The Impact of Human Activities on Zoonotic Infection Transmissions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Urbanization
3. Deforestation
4. Tourism and Zoos
5. Wildlife Exploitation and Trade
6. Climate Change
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- White, R.J.; Razgour, O. Emerging zoonotic diseases originating in mammals: A systematic review of effects of anthropogenic land-use change. Mammal Rev. 2020, 50, 336–352. [Google Scholar] [CrossRef]
- Cavallero, S.; Gabrielli, S.; Gazzonis, A.L.; Pombi, M.; Šnábel, V. Editorial: Zoonotic Parasitic Diseases in a Changing World. Front. Vet. Sci. 2021, 8, 715112. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, D.; Duprat, X. Remedying anthropogenic zoonoses. Anim. Sentience 2020, 5, 29. [Google Scholar] [CrossRef]
- Esposito, A.M.; Esposito, M.M.; Ptashnik, A. Phylogenetic Diversity of Animal Oral and Gastrointestinal Viromes Useful in Surveillance of Zoonoses. Microorganisms 2022, 10, 1815. [Google Scholar] [CrossRef]
- Sabin, N.S.; Calliope, A.S.; Simpson, S.V.; Arima, H.; Ito, H.; Nishimura, T.; Yamamoto, T. Implications of human activities for (re)emerging infectious diseases, including COVID-19. J. Physiol. Anthropol. 2020, 39, 29. [Google Scholar] [CrossRef]
- Ahmed, S.; Dávila, J.D.; Allen, A.; (MUKI) Haklay, M.; Tacoli, C.; Fèvre, E.M. Does urbanization make emergence of zoonosis more likely? Evidence, myths and gaps. Environ. Urban. 2019, 31, 443–460. [Google Scholar] [CrossRef]
- Ostfeld, R.S. Biodiversity loss and the rise of zoonotic pathogens. Clin. Microbiol. Infect. 2009, 15, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Blasdell, K.R.; Morand, S.; Laurance, S.G.W.; Doggett, S.L.; Hahs, A.; Trinh, K.; Perera, D.; Firth, C. Rats and the city: Implications of urbanization on zoonotic disease risk in Southeast Asia. Proc. Natl. Acad. Sci. USA 2022, 119, e2112341119. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Hu, S.; Cazelles, B.; Chowell, G.; Gao, L.; Laine, M.; Li, Y.; Yang, H.; Li, Y.; Yang, Q.; et al. Urbanization prolongs hantavirus epidemics in cities. Proc. Natl. Acad. Sci. USA 2018, 115, 4707–4712. [Google Scholar] [CrossRef]
- Taylor, P.J.; Arntzen, L.; Hayter, M.; Iles, M.; Frean, J.; Belmain, S. Understanding and managing sanitary risks due to rodent zoonoses in an African city: Beyond the Boston Model. Integr. Zool. 2008, 3, 38–50. [Google Scholar] [CrossRef]
- Krijger, I.M.; Ahmed, A.A.A.; Goris, M.G.A.; Cornelissen, J.B.W.J.; Groot Koerkamp, P.W.G.; Meerburg, B.G. Wild rodents and insectivores as carriers of pathogenic Leptospira and Toxoplasma gondii in The Netherlands. Vet. Med. Sci. 2020, 6, 623–630. [Google Scholar] [CrossRef]
- Ross, E.C.; Olivera, G.C.; Barragan, A. Early passage of Toxoplasma gondii across the blood–brain barrier. Trends Parasitol. 2022, 38, 450–461. [Google Scholar] [CrossRef]
- Khan, I.A.; Moretto, M. Immune responses to Toxoplasma gondii. Curr. Opin. Immunol. 2022, 77, 102226. [Google Scholar] [CrossRef]
