Molecular Survey and Genetic Characteristics of Vector-Borne Pathogens in Domestic Dogs from Four Regions of China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. PCR Amplification and Sequencing
2.3. Sequence Analysis
3. Results
3.1. Detection and Identification of Vector-Borne Pathogens
3.2. Sequence Analysis
3.3. Phylogenetic Analysis and Haplotype Network
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Day, M.J. One health: The importance of companion animal vector-borne diseases. Parasit. Vectors 2011, 4, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otranto, D.; Dantas-Torres, F.; Breitschwerdt, E.B. Managing canine vector-borne diseases of zoonotic concern: Part one. Trends Parasitol. 2009, 25, 157–163. [Google Scholar] [CrossRef]
- Colella, V.; Nguyen, V.L.; Tan, D.Y.; Lu, N.; Fang, F.; Zhijuan, Y.; Wang, J.; Liu, X.; Chen, X.; Dong, J.; et al. Zoonotic vectorborne pathogens and ectoparasites of dogs and cats in Eastern and Southeast Asia. Emerg. Infect. Dis. 2020, 26, 1221–1233. [Google Scholar] [CrossRef] [PubMed]
- Angelou, A.; Gelasakis, A.I.; Verde, N.; Pantchev, N.; Schaper, R.; Chandrashekar, R.; Papadopoulos, E. Prevalence and risk factors for selected canine vector-borne diseases in Greece. Parasit. Vectors 2019, 12, 283. [Google Scholar] [CrossRef]
- Miro, G.; Wright, I.; Michael, H.; Burton, W.; Hegarty, E.; Rodon, J.; Buch, J.; Pantchev, N.; von Samson-Himmelstjerna, G. Seropositivity of main vector-borne pathogens in dogs across Europe. Parasit. Vectors 2022, 15, 189. [Google Scholar] [CrossRef]
- Morelli, S.; Diakou, A.; Di Cesare, A.; Colombo, M.; Traversa, D. Canine and feline parasitology: Analogies, differences, and relevance for human health. Clin. Microbiol. Rev. 2021, 34, e0026620. [Google Scholar] [CrossRef]
- Baneth, G.; Samish, M.; Shkap, V. Life cycle of Hepatozoon canis (Apicomplexa: Adeleorina: Hepatozoidae) in the tick Rhipicephalus sanguineus and domestic dog (Canis familiaris). J. Parasitol. 2007, 93, 283–299. [Google Scholar] [CrossRef]
- Ewing, S.A.; Mathew, J.S.; Panciera, R.J. Transmission of Hepatozoon americanum (Apicomplexa: Adeleorina) by ixodids (Acari: Ixodidae). J. Med. Entomol. 2002, 39, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Murata, T.; Inoue, M.; Taura, Y.; Nakama, S.; Abe, H.; Fujisaki, K. Detection of Hepatozoon canis oocyst from ticks collected from the infected dogs. J. Vet. Med. Sci. 1995, 57, 111–112. [Google Scholar] [CrossRef] [Green Version]
- Forlano, M.; Scofield, A.; Elisei, C.; Fernandes, K.R.; Ewing, S.A.; Massard, C.L. Diagnosis of Hepatozoon spp. in Amblyomma ovale and its experimental transmission in domestic dogs in Brazil. Vet. Parasitol. 2005, 134, 1–7. [Google Scholar] [CrossRef]
- Giannelli, A.; Lia, R.P.; Annoscia, G.; Buonavoglia, C.; Lorusso, E.; Dantas-Torres, F.; Baneth, G.; Otranto, D. Rhipicephalus turanicus, a new vector of Hepatozoon canis. Parasitology 2017, 144, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Hornok, S.; Tanczos, B.; Fernandez de Mera, I.G.; de la Fuente, J.; Hofmann-Lehmann, R.; Farkas, R. High prevalence of Hepatozoon-infection among shepherd dogs in a region considered to be free of Rhipicephalus sanguineus. Vet. Parasitol. 2013, 196, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Baneth, G.; Mathew, J.S.; Shkap, V.; Macintire, D.K.; Barta, J.R.; Ewing, S.A. Canine hepatozoonosis: Two disease syndromes caused by separate Hepatozoon spp. Trends Parasitol. 2003, 19, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Baneth, G. Perspectives on canine and feline hepatozoonosis. Vet. Parasitol. 2011, 181, 3–11. [Google Scholar] [CrossRef]
