
Citation: He, X.; Wang, W.; Sun, W.;

Chu, M. Photoperiod Induces DNA

Methylation Changes in the

Melatonin Receptor 1A Gene in Ewes.

Animals 2023, 13, 1917. https://

doi.org/10.3390/ani13121917

Academic Editors: Magdalena

Kowalik, Malgorzata Grzesiak

and Robert Rȩkawiecki
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Simple Summary: Accurate timing of photoperiod changes is vital for animal reproduction. Previous
research has shown that the polymorphisms and expression of melatonin receptor 1A (MTNR1A)
play essential roles in changes in the ovine estrus cycle and seasonal reproduction. In this study,
we measured the expression of MTNR1A in the ovine hypothalamus after different photoperiod
treatments (short photoperiod treatment for 42 days, SP42; long photoperiod treatment for 42 days,
LP42; 42 days of short photoperiod followed by 42 days of long photoperiod treatments, SP-LP42).
Subsequently, the core promoter and its methylation levels at CpG sites in the MTNR1A gene in
different photoperiod treatment groups were identified. We found that the core promoter region in
MTNR1A was located in a 540 bp region upstream of the transcription start site (TSS) and that the
difference in the DNA methylation levels at CpG sites or the expression of MTNR1A was significantly
varied in different photoperiod groups. These results suggested that the photoperiod induced the
DNA methylation of the MTNR1A gene, changing its expression. The finding of photoperiod-induced
DNA methylation in the MTNR1A gene is valuable for the further study of seasonal reproduction
in sheep.

Abstract: Research has shown that MTNR1A plays an essential role in the estrus cycle and seasonal
reproduction changes in sheep. However, few people have focused on the DNA methylation of
MTNR1A by season or photoperiod. In this study, using qPCR and Western blotting, we measured the
MTNR1A expression in the hypothalamus of ovariectomized and estradiol-treated (OVX + E2) sheep
under different photoperiod treatment conditions. Subsequently, the core promoter of the MTNR1A
gene was identified, and its methylation level in sheep exposed to different photoperiod treatments
was measured by pyrosequencing. The results showed that MTNR1A gene expression significantly
differed between the short 42-day photoperiod (SP42) and the LP42 or combined SP-LP42 treatment
groups (p < 0.05). In addition, we determined that the core MTNR1A promoter region was within
540 bp upstream of the transcriptional start site (TSS) and that the DNA methylation levels at CpG
sites in the SP42 vs. LP42 and SP42 vs. SP-LP42 groups significantly differed. Finally, a significant
negative correlation (p < 0.001) between gene expression and DNA methylation levels was revealed,
suggesting that photoperiod may induce DNA methylation of the MTNR1A gene and thus change
its expression. The findings provide valuable bases for the further study of seasonal reproduction
in sheep.
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1. Introduction

Animals with seasonal breeding behaviors are sensitive to changes in photoperiods,
which guide seasonal reproduction and ensure the survival of the next generation, and most
mammals harbor a highly precise mechanism for sensing photoperiods and show marked
behavioral changes in response to small photoperiod alterations. In animals that live at tem-
perate latitudes, changes related to photoperiods are temporal signals that initiate changes
in hormone secretion and reproductive status [1]. Changes in the photoperiod are translated
into physiological signals through nighttime secretion of melatonin (MLT) from the pineal
gland. Then, MLT, binding to its receptor (MTNR), plays multiple biological functions,
including the regulation of animal sexual behavior [2], early development [3], seasonal
reproduction [4], and circadian rhythm [5]. Mammalian MLT receptors can be classified
into two subtypes, melatonin receptor 1A (MTNR1A) and MTNR1B, and numerous studies
have shown that MLT primarily binds with MTNR1A in the suprachiasmatic nucleus
(SCN) and that the hypothalamus plays an important role in animal reproduction [6,7].
A polymorphism in MTNR1A gene exon 2 is associated with reproduction in several
sheep breeds, including Aragonesa [8], Dorset [9], Awassi [4], and Sarda [10], and the
expression of MTNR1A in the hypothalamus is affected by seasonal photoperiod-induced
steroid hormone secretion during the estrous cycle [11]. Our previous study revealed that
the expression of the MTNR1A gene in ovariectomized ewes changed with photoperiod
variations [12].

