. On the one
hand, its activation can protect the body by stimulating the innate immune response and
enhancing the acquired immune response, and the persistent inflammatory reaction caused
by it will also cause damage to the body [37,38]. The MAPK signaling pathway plays an
important role in the production of pro-inflammatory mediators in TLR signaling [39]. In
addition, as a key regulator of immune response, NLR mutations may induce inflammation
by interfering with the NF-κB, MAPK, and/or caspase-1 signaling pathways [40]. FoxO
also plays an important role in immune responses and inflammation, and it has been shown
that FoxO3 can regulate LPS-activated liver inflammation by reducing pro-inflammatory
factors [41]. PPARα and PPARγ reduce inflammatory damage by downregulating JAK-STAT,
AP-1, and NF-κB signaling pathways [42,43]. The accumulation of inflammation can further
lead to liver damage [44]. These results suggested that LPS-induced liver injury in geese may
be the result of the joint action of Toll-like receptor, MAPK, NOD-like receptor, FoxO, and
PPAR signaling pathway.

To further explore the role of key genes in LPS-induced liver injury in Magang geese,
we intersected the genes enriched in the key pathway of LPS-induced liver injury with the
top 50 key genes in PPI to obtain 28 more critical genes. In addition, we found it interesting
that most of the 28 genes (17 genes) were enriched in the Toll-like signaling pathway and
MAPK signaling pathway. Therefore, we selected 10 genes out of the 17 genes, and the gene
expression via qRT-PCR was consistent with the RNA sequencing results, which further
verified the reliability of the above analysis. The Toll-like receptor signaling pathway is not
activated in normal liver, but it can be activated by hepatocytes in a pathological state [45].
Relevant studies have shown that hepatocytes can express TLR1-9 and MyD88 transcripts
and respond to a variety of pathogen-associated molecular patterns (PAMP), participating
in the uptake and elimination of LPS [46,47]. In this study, we found that the expression
of TLR7 was significantly upregulated during LPS-induced liver injury. TLR7 belongs
to a sub-family of TLRs (including TLR3, TLR7, TLR8, and TLR9), which exclusively
localize to intracellular compartments and possess a potent ability to induce type I IFN
(interferon) [48]. It has been found that TLR7 is significantly upregulated in monocyte-
derived DCs (MODC) of selected donors after LPS stimulation, inducing MODC to produce
a variety of pro-inflammatory and anti-inflammatory cytokines [49]. Additionally, it has
been found that inflammatory factors produced by inflammatory stimuli can upregulate
TLR7 expression in Hep3B hepatocytes, and that pro-inflammatory stimuli activate TLR7
transcription through the NF-κB binding motif in this region, which can be blocked via
the NF-κB binding site mutation or the addition of NF-κB inhibitors [50]. Many studies
have also shown that viral infection and chronic inflammation induce TLR7 expression
in a variety of non-native TLR7-expressing cell types [50–52]. In addition, TLR7 can also
activate IFR7 and induce the expression of type I interferon (IFN-α/β) [53,54]. Moreover,
we found that MAP3K8, NFKBIA, JUN, IL6, and NFKB2 were significantly differentially
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expressed in this study, and all of them were upregulated in the process of LPS-induced
liver injury. It is generally believed that TLR7 induces the expression of inflammatory
factors through the MyD88-TRAF6-TAK1-MAPK/IKK-AP-1/NF-κB pathway [53,55,56].
Additionally, the TLRs receptor-induced activation of MAP3K8 can positively regulate the
MAPK signaling pathway in inflammation [57].

MAP3K8, also known as Tumor Progression Locus 2 (TPL2) or COT, is a MAP3K that
is downstream of the IL1R and TLR receptors. It is a major mediator of liver inflamma-
tion [57,58]. In our study, we found that the TLRs-like receptor signaling pathway and
the MAPK signaling pathway intersect at MAP3K8. Studies have found that MAP3K8 can
regulate NF-κB and Activator protein-1 (AP-1) to regulate the production of inflammatory
factors [59]. LPS can induce the MAPK pathway to activate AP-1 and NF-κB transcription
factors through the Toll-like receptor pathway, thereby promoting the activation of pro-
inflammatory genes, leading to liver inflammation [60]. AP-1 is formed by the interaction
of JUN and FOS families to form homologous pairs or heterodimers; these are mandatory
transcription factors in inflammation and innate immunity [61]. NF-κB plays an important
role in immunity, inflammation, stress, and other aspects. Under the induction of the TLR
receptor, NF-κB and AP-1 can stimulate the production of inflammatory factors, such as IL6,
TNFα, etc. [62,63]. We found that IL6 was significantly upregulated in RNA sequencing
and qRT-PCR results, and it played an important role in the protein–protein interaction
network, suggesting that IL6 plays an important role in LPS-induced liver injury. IL6 has
pro-inflammatory and anti-inflammatory properties, and it contributes to liver homeostasis
by regulating metabolic function, regeneration, and anti-infection defense [64]. In acute
inflammation, IL6 can rapidly induce the liver to produce a wide range of acute-phase
proteins, such as C-reactive protein, antitrypsin, etc. C-reactive protein can activate the
classical pathway of the complement cascade, and antitrypsin can inactivate proteases
released by pathogens and dead cells [65,66]. However, excessive IL6 expression can
promote monocyte accumulation at the site of injury through sustained MCP-1 secretion,
vascular proliferation, and the anti-apoptotic function of T cells, further leading to liver
inflammation and liver injury [67–69]. In addition, IL6 is an NF-κB target, and activating
both NF-κB and STAT3 in non-immune cells triggers a positive feedback loop for NF-κB
activation via the IL6-STAT3 axis. The synergistic interaction between NF-κB and STAT3
induces the hyperactivation of NF-κB, enhancing chemokine and IL6 expression, followed
by the accumulation of immune cells, leading to inflammation and local homeostasis dys-
regulation [70,71]. Therefore, the up-regulation of IL6 expression is, on the one hand, a
response to LPS-induced liver inflammation, and on the other hand, its overexpression can
further lead to liver injury. These results suggest that the TLR7-mediated MAPK signaling
pathway may play a major role in LPS-induced liver injury in geese, which may be related
to the activation of NF-κB by TLR7 to promote the expression of IL6.5.

In conclusion, this study found that LPS-induced liver injury in geese may be the
result of the joint action of Toll-like receptor, MAPK, NOD-like receptor, FoxO, and PPAR
signaling pathway. Among them, the TLR7-mediated MAPK signaling pathway plays a
major role, which may be related to the overexpression of IL6. Although this study provides
a valuable reference for understanding the LPS-induced liver injury of Magang goose, more
in-depth studies are needed to validate these results.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani13010127/s1, Table S1: Primer sequences; Table S2: Statistics
of sequence comparison between sample sequencing data and Anas cygnoides genome; Table S3:
Differentially expressed genes in control vs. LPS; Figure S1: Toll-like receptor signaling pathway;
Figure S2: MAPK signaling pathway.
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