- Johnson, E.M.; Panciera, R.J.; Allen, K.E.; Sheets, M.E.; Beal, J.D.; Ewing, S.A.; Little, S.E. Alternate pathway of infection with Hepatozoon americanum and the epidemiologic importance of predation. J. Vet. Intern. Med. 2009, 23, 1315–1318. [Google Scholar] [CrossRef]
- Schafer, I.; Muller, E.; Nijhof, A.M.; Aupperle-Lellbach, H.; Loesenbeck, G.; Cramer, S.; Naucke, T.J. First evidence of vertical Hepatozoon canis transmission in dogs in Europe. Parasit. Vectors 2022, 15, 296. [Google Scholar] [CrossRef]
- Barati, A.; Razmi, G.R. A parasitologic and molecular survey of Hepatozoon canis infection in stray dogs in northeastern Iran. J. Parasitol. 2018, 104, 413–417. [Google Scholar] [CrossRef]
- Tadesse, H.; Grillini, M.; Simonato, G.; Mondin, A.; Dotto, G.; Frangipane di Regalbono, A.; Kumsa, B.; Cassini, R.; Menandro, M.L. Epidemiological survey on tick-borne pathogens with zoonotic potential in dog populations of southern Ethiopia. Trop. Med. Infect. Dis. 2023, 8, 102. [Google Scholar] [CrossRef]
- Allen, K.E.; Johnson, E.M.; Little, S.E. Hepatozoon spp. infections in the United States. Vet. Clin. North. Am. Small Anim. Pr. 2011, 41, 1221–1238. [Google Scholar] [CrossRef]
- Andersson, M.O.; Tolf, C.; Tamba, P.; Stefanache, M.; Waldenstrom, J.; Dobler, G.; Chitimia-Dobler, L. Canine tick-borne diseases in pet dogs from Romania. Parasit Vectors 2017, 10, 155. [Google Scholar] [CrossRef] [Green Version]
- Otranto, D.; Dantas-Torres, F.; Weigl, S.; Latrofa, M.S.; Stanneck, D.; Decaprariis, D.; Capelli, G.; Baneth, G. Diagnosis of Hepatozoon canis in young dogs by cytology and PCR. Parasit. Vectors 2011, 4, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mierzejewska, E.J.; Dwuznik, D.; Koczwarska, J.; Stanczak, L.; Opalinska, P.; Krokowska-Paluszak, M.; Wierzbicka, A.; Gorecki, G.; Bajer, A. The red fox (Vulpes vulpes), a possible reservoir of Babesia vulpes, B. canis and Hepatozoon canis and its association with the tick Dermacentor reticulatus occurrence. Ticks Tick. Borne Dis. 2021, 12, 101551. [Google Scholar] [CrossRef]
- Ortuno, M.; Nachum-Biala, Y.; Garcia-Bocanegra, I.; Resa, M.; Berriatua, E.; Baneth, G. An epidemiological study in wild carnivores from Spanish Mediterranean ecosystems reveals association between Leishmania infantum, Babesia spp. and Hepatozoon spp. infection and new hosts for Hepatozoon martis, Hepatozoon canis and Sarcocystis spp. Transbound. Emerg. Dis. 2022, 69, 2110–2125. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, L.; Cortes, H.C.; Eyal, O.; Reis, A.; Lopes, A.P.; Vila-Vicosa, M.J.; Rodrigues, P.A.; Baneth, G. Molecular and histopathological detection of Hepatozoon canis in red foxes (Vulpes vulpes) from Portugal. Parasit. Vectors 2014, 7, 113. [Google Scholar] [CrossRef] [Green Version]
- Gabrielli, S.; Kumlien, S.; Calderini, P.; Brozzi, A.; Iori, A.; Cancrini, G. The first report of Hepatozoon canis identified in Vulpes vulpes and ticks from Italy. Vector Borne Zoonotic Dis. 2010, 10, 855–859. [Google Scholar] [CrossRef] [PubMed]