- Crompton, D.W.; Savioli, L. Intestinal parasitic infections and urbanization. Bull. World Health Organ. 1993, 71, 1. [Google Scholar]
- Wu, T. The socioeconomic and environmental drivers of the COVID-19 pandemic: A review. Ambio 2021, 50, 822–833. [Google Scholar] [CrossRef]
- Combs, M.A.; Kache, P.A.; VanAcker, M.C.; Gregory, N.; Plimpton, L.D.; Tufts, D.M.; Fernandez, M.P.; Diuk-Wasser, M.A. Socio-ecological drivers of multiple zoonotic hazards in highly urbanized cities. Glob. Change Biol. 2022, 28, 1705–1724. [Google Scholar] [CrossRef]
- Keesing, F.; Ostfeld, R.S. Impacts of biodiversity and biodiversity loss on zoonotic diseases. Proc. Natl. Acad. Sci. USA 2021, 118, e2023540118. [Google Scholar] [CrossRef]
- Mackenstedt, U.; Jenkins, D.; Romig, T. The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. Int. J. Parasitol. Parasites Wildl. 2015, 4, 71–79. [Google Scholar] [CrossRef]
- Wood, C.L.; McInturff, A.; Young, H.S.; Kim, D.; Lafferty, K.D. Human infectious disease burdens decrease with urbanization but not with biodiversity. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160122. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.U.; Udagama, P.; Fernando, S.P. Effect of urbanization on zoonotic gastrointestinal parasite prevalence in endemic toque macaque (Macaca sinica) from different climatic zones in Sri Lanka. Int. J. Parasitol. Parasites Wildl. 2022, 17, 100–109. [Google Scholar] [CrossRef]
- Patwary, M.M.; Haque, M.d.Z.; Bardhan, M.; Rodriguez-Morales, A.J. COVID-19 and Dengue Co-epidemic During the Second Wave of the Pandemic in Bangladesh: A Double Blow for an Overburdened Health-Care System. Disaster Med. Public Health Prep. 2022, 16, 2235–2237. [Google Scholar] [CrossRef]
- Plumer, L.; Davison, J.; Saarma, U. Rapid Urbanization of Red Foxes in Estonia: Distribution, Behaviour, Attacks on Domestic Animals, and Health-Risks Related to Zoonotic Diseases. PLoS ONE 2014, 9, e115124. [Google Scholar] [CrossRef]
- MacDonald, A.J.; Mordecai, E.A. Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proc. Natl. Acad. Sci. USA 2019, 116, 22212–22218. [Google Scholar] [CrossRef]
- Brock, P.M.; Fornace, K.M.; Grigg, M.J.; Anstey, N.M.; William, T.; Cox, J.; Drakeley, C.J.; Ferguson, H.M.; Kao, R.R. Predictive analysis across spatial scales links zoonotic malaria to deforestation. Proc. R. Soc. B Biol. Sci. 2019, 286, 20182351. [Google Scholar] [CrossRef]
- Cuenca, P.R.; Key, S.; Jumail, A.; Surendra, H.; Ferguson, H.M.; Drakeley, C.J.; Fornace, K. Chapter Six—Epidemiology of the zoonotic malaria Plasmodium knowlesi in changing landscapes. In Advances in Parasitology; Drakeley, C., Ed.; Current Research on Naturally Transmitted; Academic Press: Cambridge, MA, USA, 2021; Volume 113, pp. 225–286. [Google Scholar]
- Norris, D.E. Mosquito-borne Diseases as a Consequence of Land Use Change. EcoHealth 2004, 1, 19–24. [Google Scholar] [CrossRef]