Recently, several studies have indicated that DNA methylation and histone acetylation
modification contributes to the regulated expression of genes encoding hypothalamic pep-
tides that control reproductive activities. Tomikawa’s studies showed that estrogen induces
the recruitment of estrogen receptor α and histone acetylation at the Kiss1 promoter region
of AVPV and thus enhances chromatin loop formation in the Kiss1 promoter and Kiss1
gene enhancer, increasing AVPV-specific Kiss1 gene expression [13]. A positive correlation
between Kiss1 gene expression and histone H3 acetylation of Kiss1 during different estrous
stages was also reported in sheep in our previous study [14]. In addition, DNA methylation
plays a vital role in the regulation of hypothalamus-related reproductive functions. Several
differentially methylated CpG or CpH genes, including MAX, MMP2, FGF11, and GSK3B,
have been significantly associated with puberty, as determined via a genome-wide DNA
methylation analysis of the hypothalamus in sheep [15], goats [16], yak [17], and mice [18].
In the hamster hypothalamus, short photoperiods and winter-like MLT levels inhibited
hypothalamic DNA methyltransferase expression and reduced type III deiodinase (dio3)
promoter DNA methylation, which upregulated dio3 expression and induced gonadal
regression, while refractoriness to short vernal photoperiods reestablished summer-like
methylation of the dio3 promoter, dio3 expression, and reproductive competence [19]. In
addition, DNA methylation changes suggest a diapause response in wasps; specifically,
the photoperiodic timing in Nasonia was induced, and when DNA methyltransferase 1a
(Dnmt1a) and Dnmt3 expression was knocked down or DNA methylation was pharma-
cologically blocked, the photoperiodic diapause response was largely disrupted in these
wasps [20].

To date, most studies have focused on the association between the expression of the
MTNR1A gene or its polymorphisms and ovine seasonal reproduction. Although large-
scale “methylome” data indicate that cytosine methylation is prevalent at CpG islands in the
promoters of important reproductive genes, such as the dio3 gene, little research has been
conducted on MTNR1A methylation. We speculate that the expression of the MTNR1A gene
may also be regulated by DNA methylation based on our previous study [12]. Therefore,
in order to explore whether photoperiod changes induce DNA methylation, resulting in
significant differences in gene or protein expression, we analyzed the DNA methylation
level of the CpG island near the MTNR1A gene core promoter region by distinguishing
differences in gene expression under different photoperiod conditions. The results may
provide new insights into the photoperiod response (seasonal estrus) due to epigenetic
modification in sheep.
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2. Materials and Methods
2.1. Animals and Sample Collection

A cohort of nine clinically normal, non-pregnant Sunite ewes (weighing between 35
and 40 kg and aged three years) were selected from Urat Middle Banner, BayanNur City,
Inner Mongolia Autonomous Region, China, and subsequently housed at a farm located at
Tianjin, China. These ewes were provided with ad libitum access to food and water. The
bilateral ovariectomy and estradiol treatments were previously described [12,21]. Briefly,
the estradiol (E2) treatment was administered through implants with an inner diameter
of 3.35 mm and an outer diameter of 4.65 mm, containing 20 mg crystalline 17β-estradiol
(Sigma Chemical Co., St. Louis, MO, USA). The axillary region was the site of implantation
for devices intended to generate circulating E2 levels of approximately 3–5 pg/mL. Sub-
sequently, an equivalent number of ewes were allocated to three photoperiod-controlled
chambers (SP, an abbreviated photoperiod of 8/16 h light–dark; LP, an extended photope-
riod of 8/16h light–dark; and SP that was converted to an LP). Following photoperiodic
treatments, the sheep were humanely euthanized on SP day 42 (SP42), LP42, and SP-LP42,
and the hypothalamic tissues were promptly extracted from the brain, rinsed with PBS
(pH 7.4), flash-frozen in liquid nitrogen, and preserved at −80 ◦C for subsequent analysis.