- Cassini, R.; Zanutto, S.; Frangipane di Regalbono, A.; Gabrielli, S.; Calderini, P.; Moretti, A.; Tampieri, M.P.; Pietrobelli, M. Canine piroplasmosis in Italy: Epidemiological aspects in vertebrate and invertebrate hosts. Vet. Parasitol. 2009, 165, 30–35. [Google Scholar] [CrossRef]
- Helm, C.S.; Samson-Himmelstjerna, G.V.; Liesner, J.M.; Kohn, B.; Muller, E.; Schaper, R.; Pachnicke, S.; Schulze, C.; Krucken, J. Identical 18S rRNA haplotypes of Hepatozoon canis in dogs and foxes in Brandenburg, Germany. Ticks Tick. Borne Dis. 2020, 11, 101520. [Google Scholar] [CrossRef] [PubMed]
- Margalit Levi, M.; Nachum-Biala, Y.; King, R.; Baneth, G. A survey of Babesia spp. and Hepatozoon spp. in wild canids in Israel. Parasit. Vectors 2018, 11, 150. [Google Scholar] [CrossRef] [PubMed]
- Farkas, R.; Solymosi, N.; Takacs, N.; Hornyak, A.; Hornok, S.; Nachum-Biala, Y.; Baneth, G. First molecular evidence of Hepatozoon canis infection in red foxes and golden jackals from Hungary. Parasit. Vectors 2014, 7, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baneth, G.; Shkap, V.; Presentey, B.Z.; Pipano, E. Hepatozoon canis: The prevalence of antibodies and gametocytes in dogs in Israel. Vet. Res. Commun. 1996, 20, 41–46. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, J.; Shi, Z.; Song, C.; Zheng, X.; Zhang, Y.; Hao, Y.; Dong, H.; Wei, L.; El-Mahallawy, H.S.; et al. Molecular detection of vector-borne agents in dogs from ten provinces of China. Parasit. Vectors 2015, 8, 501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, W.P.; Xie, G.C.; Xue, Z.Q.; Yu, J.J.; Jian, R.; Du, L.Y.; Li, Y.N. Molecular detection of Hepatozoon canis in dogs and ticks in Shaanxi province, China. Comp. Immunol. Microbiol. Infect. Dis. 2020, 72, 101514. [Google Scholar] [CrossRef]
- Poolsawat, N.; Nooroong, P.; Junsiri, W.; Watthanadirek-Wijidwong, A.; Srionrod, N.; Sangchuai, S.; Minsakorn, S.; Tazawa, K.; Anuracpreeda, P. Ehrlichia canis: Molecular characterization and genetic diversity based on the p28 and trp36 genes. Res. Vet. Sci. 2023, 155, 88–102. [Google Scholar] [CrossRef]
- Skotarczak, B. Canine ehrlichiosis. Ann. Agric. Env. Med. 2003, 10, 137–141. [Google Scholar]
- Dordio, A.M.; Beck, R.; Nunes, T.; Pereira da Fonseca, I.; Gomes, J. Molecular survey of vector-borne diseases in two groups of domestic dogs from Lisbon, Portugal. Parasit. Vectors 2021, 14, 163. [Google Scholar] [CrossRef] [PubMed]
- Harrus, S.; Waner, T. Diagnosis of canine monocytotropic ehrlichiosis (Ehrlichia canis): An overview. Vet. J. 2011, 187, 292–296. [Google Scholar] [CrossRef]
- Komnenou, A.A.; Mylonakis, M.E.; Kouti, V.; Tendoma, L.; Leontides, L.; Skountzou, E.; Dessiris, A.; Koutinas, A.F.; Ofri, R. Ocular manifestations of natural canine monocytic ehrlichiosis (Ehrlichia canis): A retrospective study of 90 cases. Vet. Ophthalmol. 2007, 10, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.; Bodor, M.; Zhang, C.; Xiong, Q.; Rikihisa, Y. Human infection with Ehrlichia canis accompanied by clinical signs in Venezuela. Ann. N. Y Acad. Sci. 2006, 1078, 110–117. [Google Scholar] [CrossRef]
- Harrus, S.; Kass, P.H.; Klement, E.; Waner, T. Canine monocytic ehrlichiosis: A retrospective study of 100 cases, and an epidemiological investigation of prognostic indicators for the disease. Vet. Rec. 1997, 141, 360–363. [Google Scholar] [CrossRef]