- Burkett-Cadena, N.D.; Vittor, A.Y. Deforestation and vector-borne disease: Forest conversion favors important mosquito vectors of human pathogens. Basic Appl. Ecol. 2018, 26, 101–110. [Google Scholar] [CrossRef]
- Derouich, M.; Boutayeb, A.; Twizell, E. A model of dengue fever. Biomed. Eng. OnLine 2003, 2, 4. [Google Scholar] [CrossRef]
- Gubler, D.J. Dengue/dengue haemorrhagic fever: History and current status. Novartis Found. Symp. 2006, 277, 3–16; discussion 16–22, 71–73, 251–253. [Google Scholar] [CrossRef]
- Kalbus, A.; Sampaio, V.d.S.; Boenecke, J.; Reintjes, R. Exploring the influence of deforestation on dengue fever incidence in the Brazilian Amazonas state. PLoS ONE 2021, 16, e0242685. [Google Scholar] [CrossRef]
- Aitken, T.H.; Tesh, R.B.; Beaty, B.J.; Rosen, L. Transovarial transmission of yellow fever virus by mosquitoes (Aedes aegypti). Am. J. Trop. Med. Hyg. 1979, 28, 119–121. [Google Scholar] [CrossRef]
- Ingelbeen, B.; Weregemere, N.A.; Noel, H.; Tshapenda, G.P.; Mossoko, M.; Nsio, J.; Ronsse, A.; Ahuka-Mundeke, S.; Cohuet, S.; Kebela, B.I. Urban yellow fever outbreak—Democratic Republic of the Congo, 2016: Towards more rapid case detection. PLoS Negl. Trop. Dis. 2018, 12, e0007029. [Google Scholar] [CrossRef]
- Rulli, M.C.; Santini, M.; Hayman, D.T.S.; D’Odorico, P. The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks. Sci. Rep. 2017, 7, 41613. [Google Scholar] [CrossRef]
- Olivero, J.; Fa, J.E.; Real, R.; Márquez, A.L.; Farfán, M.A.; Vargas, J.M.; Gaveau, D.; Salim, M.A.; Park, D.; Suter, J.; et al. Recent loss of closed forests is associated with Ebola virus disease outbreaks. Sci. Rep. 2017, 7, 14291. [Google Scholar] [CrossRef]
- Pigott, D.M.; Golding, N.; Mylne, A.; Huang, Z.; Henry, A.J.; Weiss, D.J.; Brady, O.J.; Kraemer, M.U.; Smith, D.L.; Moyes, C.L.; et al. Mapping the zoonotic niche of Ebola virus disease in Africa. eLife 2014, 3, e04395. [Google Scholar] [CrossRef] [PubMed]
- Burgdorfer, W.; Barbour, A.G.; Hayes, S.F.; Benach, J.L.; Grunwaldt, E.; Davis, J.P. Lyme disease-a tick-borne spirochetosis? Science 1982, 216, 1317–1319. [Google Scholar] [CrossRef]
- Discovery of the Disease Agent Causing Lyme Disease|NIH Intramural Research Program. Available online: https://irp.nih.gov/accomplishments/discovery-of-the-disease-agent-causing-lyme-disease (accessed on 20 February 2023).
- Burgdorfer, W.; Gage, K.L. Susceptibility of the black-legged tick, Ixodes scapularis, to the Lyme disease spirochete, Borrelia burgdorferi. Zentralblatt Für Bakteriol. Mikrobiol. Hyg. Ser. Med. Microbiol. Infect. Dis. Virol. Parasitol. 1986, 263, 15–20. [Google Scholar] [CrossRef]
- Auwaerter, P.G.; Kobayashi, T.; Wormser, G.P. Guidelines for Lyme Disease Are Updated. Am. J. Med. 2021, 134, 1314–1316. [Google Scholar] [CrossRef] [PubMed]