2.2. qPCR and Western Blotting

The isolation of total RNA from each sample was carried out using a TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) followed by the detection of RNA degradation and
contamination using 1% agarose gels prior to subsequent analysis. Subsequently, cDNA
was synthesized from the RNA samples post-sequencing using a PrimeScript™ RT reagent
kit (TaKaRa, Dalian, China). The expression of the MTNR1A gene (GenBank accession
no. NM_001009725.1) was measured using specific primers listed in Table 1. qPCR was
performed on a Roche LightCycler 480 (Roche Applied Science, Mannheim, Germany)
using a TB Green assay kit (TaKaRa, Dalian, China). The qPCR mixture and program
have been described [22], and ACTB was used as the reference gene. In addition, the
hypothalamus tissues were also lysed with a proteinase inhibitor-containing lysis buffer
to isolate total proteins. A 12% SurePAGE gel (GenScript, Nanjing, China) was used to
separate equivalent amounts of the isolated protein. After electrophoresis, the separated
proteins were transferred onto a PVDF membrane (Pall, Emiliano Zapata, Mexico), which
was sealed with a sealing solution (Tiangen, Beijing, China). The blocked membrane
was incubated overnight at 4 ◦C with anti-MTNR1A antibody (1:1000, ab87639, Abcam,
Boston, MA, USA), and the GAPDH (1:2000, ab263962, Abcam) was used as the internal
reference. After rinsing 3 times with Tris-buffered saline/Tween, the corresponding HRP-
labeled sheep anti-goat IgG (1:5000, Proteintech, Chicago, IL, USA) was used to incubate
the membranes for 1 h at room temperature. The protein blots were visualized with an
enhanced chemiluminescent reagent (Beyotime, Shanghai, China).

Table 1. Primer information for qPCR.

Primer Name Sequences (5′-3′) Product Size (bp)

MTNR1A-F CCTCAGATACGGCAAGCTG
127MTNR1A-R GATCCTCGGGTCATACTGCA

ACTB-F GCTGTATTCCCCTCCATCGT
97ACTB-R GGATACCTCTCTTGCTCTGG

2.3. Isolation of the 5′-Flanking Region and Luciferase Reporter Vector Construction

A 2000 bp segment including the transcription start site (TSS) of the ovine MTNR1A
gene (GenBank: NM_001009725.1) was obtained to identify the core promoter, and the
purified PCR products were cloned into a pMD18-T vector (TaKaRa, Dalian, China). Then,
the sequence of the recombinant vector was confirmed by sequencing. To produce lu-
ciferase reporter constructs including MNTR1A promoter fragments of different sizes, we
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truncated the promoter and subcloned it into a promoterless pGL3-basic vector (Promega,
Wisconsin, USA). The recombinant constructs were named pGL3-P1 (−1/−540), pGL3-
P2 (−1/−800), pGL3-P3 (−1/−1080), pGL3-P4 (−1/−1560), pGL3-P5 (−1/−1780), and
pGL3-P6 (−1/−2000). All these vectors were used to conduct the subsequent experiments.