- Pennisi, M.G.; Capri, A.; Solano-Gallego, L.; Lombardo, G.; Torina, A.; Masucci, M. Prevalence of antibodies against Rickettsia conorii, Babesia canis, Ehrlichia canis, and Anaplasma phagocytophilum antigens in dogs from the Stretto di Messina area (Italy). Ticks Tick. Borne Dis. 2012, 3, 315–318. [Google Scholar] [CrossRef]
- Mircean, V.; Dumitrache, M.O.; Gyorke, A.; Pantchev, N.; Jodies, R.; Mihalca, A.D.; Cozma, V. Seroprevalence and geographic distribution of Dirofilaria immitis and tick-borne infections (Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, and Ehrlichia canis) in dogs from Romania. Vector Borne Zoonotic Dis. 2012, 12, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Sukara, R.; Andric, N.; Andric, J.F.; Mihaljica, D.; Veinovic, G.; Rankovic, V.; Tomanovic, S. Autochthonous infection with Ehrlichia canis and Hepatozoon canis in dogs from Serbia. Vet. Med. Sci. 2023, 9, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Manoj, R.R.S.; Iatta, R.; Latrofa, M.S.; Capozzi, L.; Raman, M.; Colella, V.; Otranto, D. Canine vector-borne pathogens from dogs and ticks from Tamil Nadu, India. Acta Trop. 2020, 203, 105308. [Google Scholar] [CrossRef]
- Suh, G.H.; Ahn, K.S.; Ahn, J.H.; Kim, H.J.; Leutenegger, C.; Shin, S. Serological and molecular prevalence of canine vector-borne diseases (CVBDs) in Korea. Parasit. Vectors 2017, 10, 146. [Google Scholar] [CrossRef] [Green Version]
- Iatta, R.; Sazmand, A.; Nguyen, V.L.; Nemati, F.; Ayaz, M.M.; Bahiraei, Z.; Zafari, S.; Giannico, A.; Greco, G.; Dantas-Torres, F.; et al. Vector-borne pathogens in dogs of different regions of Iran and Pakistan. Parasitol. Res. 2021, 120, 4219–4228. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Q.; Wang, D.; Li, W.; Beugnet, F.; Zhou, J. Epidemiological survey of ticks and tick-borne pathogens in pet dogs in south-eastern China. Parasite 2017, 24, 35. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Wang, L.; Lei, Y.; Ren, Y.; Cai, K.; Zhang, J.; Zhang, Z.; Yu, W.; Peng, Y.; Cai, X.; et al. Molecular detection and genetic variability of Ehrlichia canis in pet dogs in Xinjiang, China. Vet. World 2020, 13, 916–922. [Google Scholar]
- Wong, S.S.; Teng, J.L.; Poon, R.W.; Choi, G.K.; Chan, K.H.; Yeung, M.L.; Hui, J.J.; Yuen, K.Y. Comparative evaluation of a point-of-care immunochromatographic test SNAP 4Dx with molecular detection tests for vector-borne canine pathogens in Hong Kong. Vector Borne Zoonotic Dis. 2011, 11, 1269–1277. [Google Scholar] [CrossRef] [Green Version]
- Muguiro, D.H.; Nekouei, O.; Lee, K.Y.; Hill, F.; Barrs, V.R. Prevalence of Babesia and Ehrlichia in owned dogs with suspected tick-borne infection in Hong Kong, and risk factors associated with Babesia gibsoni. Prev. Vet. Med. 2023, 214, 105908. [Google Scholar] [CrossRef]
- Gary, A.T.; Richmond, H.L.; Tasker, S.; Hackett, T.B.; Lappin, M.R. Survival of Mycoplasma haemofelis and 'Candidatus Mycoplasma haemominutum' in blood of cats used for transfusions. J. Feline Med. Surg. 2006, 8, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Willi, B.; Novacco, M.; Meli, M.; Wolf-Jackel, G.; Boretti, F.; Wengi, N.; Lutz, H.; Hofmann-Lehmann, R. Haemotropic mycoplasmas of cats and dogs: Transmission, diagnosis, prevalence and importance in Europe. Schweiz. Arch. Tierheilkd. 2010, 152, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Wengi, N.; Willi, B.; Boretti, F.S.; Cattori, V.; Riond, B.; Meli, M.L.; Reusch, C.E.; Lutz, H.; Hofmann-Lehmann, R. Real-time PCR-based prevalence study, infection follow-up and molecular characterization of canine hemotropic mycoplasmas. Vet. Microbiol. 