- Rochlin, I.; Egizi, A.; Lindström, A. The Original Scientific Description of the Lone Star Tick (Amblyomma americanum, Acari: Ixodidae) and Implications for the Species’ Past and Future Geographic Distributions. J. Med. Entomol. 2022, 59, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Hanincová, K.; Kurtenbach, K.; Diuk-Wasser, M.; Brei, B.; Fish, D. Epidemic Spread of Lyme Borreliosis, Northeastern United States. Emerg. Infect. Dis. 2006, 12, 604–611. [Google Scholar] [CrossRef]
- Epstein, J.H.; Field, H.E.; Luby, S.; Pulliam, J.R.C.; Daszak, P. Nipah virus: Impact, origins, and causes of emergence. Curr. Infect. Dis. Rep. 2006, 8, 59–65. [Google Scholar] [CrossRef]
- Afelt, A.; Frutos, R.; Devaux, C. Bats, Coronaviruses, and Deforestation: Toward the Emergence of Novel Infectious Diseases? Front. Microbiol. 2018, 9, 702. [Google Scholar] [CrossRef]
- Vinson, J.E.; Gottdenker, N.L.; Chaves, L.F.; Kaul, R.B.; Kramer, A.M.; Drake, J.M.; Hall, R.J. Land reversion and zoonotic spillover risk. R. Soc. Open Sci. 2022, 9, 220582. [Google Scholar] [CrossRef]
- Morand, S.; Lajaunie, C. Outbreaks of Vector-Borne and Zoonotic Diseases Are Associated With Changes in Forest Cover and Oil Palm Expansion at Global Scale. Front. Vet. Sci. 2021, 8, 230. [Google Scholar] [CrossRef]
- Marí Saéz, A.; Weiss, S.; Nowak, K.; Lapeyre, V.; Zimmermann, F.; Düx, A.; Kühl, H.S.; Kaba, M.; Regnaut, S.; Merkel, K.; et al. Investigating the zoonotic origin of the West African Ebola epidemic. EMBO Mol. Med. 2015, 7, 17–23. [Google Scholar] [CrossRef]
- Baudel, H.; De Nys, H.; Mpoudi Ngole, E.; Peeters, M.; Desclaux, A. Understanding Ebola virus and other zoonotic transmission risks through human–bat contacts: Exploratory study on knowledge, attitudes and practices in Southern Cameroon. Zoonoses Public Health 2019, 66, 288–295. [Google Scholar] [CrossRef]
- Olivero, J.; Fa, J.E.; Farfán, M.Á.; Márquez, A.L.; Real, R.; Juste, F.J.; Leendertz, S.A.; Nasi, R. Human activities link fruit bat presence to Ebola virus disease outbreaks. Mammal Rev. 2020, 50, 1–10. [Google Scholar] [CrossRef]
- Zhou, H.; Ji, J.; Chen, X.; Bi, Y.; Li, J.; Wang, Q.; Hu, T.; Song, H.; Zhao, R.; Chen, Y.; et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell 2021, 184, 4380–4391.e14. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, X.; Hu, T.; Li, J.; Song, H.; Liu, Y.; Wang, P.; Liu, D.; Yang, J.; Holmes, E.C.; et al. A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Curr. Biol. 2020, 30, 2196–2203.e3. [Google Scholar] [CrossRef]
- Tajudeen, Y.A.; Oladunjoye, I.O.; Bajinka, O.; Oladipo, H.J. Zoonotic Spillover in an Era of Rapid Deforestation of Tropical Areas and Unprecedented Wildlife Trafficking: Into the Wild. Challenges 2022, 13, 41. [Google Scholar] [CrossRef]
- Mavroidi, N. Transmission of zoonoses through immigration and tourism. Vet. Ital. 2008, 44, 651–656. [Google Scholar]
- Green, J.; Jakins, C.; Asfaw, E.; Bruschi, N.; Parker, A.; de Waal, L.; D’Cruze, N. African Lions and Zoonotic Diseases: Implications for Commercial Lion Farms in South Africa. Animals 2020, 10, 1692. [Google Scholar] [CrossRef]
