Domestic Pets in the United Arab Emirates as Reservoirs for Antibiotic-Resistant Bacteria: A Comprehensive Analysis of Extended-Spectrum Beta-Lactamase Producing Escherichia coli Prevalence and Risk Factors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Recruitment and Sampling
2.2. ESBL-R E. coli Isolation and Confirmation
2.3. Antimicrobial Susceptibility Testing ESBL-R E. coli and PCR Screening
2.4. Statistical and Risk Factors Analyses for ESBL-R E. coli
3. Results
3.1. Prevalence of ESBL-R E. coli and Characteristics of Pet Animals Included in the Study
3.2. Risk Factors Associated with ESBL-R E. coli
3.3. Antimicrobial Resistance (AMR) Phenotypes among ESBL-R E. coli Isolates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velazquez-Meza, M.E.; Galarde-Lopez, M.; Carrillo-Quiroz, B.; Alpuche-Aranda, C.M. Antimicrobial resistance: One Health approach. Vet. World 2022, 15, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Duval, R.E.; Grare, M.; Demore, B. Fight Against Antimicrobial Resistance: We Always Need New Antibacterials but for Right Bacteria. Molecules 2019, 24, 3152. [Google Scholar] [CrossRef] [PubMed]
- Hays, J.P.; Safain, K.S.; Almogbel, M.S.; Habib, I.; Khan, M.A. Extended Spectrum- and Carbapenemase-Based beta-Lactam Resistance in the Arabian Peninsula-A Descriptive Review of Recent Years. Antibiotics 2022, 11, 1354. [Google Scholar] [CrossRef] [PubMed]
- Bezabih, Y.M.; Sabiiti, W.; Alamneh, E.; Bezabih, A.; Peterson, G.M.; Bezabhe, W.M.; Roujeinikova, A. The global prevalence and trend of human intestinal carriage of ESBL-producing Escherichia coli in the community. J. Antimicrob. Chemother. 2021, 76, 22–29. [Google Scholar] [CrossRef]
- Dazio, V.; Nigg, A.; Schmidt, J.S.; Brilhante, M.; Campos-Madueno, E.I.; Mauri, N.; Kuster, S.P.; Brawand, S.G.; Willi, B.; Endimiani, A.; et al. Duration of carriage of multidrug-resistant bacteria in dogs and cats in veterinary care and co-carriage with their owners. One Health 2021, 13, 100322. [Google Scholar] [CrossRef]
- Huber, H.; Zweifel, C.; Wittenbrink, M.M.; Stephan, R. ESBL-producing uropathogenic Escherichia coli isolated from dogs and cats in Switzerland. Vet. Microbiol. 2013, 162, 992–996. [Google Scholar] [CrossRef]
- Yousfi, M.; Mairi, A.; Touati, A.; Hassissene, L.; Brasme, L.; Guillard, T.; De Champs, C. Extended spectrum beta-lactamase and plasmid mediated quinolone resistance in Escherichia coli fecal isolates from healthy companion animals in Algeria. J. Infect. Chemother. 2016, 22, 431–435. [Google Scholar] [CrossRef]
- van den Bunt, G.; Fluit, A.C.; Spaninks, M.P.; Timmerman, A.J.; Geurts, Y.; Kant, A.; Scharringa, J.; Mevius, D.; Wagenaar, J.A.; Bonten, M.J.M.; et al. Faecal carriage, risk factors, acquisition and persistence of ESBL-producing Enterobacteriaceae in dogs and cats and co-carriage with humans belonging to the same household. J. Antimicrob. Chemother. 2020, 75, 342–350. [Google Scholar] [CrossRef]