2008, 126, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Novacco, M.; Meli, M.L.; Gentilini, F.; Marsilio, F.; Ceci, C.; Pennisi, M.G.; Lombardo, G.; Lloret, A.; Santos, L.; Carrapico, T.; et al. Prevalence and geographical distribution of canine hemotropic mycoplasma infections in Mediterranean countries and analysis of risk factors for infection. Vet. Microbiol. 2010, 142, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Inpankaew, T.; Hii, S.F.; Chimnoi, W.; Traub, R.J. Canine vector-borne pathogens in semi-domesticated dogs residing in northern Cambodia. Parasit. Vectors 2016, 9, 253. [Google Scholar] [CrossRef] [Green Version]
- Aktas, M.; Ozubek, S. Molecular survey of haemoplasmas in shelter dogs and associations with Rhipicephalus sanguineus sensu lato. Med. Vet. Entomol. 2017, 31, 457–461. [Google Scholar] [CrossRef]
- Cortese, L.; Beall, M.; Buono, F.; Buch, J.; Pacifico, L.; Neola, B.; Palatucci, A.T.; Tyrrell, P.; Fioretti, A.; Breitschwerdt, E.B.; et al. Distribution and risk factors of canine haemotropic mycoplasmas in hunting dogs from southern Italy. Vet. Microbiol. 2020, 251, 108910. [Google Scholar] [CrossRef]
- Hetzel, N.J.; Barker, E.N.; Helps, C.R.; Tasker, S.; Arteaga, A.; Barrs, V.R.; Beatty, J. Prevalence of canine haemotropic mycoplasma infections in Sydney, Australia. Vet. Rec. 2012, 171, 126. [Google Scholar] [CrossRef]
- Zheng, W.Q.; Chen, H.Y.; Liu, M.M.; Adjou Moumouni, P.F.; Efstratiou, A.; Liu, Z.B.; Xuan, X.N. First evidence of Mycoplasma haemocanis in China. Trop. Biomed. 2017, 34, 983–990. [Google Scholar]
- Zhuang, Q.J.; Zhang, H.J.; Lin, R.Q.; Sun, M.F.; Liang, X.J.; Qin, X.W.; Pu, W.J.; Zhu, X.Q. The occurrence of the feline “Candidatus Mycoplasma haemominutum” in dog in China confirmed by sequence-based analysis of ribosomal DNA. Trop. Anim. Health Prod. 2009, 41, 689–692. [Google Scholar] [CrossRef]
- Obara, H.; Fujihara, M.; Watanabe, Y.; Ono, H.K.; Harasawa, R. A feline hemoplasma, ‘Candidatus Mycoplasma haemominutum’, detected in dog in Japan. J. Vet. Med. Sci. 2011, 73, 841–843. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Li, B.; Li, J.; Chen, S.; Wang, L.; Bai, Z.; Zhu, L.; Yan, B.; Yao, L. Molecular detection of haemophilic pathogens reveals evidence of Candidatus Mycoplasma haemobos in dogs and parasitic ticks in central China. BMC Vet. Res. 2022, 18, 254. [Google Scholar] [CrossRef]
- Parola, P.; Roux, V.; Camicas, J.L.; Baradji, I.; Brouqui, P.; Raoult, D. Detection of ehrlichiae in African ticks by polymerase chain reaction. Trans. R. Soc. Trop. Med. Hyg. 2000, 94, 707–708. [Google Scholar] [CrossRef]
- Inokuma, H.; Okuda, M.; Ohno, K.; Shimoda, K.; Onishi, T. Analysis of the 18S rRNA gene sequence of a Hepatozoon detected in two Japanese dogs. Vet. Parasitol. 2002, 106, 265–271. [Google Scholar] [CrossRef]
- Varanat, M.; Maggi, R.G.; Linder, K.E.; Breitschwerdt, E.B. Molecular prevalence of Bartonella, Babesia, and hemotropic Mycoplasma sp. in dogs with splenic disease. J. Vet. Intern. Med. 2011, 25, 1284–1291. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Nicholas, K.B.; Nicholas, H.B.J.; Deerfield, D.W.I. GeneDoc: Analysis and vsualization of genetic variation. Embnew News 1997, 4, 14. Available online: http://nrbsc.org/gfx/genedoc/ (accessed on 5 April 2023).