- Caballero-Gómez, J.; Cano-Terriza, D.; Lecollinet, S.; Carbonell, M.D.; Martínez-Valverde, R.; Martínez-Nevado, E.; García-Párraga, D.; Lowenski, S.; García-Bocanegra, I. Evidence of exposure to zoonotic flaviviruses in zoo mammals in Spain and their potential role as sentinel species. Vet. Microbiol. 2020, 247, 108763. [Google Scholar] [CrossRef]
- Stirling, J.; Griffith, M.; Dooley, J.S.G.; Goldsmith, C.E.; Loughrey, A.; Lowery, C.J.; McClurg, R.; McCorry, K.; McDowell, D.; McMahon, A.; et al. Zoonoses Associated with Petting Farms and Open Zoos. Vector-Borne Zoonotic Dis. 2008, 8, 85–92. [Google Scholar] [CrossRef]
- Molyneaux, A.; Hankinson, E.; Kaban, M.; Svensson, M.S.; Cheyne, S.M.; Nijman, V. Primate Selfies and Anthropozoonotic Diseases: Lack of Rule Compliance and Poor Risk Perception Threatens Orangutans. Folia Primatol. 2021, 92, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Lenzi, C.; Speiran, S.; Grasso, C. “Let Me Take a Selfie”: Implications of Social Media for Public Perceptions of Wild Animals. Soc. Anim. 2020, 31, 64–83. [Google Scholar] [CrossRef]
- Rossi, G.; Aubry, P.; Dubé, C.; Smith, R.L. The spread of bovine tuberculosis in Canadian shared pastures: Data, model, and simulations. Transbound. Emerg. Dis. 2019, 66, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Morcatty, T.Q.; Pereyra, P.E.R.; Ardiansyah, A.; Imron, M.A.; Hedger, K.; Campera, M.; Nekaris, K.A.-I.; Nijman, V. Risk of Viral Infectious Diseases from Live Bats, Primates, Rodents and Carnivores for Sale in Indonesian Wildlife Markets. Viruses 2022, 14, 2756. [Google Scholar] [CrossRef] [PubMed]
- D’Cruze, N.; Green, J.; Elwin, A.; Schmidt-Burbach, J. Trading Tactics: Time to Rethink the Global Trade in Wildlife. Animals 2020, 10, 2456. [Google Scholar] [CrossRef]
- van Vliet, N.; Muhindo, J.; Nyumu, J.; Enns, C.; Massé, F.; Bersaglio, B.; Cerutti, P.; Nasi, R. Understanding Factors that Shape Exposure to Zoonotic and Food-Borne Diseases Across Wild Meat Trade Chains. Hum. Ecol. 2022, 50, 983–995. [Google Scholar] [CrossRef]
- Ben Chehida, F.; Gharsa, H.; Tombari, W.; Selmi, R.; Khaldi, S.; Daaloul, M.; Ben Slama, K.; Messadi, L. First Report of Antimicrobial Susceptibility and Virulence Gene Characterization Associated with Staphylococcus aureus Carriage in Healthy Camels from Tunisia. Animals 2021, 11, 2754. [Google Scholar] [CrossRef]
- Aguirre, A.A.; Catherina, R.; Frye, H.; Shelley, L. Illicit Wildlife Trade, Wet Markets, and COVID-19: Preventing Future Pandemics. World Med. Health Policy 2020, 12, 256–265. [Google Scholar] [CrossRef]
- Rush, E.R.; Dale, E.; Aguirre, A.A. Illegal Wildlife Trade and Emerging Infectious Diseases: Pervasive Impacts to Species, Ecosystems and Human Health. Animals 2021, 11, 1821. [Google Scholar] [CrossRef] [PubMed]
- Moyen, N.; Hoque, M.A.; Mahmud, R.; Hasan, M.; Sarkar, S.; Biswas, P.K.; Mehedi, H.; Henning, J.; Mangtani, P.; Flora, M.S.; et al. Avian influenza transmission risk along live poultry trading networks in Bangladesh. Sci. Rep. 2021, 11, 19962. [Google Scholar] [CrossRef]