2.4. Cell Culture, Transfection, and Core Promoter Identification via Luciferase Assay

293T cells were maintained in a medium (DMEM, Gibco, Boston, MA, USA) sup-
plemented with 10% fetal bovine serum (FBS, Gibco) and incubated at 37 ◦C in 5% CO2.
Before transfection, the 293 cells were plated at 0.5 × 105 cells/well in 24-well plates for
culturing overnight. Subsequently, transient transfection was performed with the promoter
luciferase reporter constructs using Lipofectamine™ 2000 (Invitrogen, Carlsbad, CA, USA).
Each well was transfected at a 19:1 ratio of promoter luciferase reporter plasmids or pos-
itive control plasmid pGL3-control vector (Promega, Madison, WI, USA) to an internal
control plasmid expressing Renilla luciferase called a pRL-TK vector (Promega, Madison,
WI, USA), and the ratio of total plasmid DNA to the Lipofectamine™ 2000 transfection
reagent was 1:2.5. The cells were transfected with each recombinant plasmid in triplicate.
After 24 h of transfection, the cells were lysed, and firefly and Renilla luciferase activities
were analyzed with a Dual-Luciferase® Reporter Assay System (Promega, Madison, WI,
USA), while luminescence was determined on a Tecan Infinite® 200 Pro (Tecan Group LTD,
Männedorf, Switzerland). Firefly luciferase activity levels were normalized to those of the
Renilla luciferase (pRL-TK) in each well, and the observed values were compared with the
value of the negative control luciferase vector pGL3-basic.

2.5. DNA Isolation and Bisulfite Treatment

Genomic DNA from each sample was extracted using the phenol-chloroform method
and then dissolved in ddH2O. After extraction, an EpiTect Bisulfite kit (QIAGEN, Dus-
seldorf, Germany) was used for bisulfite treatment according to the manufacturer’s in-
structions. Briefly, a 140 µL reaction system was used for base conversion: 1 µg of DNA
(20 µL), 85 µL of bisulfite mix, and 35 µL of DNA protection buffer. After chemical con-
version, unmethylated cytosine bases were converted into uracil bases, and methylated
cytosine bases were protected. The converted DNA was then extracted for subsequent
DNA methylation analysis.

2.6. Pyrosequencing Analysis

A pyrosequencing protocol was employed to measure the DNA methylation of the
MTNR1A gene core promoter, specifically methylation on a specific CpG island. Pyrose-
quencing amplification and sequencing primers were designed by Assay Design Software
with PyroMark Assay Design 2.0 (QIAGEN). The primer information and sizes of the frag-
ments produced are shown in Table 2. PCR was performed in a volume of 25 µL according
to the PyroMark® PCR kit instructions: 2.5 µL of 10 × PCR CoraLoad Concentrate, 5 µL
of 5 × Q-solution, 0.5 µL of each primer (10 µM), 12.5 µL of 2× PyroMark PCR Master
Mix, and 50 ng of bisulfite-treated genomic DNA. The PCR amplification conditions were
as follows: denaturation at 95 ◦C for 15 min, then 45 cycles of 94 ◦C for 30 s, optimal
annealing temperature for each specific primer for 30 s, 72 ◦C for 30 s, and a final hold at
20 ◦C. Subsequently, the pyrosequencing primer was used for sequencing the PCR products
(Table 2). The sequencing reaction was conducted in the PyroMark Q96 system (QIAGEN)
with a PyroMark Gold Q96 Reagents Kit (QIAGEN, Dusseldorf, Germany) according to the
system manufacturer’s instructions.
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Table 2. Primer information for pyrosequencing.

Primer Name Sequences (5′-3′) Product Size (bp)

MTNR1A-F1 AAGAAGGAGTAGGGTGTTTTTG
274 bpMTNR1A-R1 ACTACCCTTACCCTTAAAAATCCC

MTNR1A-S1 CCCCCCCCCAAACACCTAA

MTNR1A-F2 ATGTTTATTAAGATGGTGAAGATGAG
396 bpMTNR1A-R2 TTAAAAAAAACCCAAAATACCCTTAAA

MTNR1A-S2 GGTGGATTTTTAGAG

2.7. Statistical Analysis

Statistical evaluation of the data was performed using SPSS version 22. One-way
ANOVA and paired-sample t-tests were performed for statistical analysis. Pearson correla-
tion coefficients were calculated to indicate the correlation between DNA methylation and
gene expression levels, and the significance was also determined. The data are presented
as the mean ± standard error (SE) values of independent determinations. p < 0.05 and
p < 0.01 are considered to be statistically significant and highly significant, respectively.