- Clement, M.; Posada, D.; Crandall, K.A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 2000, 9, 1657–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leigh, J.W.; Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Dalimi, A.; Jameie, F.; Mohammadiha, A.; Barati, M.; Molaei, S. Molecular detection of Hepatozoon canis in dogs of Ardabil Province, northwest of Iran. Arch. Razi Inst. 2017, 72, 197–201. [Google Scholar] [PubMed]
- Ahmad, A.S.; Saeed, M.A.; Rashid, I.; Ashraf, K.; Shehzad, W.; Traub, R.J.; Baneth, G.; Jabbar, A. Molecular characterization of Hepatozoon canis from farm dogs in Pakistan. Parasitol. Res. 2018, 117, 1131–1138. [Google Scholar] [CrossRef]
- Demoner, L.C.; Magro, N.M.; da Silva, M.R.L.; de Paula Antunes, J.M.A.; Calabuig, C.I.P.; O’Dwyer, L.H. Hepatozoon spp. infections in wild rodents in an area of endemic canine hepatozoonosis in southeastern Brazil. Ticks Tick. Borne Dis. 2016, 7, 859–864. [Google Scholar] [CrossRef] [Green Version]
- Alho, A.M.; Lima, C.; Latrofa, M.S.; Colella, V.; Ravagnan, S.; Capelli, G.; Madeira de Carvalho, L.; Cardoso, L.; Otranto, D. Molecular detection of vector-borne pathogens in dogs and cats from Qatar. Parasit. Vectors 2017, 10, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singla, L.D.; Sumbria, D.; Mandhotra, A.; Bal, M.S.; Kaur, P. Critical analysis of vector-borne infections in dogs: Babesia vogeli, Babesia gibsoni, Ehrlichia canis and Hepatozoon canis in Punjab, India. Acta Parasitol. 2016, 61, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Poolsawat, N.; Tazawa, K.; Junsiri, W.; Watthanadirek, A.; Srionrod, N.; Chawengkirttikul, R.; Anuracpreeda, P. Molecular discrimination and genetic diversity of three common tick-borne pathogens in dogs in Thailand. Parasitology 2022, 149, 65–75. [Google Scholar] [CrossRef]
- Gruenberger, I.; Liebich, A.V.; Ajibade, T.O.; Obebe, O.O.; Ogbonna, N.F.; Wortha, L.N.; Unterkofler, M.S.; Fuehrer, H.P.; Ayinmode, A.B. Vector-borne pathogens in guard dogs in Ibadan, Nigeria. Pathogens 2023, 12, 406. [Google Scholar] [CrossRef] [PubMed]
- Stich, R.W.; Blagburn, B.L.; Bowman, D.D.; Carpenter, C.; Cortinas, M.R.; Ewing, S.A.; Foley, D.; Foley, J.E.; Gaff, H.; Hickling, G.J.; et al. Quantitative factors proposed to influence the prevalence of canine tick-borne disease agents in the United States. Parasit. Vectors 2014, 7, 417. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.K.; Zhang, X.Y.; Liu, J.Z. Ticks (Acari: Ixodoidea) in China: Geographical distribution, host diversity, and specificity. Arch. Insect Biochem. Physiol. 2019, 102, e21544. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Song, M.; Liu, H.; Wang, B.; Wang, S.; Wang, Z.; Ma, H.; Li, Z.; Zeng, Z.; Qian, J.; et al. Molecular detection and characterization of zoonotic and veterinary pathogens in ticks from northeastern China. Front. Microbiol. 2016, 7, 1913. [Google Scholar] [CrossRef] [Green Version]
- Arrais, R.C.; Paula, R.C.; Martins, T.F.; Nieri-Bastos, F.A.; Marcili, A.; Labruna, M.B. Survey of ticks and tick-borne agents in maned wolves (Chrysocyon brachyurus) from a natural landscape in Brazil. Ticks Tick. Borne Dis. 2021, 12, 101639. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.; Veneziano, V.; D'Alessio, N.; Di Prisco, F.; Lucibelli, M.G.; Borriello, G.; Cerrone, A.; Dantas-Torres, F.; Latrofa, M.S.; Otranto, D.; et al. Molecular survey of Ehrlichia canis and Coxiella burnetii infections in wild mammals of southern Italy. Parasitol. Res. 2016, 115, 4427–4431. [Google Scholar] [CrossRef]