- Cozma, A.P.; Rimbu, C.M.; Zendri, F.; Maciuca, I.E.; Timofte, D. Clonal Dissemination of Extended-Spectrum Cephalosporin-Resistant Enterobacterales between Dogs and Humans in Households and Animal Shelters of Romania. Antibiotics 2022, 11, 1242. [Google Scholar] [CrossRef]
- Nobrega, D.B.; Brocchi, M. An overview of extended-spectrum beta-lactamases in veterinary medicine and their public health consequences. J. Infect. Dev. Ctries. 2014, 8, 954–960. [Google Scholar] [CrossRef]
- Salgado-Caxito, M.; Benavides, J.A.; Adell, A.D.; Paes, A.C.; Moreno-Switt, A.I. Global prevalence and molecular characterization of extended-spectrum beta-lactamase producing-Escherichia coli in dogs and cats—A scoping review and meta-analysis. One Health 2021, 12, 100236. [Google Scholar] [CrossRef]
- Spee, L.B.; Hazel, S.J.; Dal Grande, E.; Boardman, W.S.J.; Chaber, A.L. Endangered Exotic Pets on Social Media in the Middle East: Presence and Impact. Animals 2019, 9, 480. [Google Scholar] [CrossRef]
- Tepeli, S.O.; Zorba, N.N.D. Frequency of extended-spectrum beta-lactamase (ESBL)- and AmpC beta-lactamase-producing Enterobacteriaceae in a cheese production process. J. Dairy Sci. 2018, 101, 2906–2914. [Google Scholar] [CrossRef] [PubMed]
- Shilpakar, A.; Ansari, M.; Rai, K.R.; Rai, G.; Rai, S.K. Prevalence of multidrug-resistant and extended-spectrum beta-lactamase producing Gram-negative isolates from clinical samples in a tertiary care hospital of Nepal. Trop. Med. Health 2021, 49, 23. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; CLSI: Wayne, PA, USA, 2019. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Fang, H.; Ataker, F.; Hedin, G.; Dornbusch, K. Molecular Epidemiology of Extended-Spectrum β-Lactamases among Escherichia coli Isolates Collected in a Swedish Hospital and Its Associated Health Care Facilities from 2001 to 2006. J. Clin. Microbiol. 2008, 46, 707–712. [Google Scholar] [CrossRef]
- Barlow, R.S.; McMillan, K.E.; Duffy, L.L.; Fegan, N.; Jordan, D.; Mellor, G.E. Prevalence and Antimicrobial Resistance of Salmonella and Escherichia coli from Australian Cattle Populations at Slaughter. J. Food Protect. 2015, 78, 912–920. [Google Scholar] [CrossRef]
- National Strategy and Action Plan for Combatting Antimicrobial Resistance (NAP-AMR), United Arab Emirates-2019–2023; United Arab Emirates Ministry of Health and Prevention. Available online: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc-npm/nap-library/uae_nap-amr-english.pdf?sfvrsn=83bb9e84_1&download=true (accessed on 15 January 2023).
- Saputra, S.; Jordan, D.; Mitchell, T.; Wong, H.S.; Abraham, R.J.; Kidsley, A.; Turnidge, J.; Trott, D.J.; Abraham, S. Antimicrobial resistance in clinical Escherichia coli isolated from companion animals in Australia. Vet. Microbiol. 2017, 211, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Vercelli, C.; Gambino, G.; Amadori, M.; Re, G. Implications of Veterinary Medicine in the comprehension and stewardship of antimicrobial resistance phenomenon. From the origin till nowadays. Vet. Anim. Sci. 2022, 16, 100249. [Google Scholar] [CrossRef]