3. Results
3.1. Expression Differences of MTNR1A in Different Photoperiod Groups

To determine the expression level of MTNR1A under different photoperiod conditions,
mRNA and protein expression levels in the hypothalamus were measured. The expression
of MTNR1A mRNA in the SP42 group was significantly higher than that in the SP42 and
SP-LP42 groups (p < 0.05) (Figure 1A). Western blot and grayscale analyses showed that
the protein expression of MTNR1A significantly differed between the SP42 vs. SP-LP42
groups and the SP42 vs. LP42 groups (p < 0.05) (Figure 1B,C). The MTNR1A expression
trend at the mRNA and protein levels was consistent for different photoperiod treatments.
These results indicated that the photoperiod exerted a significant effect on the expression
of MTNR1A.
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Figure 1. Expression of MTNR1A in the hypothalamus after different photoperiod treatments.
(A) qRT-PCR analysis of the expression of MTNR1A in groups exposed to different photoperiods.
(B) Western blots showing the expression of GAPDH and MTNR1A in different photoperiods.
(C) Relative expression of MTNR1A according to a protein grayscale analysis. * p < 0.05.
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3.2. Identification of the Core Promoter in the MTNR1A Gene

To identify the MTNR1A gene core promoter, we constructed a series of deletion
luciferase reporter constructs and transfected them into HEK293T cells. The luciferase
activity of the different-sized fragments was measured using a dual luciferase reporter
system. The luciferase activity levels of the luciferase reporter constructs in HEK293T cells
were higher than those in the PGL3-basic-expressing cells (Figure 2). The cells expressing
pGL3-P1 showed a significant increase in the luciferase activity level compared with those
expressing pGL3-basic or pGL3-P2 (p < 0.01). These results suggested that the promoter
core region of the MTNR1A gene is located in the 540 bp region upstream of the TSS.
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Figure 2. Luciferase assay. Deletion mutation constructs were transfected into HEK293T cells. Results
are expressed as mean ± SEM (n = 3) in arbitrary units based on firefly luciferase activity level
normalized to Renilla luciferase activity level. Results represent an average of three independent
experiments performed in triplicate. ** p < 0.01.

3.3. DNA Methylation Analysis of the Core Promoter in the MTNR1A Gene

To measure DNA methylation of the core promoter in the MTNR1A gene and to
prepare samples for pyrosequencing, we split the core promoter of the MTNR1A gene into
two fragments. The first fragment harbored 13 CpG sites, and the second segment harbored
14 CpG sites (Figure 3A). We performed pyrosequencing of these 27 CpG sites in the core
promoter region. In the first fragment, the DNA methylation level of CpG site 1 in the LP42
group sample was significantly higher than that in the SP42 group sample (p < 0.01), and
the methylation levels of CpG sites 4 and 8 in the LP42 group sample were higher than
those in the SP42 group sample (p < 0.05) (Figure 3B). In addition, the DNA methylation
level of two sites (7 and 8) in the SP-LP42 group sample was significantly higher than
that in the SP42 group sample (p < 0.01) (Figure 3C). However, no significant difference in
site methylation levels was found between each compared group in the second fragment
(Figure 3D,E). These results indicate that the photoperiod can induce DNA methylation of
the MTNR1A gene.
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Figure 3. Methylation level of each CpG site in the core promoter region. (A) Sequence structure
of the MTNR1A gene and CpG sites amplified in the core promoter region. E represents an exon,
and CP represents the core promoter. S1 and S2 represent the core promoter sequences identified to
be subsequently sequenced, where S1 carries 13 CpG sites, and S2 carries 14 CpG sites. (B–E) DNA
methylation levels of 27 CpG sites under different photoperiod conditions. Significance is expressed
based on comparisons with the SP42 group, * p < 0.05, ** p < 0.01. E1 and E2 represent exons 1 and 2,
respectively, in the MTNR1A gene.