- Swift, L.; Hunter, P.R.; Lees, A.C.; Bell, D.J. Wildlife Trade and the Emergence of Infectious Diseases. EcoHealth 2007, 4, 25–30. [Google Scholar] [CrossRef]
- Pavlin, B.I.; Schloegel, L.M.; Daszak, P. Risk of Importing Zoonotic Diseases through Wildlife Trade, United States. Emerg. Infect. Dis. 2009, 15, 1721–1726. [Google Scholar] [CrossRef] [PubMed]
- Hooper, J. Contamination: The Case of Civets, Companionship, COVID, and SARS. J. Appl. Anim. Welf. Sci. 2022, 25, 167–179. [Google Scholar] [CrossRef]
- Gong, Q.-L.; Chen, Y.; Tian, T.; Wen, X.; Li, D.; Song, Y.-H.; Wang, Q.; Du, R.; Zhang, X.-X. Prevalence of bovine tuberculosis in dairy cattle in China during 2010–2019: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2021, 15, e0009502. [Google Scholar] [CrossRef]
- Guarner, J.; Johnson, B.J.; Paddock, C.D.; Shieh, W.-J.; Goldsmith, C.S.; Reynolds, M.G.; Damon, I.K.; Regnery, R.L.; Zaki, S.R. Monkeypox Transmission and Pathogenesis in Prairie Dogs. Emerg. Infect. Dis. 2004, 10, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Yossepowitch, O.; Gotesman, T.; Assous, M.; Marva, E.; Zimlichman, R.; Dan, M. Opisthorchiasis from Imported Raw Fish. Emerg. Infect. Dis. 2004, 10, 2122–2126. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Multistate outbreak of human Salmonella infections associated with exposure to turtles—United States, 2007–2008. MMWR Morb. Mortal. Wkly. Rep. 2008, 57, 69–72. [Google Scholar]
- May, R.M.; McLean, A.R.; Pattison, J.; Weiss, R.A.; Bell, D.; Roberton, S.; Hunter, P.R. Animal origins of SARS coronavirus: Possible links with the international trade in small carnivores. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004, 359, 1107–1114. [Google Scholar] [CrossRef]
- Kan, B.; Wang, M.; Jing, H.; Xu, H.; Jiang, X.; Yan, M.; Liang, W.; Zheng, H.; Wan, K.; Liu, Q.; et al. Molecular Evolution Analysis and Geographic Investigation of Severe Acute Respiratory Syndrome Coronavirus-Like Virus in Palm Civets at an Animal Market and on Farms. J. Virol. 2005, 79, 11892–11900. [Google Scholar] [CrossRef]
- Antibodies to SARS Coronavirus in Civets. Available online: https://stacks.cdc.gov/view/cdc/14684 (accessed on 1 May 2023).
- Kim, S.-H. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt. Viruses 2018, 10, 121. [Google Scholar] [CrossRef]
- Halbwax, M. Addressing the illegal wildlife trade in the European Union as a public health issue to draw decision makers attention. Biol. Conserv. 2020, 251, 108798. [Google Scholar] [CrossRef]
- Koh, L.P.; Li, Y.; Lee, J.S.H. The value of China’s ban on wildlife trade and consumption. Nat. Sustain. 2021, 4, 2–4. [Google Scholar] [CrossRef]
- Directive No. 29/CT-TTg on a Number of Urgent Solutions for Wildlife Management. Available online: https://english.luatvietnam.vn/directive-no-29-ct-ttg-on-a-number-of-urgent-solutions-for-wildlife-management-187252-doc1.html (accessed on 1 April 2023).