- Fayez, M.; Elmoslemany, A.; Al Romaihi, A.A.; Azzawi, A.Y.; Almubarak, A.; Elsohaby, I. Prevalence and Risk Factors Associated with Multidrug Resistance and Extended-Spectrum β-lactamase Producing E. coli Isolated from Healthy and Diseased Cats. Antibiotics 2023, 12, 229. [Google Scholar] [CrossRef]
- Shnaiderman-Torban, A.; Navon-Venezia, S.; Baron, H.; Abu-Ahmad, W.; Arielly, H.; Valenci, G.Z.; Nissan, I.; Paitan, Y.; Steinman, A. Prevalence and Molecular Characterization of Extended-Spectrum beta-Lactamase Producing Enterobacterales in Healthy Community Dogs in Israel. Antibiotics 2022, 11, 1069. [Google Scholar] [CrossRef] [PubMed]
- Aslantas, O.; Yilmaz, E.S. Prevalence and molecular characterization of extended-spectrum beta-lactamase (ESBL) and plasmidic AmpC beta-lactamase (pAmpC) producing Escherichia coli in dogs. J. Vet. Med. Sci. 2017, 79, 1024–1030. [Google Scholar] [CrossRef] [PubMed]
- Liakopoulos, A.; Betts, J.; La Ragione, R.; van Essen-Zandbergen, A.; Ceccarelli, D.; Petinaki, E.; Koutinas, C.K.; Mevius, D.J. Occurrence and characterization of extended-spectrum cephalosporin-resistant Enterobacteriaceae in healthy household dogs in Greece. J. Med. Microbiol. 2018, 67, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moein, K.A.; Samir, A. Occurrence of extended spectrum beta-lactamase-producing Enterobacteriaceae among pet dogs and cats: An emerging public health threat outside health care facilities. Am. J. Infect. Control 2014, 42, 796–798. [Google Scholar] [CrossRef]
- Gniadkowski, M. Evolution and epidemiology of extended-spectrum beta-lactamases (ESBLs) and ESBL-producing microorganisms. Clin. Microbiol. Infect. 2001, 7, 597–608. [Google Scholar] [CrossRef]
- Procter, T.D.; Pearl, D.L.; Finley, R.L.; Leonard, E.K.; Janecko, N.; Reid-Smith, R.J.; Weese, J.S.; Peregrine, A.S.; Sargeant, J.M. A Cross-Sectional Study Examining the Prevalence and Risk Factors for Anti-Microbial-Resistant Generic Escherichia coli in Domestic Dogs that Frequent Dog Parks in Three Cities in South-Western Ontario, Canada. Zoonoses Public Health 2014, 61, 250–259. [Google Scholar] [CrossRef]
- Serwecińska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Macedo, G.; Hernandez-Leal, L.; van der Maas, P.; Heederik, D.; Mevius, D.; Schmitt, H. The impact of manure and soil texture on antimicrobial resistance gene levels in farmlands and adjacent ditches. Sci. Total Environ. 2020, 737, 139563. [Google Scholar] [CrossRef]
Univariate Logistic Regression Analysis | ||||||
---|---|---|---|---|---|---|
Variable | Category | Total (Missing) | Positive for ESBL-R E. coli | % | Odds Ratio (95% Confidence Interval) | p-Value 1 |
Clinic | A | 46 | 13 | 28.26 | Ref | |