3.4. Correlation between DNA Methylation and MTNR1A Gene Expression

We statistically analyzed the differences between the LP42 vs. SP42 group sites and
between the SP-LP42 and SP42 group sites to determine their significance, and we calculated
the mean methylation level at the differential DNA methylation sites. Then, a correlation
between the average methylation level of the differential DNA methylation site and the
gene expression of MTNR1A was determined. The results of the correlation analysis
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revealed a significant negative correlation among photoperiod treatment groups (p < 0.001)
(Figure 4), and the value of the Pearson correlation coefficient of the methylation level at
the site with a significantly different methylation level and MTNR1A gene expression was
−0.94 in the SP42 group, −0.964 in the LP42 group, and 0.963 in the SP-LP42 group.
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Figure 4. Relationship between MTNR1A expression and methylation level at each CpG site in the
promoter region. (A) Relationship between methylation levels at sites with significantly different
DNA methylation levels and gene expression between SP42 and LP42 groups. (B) Relationship
between methylation levels at sites with significantly different DNA methylation levels and MTNR1A
gene expression between SP42 and SP-LP42 groups.

4. Discussion

MLT is an indole hormone synthesized in the pineal gland, and its secretion is signifi-
cantly regulated by photoperiod-induced signaling [23,24]. Melatonin receptor 1A is the
most critical receptor in MLT release and plays an important regulatory role in mammalian
reproductive functions, especially in the estrus of sheep [10,25,26]. Sheep are short-day
breeders, and in addition to the influence of temperature, forage, and other environmental
factors, the intrinsic change in rhythm caused by seasonal photoperiod is key to their repro-
duction. Environmental changes are often accompanied by epigenetic changes and exert a
significant impact on animal reproduction, development, aging, etc. [27,28]. In our previous
study, we constructed a bilateral ovariectomy model with Sunite sheep and analyzed the
transcriptome in the hypothalamus after different artificial photoperiod treatments to study
the regulatory mechanism of photoperiods on sheep seasonal reproduction. We found
that the transcriptome level in the hypothalamus was significantly altered by photoperiod
changes and that the expression of the MTNR1A gene was significantly higher in a short
photoperiod than in a long photoperiod [13]. Therefore, we speculated that photoperiod
may induce or otherwise contribute to DNA methylation, resulting in significant differences
in gene or protein expression.

Previous studies have shown that polymorphisms in the MTNR1A gene are associated
with reproductive seasonality [22,29], reproductive resumption [10], sexual activity of
rams [30], and lamb birth weights [31] among sheep. In addition, MTNR1A is expressed
in the hypothalamus, pituitary gland, and ovaries in several sheep breeds [10,11,32], and
a significant difference in the expression of the MTNR1A gene in the hypothalamus be-
tween sheep exhibiting year-round estrus and sheep exhibiting seasonal estrus has been
reported [22]. MLT plays a regulatory reproductive role with nocturnal secretion from the
pineal gland that varies by photoperiod. The reception of neuroendocrine cell signaling
triggered by photoperiod changes is mediated through MLT receptors. As the target of
MLT, MTNR1A in the hypothalamus plays a vital role in photoperiod-induced reproductive
regulation. In our study, we established a sheep model of estrus via ovariectomy, which
has been previously performed for the functional study of the mammalian hypothalamus
in rats, mice, Siberian hamsters, goats, and sheep [21,22]. In this model, an SP simulated
estrus in the sheep under natural conditions, and an LP induced anestrus in the sheep.
qPCR and Western blotting showed that the expression of MTNR1A in the hypothalamus
at both the mRNA and protein levels in the SP42 sheep was significantly higher than
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that in the SP42 and SP-LP42 sheep (p < 0.05). These results suggested that the expres-
sion level of this gene during estrus is significantly higher than that in anestrus, which is
completely consistent with the results of previous studies [11,33]. The results also indi-
cated that the expression of MTNR1A in the hypothalamus is significantly regulated by
photoperiod changes.