- Aziz, M.U.; Hussain, S.; Song, B.; Ghauri, H.N.; Zeb, J.; Sparagano, O.A. Ehrlichiosis in dogs: A comprehensive review about the pathogen and its vectors with emphasis on south and east Asian countries. Vet. Sci. 2023, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Kelly, P.J.; Zhang, J.; Luo, Q.; Yang, Y.; Mao, Y.; Yang, Z.; Li, J.; Wu, H.; Wang, C. Molecular detection of Anaplasma spp. and Ehrlichia spp. in ruminants from twelve provinces of China. Can. J. Infect. Dis. Med. Microbiol. 2016, 2016, 9183861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Chen, Z.; Liu, Z.; Liu, J.; Yang, J.; Li, Q.; Li, Y.; Luo, J.; Yin, H. Molecular survey of Anaplasma and Ehrlichia of red deer and sika deer in Gansu, China in 2013. Transbound. Emerg. Dis. 2016, 63, e228–e236. [Google Scholar] [CrossRef] [PubMed]
- Vasquez-Aguilar, A.A.; Barbachano-Guerrero, A.; Angulo, D.F.; Jarquin-Diaz, V.H. Phylogeography and population differentiation in Hepatozoon canis (Apicomplexa: Hepatozoidae) reveal expansion and gene flow in world populations. Parasit. Vectors 2021, 14, 467. [Google Scholar] [CrossRef]
- Hodzic, A.; Georges, I.; Postl, M.; Duscher, G.G.; Jeschke, D.; Szentiks, C.A.; Ansorge, H.; Heddergott, M. Molecular survey of tick-borne pathogens reveals a high prevalence and low genetic variability of Hepatozoon canis in free-ranging grey wolves (Canis lupus) in Germany. Ticks Tick. Borne Dis. 2020, 11, 101389. [Google Scholar] [CrossRef]
- Rollins, R.E.; Schaper, S.; Kahlhofer, C.; Frangoulidis, D.; Strauss, A.F.T.; Cardinale, M.; Springer, A.; Strube, C.; Bakkes, D.K.; Becker, N.S.; et al. Ticks (Acari: Ixodidae) on birds migrating to the island of Ponza, Italy, and the tick-borne pathogens they carry. Ticks Tick. Borne Dis. 2021, 12, 101590. [Google Scholar] [CrossRef]
Locations | Longitude Latitude | No. of Samples | No. of Positive Samples | Prevalence (%, 95% CI) |
---|---|---|---|---|
Chongqing | 105.17–110.11° E, 28.10–32.13° N | 203 | 5 | 2.46% (0.80–5.65) |
Hubei | 108.21–116.07° E, 29.05–33.20° N | 57 | 5 | 8.77% (2.91–19.30) |
Fujian | 115.50–120.40° E, 23.30–28.22° N | 23 | 0 | 0 |
Shandong | 114.19–122.43° E, 34.22–38.23° N | 23 | 0 | 0 |
Total | 306 | 10 | 3.27% (1.58–5.93) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, F.; Guo, C.; Li, D.; Tian, Z.; Li, F. Molecular Survey and Genetic Characteristics of Vector-Borne Pathogens in Domestic Dogs from Four Regions of China. Animals 2023, 13, 1867. https://doi.org/10.3390/ani13111867
Yin F, Guo C, Li D, Tian Z, Li F. Molecular Survey and Genetic Characteristics of Vector-Borne Pathogens in Domestic Dogs from Four Regions of China. Animals. 2023; 13(11):1867. https://doi.org/10.3390/ani13111867
Chicago/Turabian StyleYin, Fangyuan, Chuanjiang Guo, Dong Li, Zhuojia Tian, and Facai Li. 2023. "Molecular Survey and Genetic Characteristics of Vector-Borne Pathogens in Domestic Dogs from Four Regions of China" Animals 13, no. 11: 1867. https://doi.org/10.3390/ani13111867
APA StyleYin, F., Guo, C., Li, D., Tian, Z., & Li, F. (2023). Molecular Survey and Genetic Characteristics of Vector-Borne Pathogens in Domestic Dogs from Four Regions of China. Animals, 13(11), 1867. https://doi.org/10.3390/ani13111867