B | 40 | 11 | 27.50 | 0.96 (0.37–2.4) | 0.937 | |
C | 37 | 5 | 13.51 | 0.39 (0.12–1.2) | 0.112 | |
D | 21 | 5 | 23.81 | 0.79 (0.24–2.6) | 0.703 | |
E | 4 | 1 | 25.00 | 0.84 (0.08–8.8) | 0.889 | |
Species | Cat | 122 | 32 | 26.23 | Ref | |
Dog | 26 | 3 | 11.54 | 0.36 (0.10–1.30) | 0.121 | |
Age | Less than 1 year | 48 | 13 | 27.08 | Ref | |
≥1 year and <2 years | 37 | 8 | 21.62 | 0.74 (0.27–2.03) | 0.563 | |
≥2 years and <3 years | 30 | 8 | 26.67 | 0.97 (0.34–2.74) | 0.968 | |
≥3 year | 16 | 2 | 12.50 | 0.38 (0.07–1.92) | 0.245 | |
Sex | Female | 58 | 13 | 22.41 | Ref | |
Male | 82 | 19 | 23.17 | 1.04 (0.46–2.32) | 0.916 | |
Frequency per week that the animal spent in the house or outside | ||||||
Always inside | 58 | 10 | 17.24 | Ref | ||
Always outside | 13 | 6 | 46.15 | 4.11 (1.13–14.88) | 0.031 | |
Mostly in the house | 48 | 8 | 16.67 | 0.96 (0.34–2.66) | 0.937 | |
Mostly outside the house | 9 | 4 | 44.44 | 3.84 (0.87–16.88) | 0.075 | |
The number of other animals kept in the household | ||||||
0 | 21 | 7 | 33.33 | Ref | ||
5 | 6 | 2 | 33.33 | 1 (0.14–6.85) | 1.000 | |
4 | 14 | 0 | - | Omitted | ||
>5 | 48 | 10 | 29.83 | 0.52 (0.16–1.65) | 0.271 | |
1 | 11 | 2 | 18.18 | 0.44 (0.74–2.63) | 0.372 | |
3 | 12 | 3 | 25.00 | 0.66 (0.13–3.27) | 0.617 | |
2 | 16 | 4 | 25.00 | 0.66 (0.15–2.84) | 0.584 | |
If the dog/cat stayed in a pension/animal shelter in the past year | ||||||
No | 60 | 14 | 23.22 | Ref | ||
Yes | 67 | 13 | 19.40 | 0.79 (0.33–1.85) | 0.589 | |
Frequent contact with farm or livestock animals | ||||||
Never | 65 | 11 | 16.92 | Ref | ||
Frequently | 7 | 3 | 42.86 | 3.68 (0.72–18.81) | 0.117 | |
Rare | 50 | 10 | 20.00 | 1.22 (0.47–3.17) | 0.672 | |
Whether dog/cat had access to open water sources in the last six months | ||||||
No access | 103 | 17 | 16.50 | Ref | ||
Lakes, rivers, creeks | 3 | 2 | 66.67 | 10.11 (0.86–117.97) | 0.065 | |
Water in ditches, puddles | 18 | 8 | 44.44 | 4.04 (1.39–11.74) | 0.010 | |
Toilet | 2 | 2 | 100.00 | Omitted | ||
Type of food that the owner provides to dog/cat | ||||||
Dry food, prepacked (commercial) | 66 | 12 | 18.18 | Ref | ||
Dry and wet foods, prepacked (commercial) | 39 | 7 | 17.95 | 0.98 (0.35–2.75) | 0.976 | |
Diet includes raw meat | 15 | 6 | 40.00 | 3 (0.89–10.03) | 0.075 | |
Diet included food remaining from the table | 8 | 3 | 37.50 | 2.7 (0.56–12.87) | 0.213 | |
Multivariable Logistic Regression Analysis | ||||||
Variable—dog/cat had access to open water sources in the last six months: | Odds Ratio (95% Confidence Interval) | p-value | ||||
Water in ditches, puddles (vs. no access) | 3.71 (1.23–11.21) | 0.020 |
Antimicrobial Category | Antimicrobial Agent | No. of ESBL-R E. coli Isolates (n = 77) | ||
---|---|---|---|---|
Resistant n (%) | Intermediate n (%) | Susceptible n (%) | ||
Fluoroquinolone | Ciprofloxacin (CIP) | 44 (57.14) | 32 (41.56) | 1 (1.30) |