DNA methylation at the cytosine base in the 5th position has been associated with
a plethora of biological roles in mammalian gene regulation, from cell differentiation to
genomic imprinting and X-chromosome inactivation [34]. Many external factors in the
natural environment (such as temperature and light) can modify genomic DNA through
DNA methylation, thereby regulating the transcription of candidate genes and affecting
production traits. A study showed that the postnatal exposure of mice to LP conditions
induced an increase in TET2-dependent DNA hydroxymethylation in the hippocampus,
a condition that might be involved in the long-term effects of the postnatal photoperiod
on neurogenesis and affective/cognitive behaviors [35]. Studies have shown that DNA
methylation regulates gene expression and plays an important role in the regulation of
animal reproduction [36,37]. For example, the DNA methylation status of the dio3 gene
promoter region in the hypothalamus of Siberian hamsters was reversible with changes
in the light cycle and was closely related to seasonal reproduction [19]. The promoter is a
specific sequence that initiates gene transcription, and transcription factors bind to these
regions to promote or inhibit transcription. Large-scale manipulation of promoter DNA
methylation revealed context-specific transcription responses and transcript stability [34],
and DNA methylation of CpG sites in a promoter can affect transcription factor binding,
resulting in transcriptional repression and ultimately reducing gene expression [38,39].
Although the MTNR1A gene is thought to be related to ovine estrus or reproduction, it has
not been studied from the perspective of DNA methylation in the promoter region. One
previous study reported that the alteration of DNA methylation in the putative promoter
region of the MTNR1A gene may induce pathways that increase cancer risk for nightshift
workers [40]. In our present study, using a luciferase reporter gene, we constructed vectors
carrying different lengths of the MTNR1A gene promoter sequence and identified the core
promoter region to be in the 540 bp region upstream of the TSS (Figure 2). To meet sequenc-
ing requirements, we split the core promoter of the MTNR1A gene into two fragments. The
first fragment carried 13 CpG sites, and the second fragment carried 14 CpG sites (Figure 3).
The DNA methylation level of the 27 CpG sites was measured by pyrosequencing, and
some CpG sites in the core promoter region showed significantly increased methylation
under LP conditions, suggesting that photoperiod induces DNA methylation changes that
affect the role played by MTNR1A in sheep reproduction. In addition, we analyzed the
correlation between gene expression and the DNA methylation level, and in each sheep
group, a significant negative correlation was identified (Figure 4). The results of this study
are consistent with the general regulatory pattern of DNA methylation in gene transcrip-
tion [41]. The above-mentioned results suggest that LP may induce an increase in the
DNA methylation level at key CpG sites in the core promoter region of the MTNR1A gene,
leading to inhibited gene transcription.

5. Conclusions

In summary, we located the core promoter region in the MTNR1A gene within a 540 bp
upstream of the TSS. Pyrosequencing showed that the photoperiod induces DNA methyla-
tion at a cytosine site in the core promoter region of the MTNR1A gene. In addition, the level
of DNA methylation was higher after LP, and there was a significant negative correlation
with the expression of MTNR1A. These results suggested that the photoperiod may induce
DNA methylation of the core promoter region in MTNR1A to regulate gene and protein
expression, leading to changes in reproductive hormone secretion and contributing to the
seasonal reproductive activities of ewes. We revealed the effects of the photoperiod on gene
expression and sheep reproductive activity from the perspective of epigenetic changes,
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and these findings suggest new ideas for studying seasonal estrus and reproduction
in sheep.
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