- Moise-Silverman, J. Zoonotic Disease Surveillance and Response: Is There a Duty to Intervene when a Disease is Detected? Int. J. Infect. Dis. 2022, 116, S77. [Google Scholar] [CrossRef]
- Sachan, N.; Singh, V.P. Effect of climatic changes on the prevalence of zoonotic diseases. Vet. World 2010, 3, 519. [Google Scholar]
- Naicker, P.R. The impact of climate change and other factors on zoonotic diseases. Arch. Clin. Microbiol. 2011, 2, 4. [Google Scholar]
- Tajudeen, Y.A.; Oladunjoye, I.O.; Adebayo, A.O.; Adebisi, Y.A. The need to adopt planetary health approach in understanding the potential influence of climate change and biodiversity loss on zoonotic diseases outbreaks. Public Health Pract. 2021, 2, 100095. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Sharma, R.; Gill, J.; Aulakh, R.S.; Banga, H.S. Climate change, zoonoses and India. Rev. Sci. Tech. Int. Off. Epizoot. 2011, 30, 779–788. [Google Scholar] [CrossRef]
- Lindgren, E.; Gustafson, R. Tick-borne encephalitis in Sweden and climate change. Lancet 2001, 358, 16–18. [Google Scholar] [CrossRef]
- Parkinson, A.J.; Evengard, B.; Semenza, J.C.; Ogden, N.; Børresen, M.L.; Berner, J.; Brubaker, M.; Sjöstedt, A.; Evander, M.; Hondula, D.M.; et al. Climate change and infectious diseases in the Arctic: Establishment of a circumpolar working group. Int. J. Circumpolar Health 2014, 73, 25163. [Google Scholar] [CrossRef]
- Hueffer, K.; Parkinson, A.J.; Gerlach, R.; Berner, J. Zoonotic infections in Alaska: Disease prevalence, potential impact of climate change and recommended actions for earlier disease detection, research, prevention and control. Int. J. Circumpolar Health 2013, 72, 19562. [Google Scholar] [CrossRef]
- Khan, M.D.; Thi Vu, H.H.; Lai, Q.T.; Ahn, J.W. Aggravation of Human Diseases and Climate Change Nexus. Int. J. Environ. Res. Public. Health 2019, 16, 2799. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Zhou, S.; Dong, L.; Van Boeckel, T.P.; Pei, Y.; Wu, Q.; Yuan, W.; Guo, Y.; Huang, S.; Chen, W.; et al. Climate change suggests a shift of H5N1 risk in migratory birds. Ecol. Model. 2015, 306, 6–15. [Google Scholar] [CrossRef]
- Park, B.J.; Sigel, K.; Vaz, V.; Komatsu, K.; McRill, C.; Phelan, M.; Colman, T.; Comrie, A.C.; Warnock, D.W.; Galgiani, J.N.; et al. An Epidemic of Coccidioidomycosis in Arizona Associated with Climatic Changes, 1998–2001. J. Infect. Dis. 2005, 191, 1981–1987. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Ostfeld, R.S.; Peterson, A.T.; Poulin, R.; de la Fuente, J. Effects of environmental change on zoonotic disease risk: An ecological primer. Trends Parasitol. 2014, 30, 205–214. [Google Scholar] [CrossRef]
- Rupasinghe, R.; Chomel, B.B.; Martínez-López, B. Climate change and zoonoses: A review of the current status, knowledge gaps, and future trends. Acta Trop. 2022, 226, 106225. [Google Scholar] [CrossRef] [PubMed]
- Hellberg, R.S.; Chu, E. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: A review. Crit. Rev. Microbiol. 2016, 42, 548–572. [Google Scholar] [CrossRef] [PubMed]
- Anyamba, A.; Chretien, J.-P.; Britch, S.C.; Soebiyanto, R.P.; Small, J.L.; Jepsen, R.; Forshey, B.M.; Sanchez, J.L.; Smith, R.D.; Harris, R.; et al. Global Disease Outbreaks Associated with the 2015–2016 El Niño Event. Sci. Rep. 2019, 9, 1930. [Google Scholar] [CrossRef]
- Sipari, S.; Khalil, H.; Magnusson, M.; Evander, M.; Hörnfeldt, B.; Ecke, F. Climate change accelerates winter transmission of a zoonotic pathogen. Ambio 2022, 51, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Nosrat, C.; Altamirano, J.; Anyamba, A.; Caldwell, J.M.; Damoah, R.; Mutuku, F.; Ndenga, B.; LaBeaud, A.D. Impact of recent climate extremes on mosquito-borne disease transmission in Kenya. PLoS Negl. Trop. Dis. 2021, 15, e0009182. [Google Scholar] [CrossRef]