Phenicol | Chloramphenicol (C) | 30 (38.96) | 1 (1.30) | 46 (59.74) |
Aminoglycosides | Gentamicin (CN) | 27 (35.06) | — | 50 (64.94) |
Tetracyclines | Tetracycline (TET) | 45 (58.44) | 9 (11.69) | 23 (29.87) |
2nd generation Cephalosporins | Cefoxitin (FOX) | 4 (5.19) | 4 (5.19) | 69 (89.61) |
3rd generation Cephalosporins | Cefotaxime (CTX) | 70 (90.91) | 2 (2.60) | 5 (6.49) |
Ceftriaxone (CRO) | 73 (94.81) | 1 (1.30) | 3 (3.90) | |
4th generation Cephalosporins | Cefepime (FEP) | 37 (48.05) | 32 (41.56) | 8 (10.39) |
Carbapenems | Imipenem (IPM) | — | 74 (96.10) | 3 (3.90) |
Sulfonamides | Trimethoprim-sulfamethoxazole (SXT) | 61 (79.22) | — | 16 (20.78) |
Penicillin | Ampicillin (AMP) | 75 (97.40) | — | 2 (2.60) |
Macrolides | Azithromycin (AZM) | 10 (12.99) | — | 67 (87.01) |
No. Antimicrobial Category | No. of Isolates (%) | Common Resistance Patterns * (No. of Isolates) |
---|---|---|
3 | 7 (10.00) | 3rdGC-S-P (4) |
4 | 16 (22.86) | 3rdGC-4thGC-S-P (6) FQ-3rdGC-S-P (4) |
5 | 9 (12.86) | FQ-T-3rdGC-S-P (4) |
6 | 15 (21.43) | FQ-Ph-3rdGC-4thGC-S-P (7) |
7 | 16 (22.86) | FQ-Ph-A-T-3rdGC-S-P (7) A-Ph-T-3rdGC-4thGC-S-P (4) FQ-A-T-3rdGC-4thGC-S-P (4) |
8 | 3 (4.29) | FQ-Ph-A-T-3rdGC-4thGC-S-P (3) |
9 | 3 (4.29) | FQ-Ph-A-T-3rdGC-4thGC-S-P-M (3) |
10 | 1 (1.43) | FQ-Ph-A-T-2ndGC-3rdGC-4thGC-S-P-M |
Total | 70 (100.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habib, I.; Mohteshamuddin, K.; Mohamed, M.-Y.I.; Lakshmi, G.B.; Abdalla, A.; Bakhit Ali Alkaabi, A. Domestic Pets in the United Arab Emirates as Reservoirs for Antibiotic-Resistant Bacteria: A Comprehensive Analysis of Extended-Spectrum Beta-Lactamase Producing Escherichia coli Prevalence and Risk Factors. Animals 2023, 13, 1587. https://doi.org/10.3390/ani13101587
Habib I, Mohteshamuddin K, Mohamed M-YI, Lakshmi GB, Abdalla A, Bakhit Ali Alkaabi A. Domestic Pets in the United Arab Emirates as Reservoirs for Antibiotic-Resistant Bacteria: A Comprehensive Analysis of Extended-Spectrum Beta-Lactamase Producing Escherichia coli Prevalence and Risk Factors. Animals. 2023; 13(10):1587. https://doi.org/10.3390/ani13101587
Chicago/Turabian StyleHabib, Ihab, Khaja Mohteshamuddin, Mohamed-Yousif Ibrahim Mohamed, Glindya Bhagya Lakshmi, Afra Abdalla, and Abdulla Bakhit Ali Alkaabi. 2023. "Domestic Pets in the United Arab Emirates as Reservoirs for Antibiotic-Resistant Bacteria: A Comprehensive Analysis of Extended-Spectrum Beta-Lactamase Producing Escherichia coli Prevalence and Risk Factors" Animals 13, no. 10: 1587. https://doi.org/10.3390/ani13101587
APA StyleHabib, I., Mohteshamuddin, K., Mohamed, M. -Y. I., Lakshmi, G. B., Abdalla, A., & Bakhit Ali Alkaabi, A. (2023). Domestic Pets in the United Arab Emirates as Reservoirs for Antibiotic-Resistant Bacteria: A Comprehensive Analysis of Extended-Spectrum Beta-Lactamase Producing Escherichia coli Prevalence and Risk Factors. Animals, 13(10), 1587. https://doi.org/10.3390/ani13101587