- Huber, I.; Potapova, K.; Ammosova, E.; Beyer, W.; Blagodatskiy, S.; Desyatkin, R.; Hoelzle, L.E.; Ignateva, M.; Kokolova, L.; Lemke, S.; et al. Symposium report: Emerging threats for human health—Impact of socioeconomic and climate change on zoonotic diseases in the Republic of Sakha (Yakutia), Russia. Int. J. Circumpolar Health 2020, 79, 1715698. [Google Scholar] [CrossRef]
- Zang, S.M.; Benjenk, I.; Breakey, S.; Pusey-Reid, E.; Nicholas, P.K. The intersection of climate change with the era of COVID-19. Public Health Nurs. 2021, 38, 321–335. [Google Scholar] [CrossRef]
- Marazziti, D.; Cianconi, P.; Mucci, F.; Foresi, L.; Chiarantini, I.; Della Vecchia, A. Climate change, environment pollution, COVID-19 pandemic and mental health. Sci. Total Environ. 2021, 773, 145182. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Mishra, P.; Arora, N.K. Linkages between environmental issues and zoonotic diseases: With reference to COVID-19 pandemic. Environ. Sustain. 2021, 4, 455–467. [Google Scholar] [CrossRef]
- Shaheen, M.N.F. The concept of one health applied to the problem of zoonotic diseases. Rev. Med. Virol. 2022, 32, e2326. [Google Scholar] [CrossRef]
- Pigott, D.M.; Millear, A.I.; Earl, L.; Morozoff, C.; Han, B.A.; Shearer, F.M.; Weiss, D.J.; Brady, O.J.; Kraemer, M.U.; Moyes, C.L.; et al. Updates to the zoonotic niche map of Ebola virus disease in Africa. eLife 2016, 5, e16412. [Google Scholar] [CrossRef]
- Zeppelini, C.G.; Carvalho-Pereira, T.; Alves, R.S.; Santiago, D.C.C.; Santo, V.F.E.; Begon, M.; Costa, F.; Khalil, H. Demographic drivers of Norway rat populations from urban slums in Brazil. Urban Ecosyst. 2021, 24, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, P.; Conti, L. Links Among Human Health, Animal Health, and Ecosystem Health. Annu. Rev. Public Health 2013, 34, 189–204. [Google Scholar] [CrossRef]
- Jia, P.; Dai, S.; Wu, T.; Yang, S. New Approaches to Anticipate the Risk of Reverse Zoonosis. Trends Ecol. Evol. 2021, 36, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Ribas, M.P.; García-Ulloa, M.; Espunyes, J.; Cabezón, O. Improving the assessment of ecosystem and wildlife health: Microbiome as an early indicator. Curr. Opin. Biotechnol. 2023, 81, 102923. [Google Scholar] [CrossRef] [PubMed]
Driving Forces | Main Impacts | References |
---|---|---|
Urbanization |
| [7,8,10,14,15,18,21] |
Tourism and Zoos |
| [25,26,53,55,56] |
Climate Change |
| [82,83,89,90,95] |
Deforestation |
| [33,44,45,47,48,51] |
Wildlife Exploitation and Trade |
| [58,61,64,66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, M.M.; Turku, S.; Lehrfield, L.; Shoman, A. The Impact of Human Activities on Zoonotic Infection Transmissions. Animals 2023, 13, 1646. https://doi.org/10.3390/ani13101646
Esposito MM, Turku S, Lehrfield L, Shoman A. The Impact of Human Activities on Zoonotic Infection Transmissions. Animals. 2023; 13(10):1646. https://doi.org/10.3390/ani13101646
Chicago/Turabian StyleEsposito, Michelle Marie, Sara Turku, Leora Lehrfield, and Ayat Shoman. 2023. "The Impact of Human Activities on Zoonotic Infection Transmissions" Animals 13, no. 10: 1646. https://doi.org/10.3390/ani13101646
APA StyleEsposito, M. M., Turku, S., Lehrfield, L., & Shoman, A. (2023). The Impact of Human Activities on Zoonotic Infection Transmissions. Animals, 13(10), 1646. https://doi.org/10.3390/ani13101646