Gabapentin: Clinical Use and Pharmacokinetics in Dogs, Cats, and Horses
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Background
1.2. Review Methodology
2. Mechanism of Action
2.1. Gabapentin as an Anticonvulsant
2.2. Gabapentin as an Analgesic for Neuropathic Chronic Pain
2.3. Gabapentin as an Anxiolytic
3. Clinical Use
3.1. Gabapentin in Dogs
3.2. Gabapentin in Cats
3.3. Gabapentin in Horses
4. Pharmacokinetics (PK)
4.1. Pharmacokinetics in Dogs
4.2. Pharmacokinetics in Cats
4.3. Pharmacokinetics in Horses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rose, M.A.; Kam, P.C.A. Gabapentin: Pharmacology and its use in pain management. Anaesthesia 2002, 57, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Pubchem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Gabapentin (accessed on 1 April 2023).
- Tanabe, M.; Takasu, K.; Kasuya, N.; Shimizu, S.; Honda, M.; Ono, H. Role of descending noradrenergic system and spinal α2 -adrenergic receptors in the effects of gabapentin on thermal and mechanical nociception after partial nerve injury in the mouse. Br. J. Pharmacol. 2005, 144, 703–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsay, R.E. Clinical efficacy and safety of gabapentin. Neurology 1994, 44, S23–S30. [Google Scholar] [PubMed]
- Taylor, C.P. Emerging perspectives on the mechanism of action of gabapentin. Neurology 1994, 44, S10–S16. [Google Scholar]
- Beydoun, A.; Uthman, B.M.; Sackellares, C.J. Gabapentin Pharmacokinetics, Efficacy, and Safety. Clin. Neuropharmacol. 1995, 18, 469–481. [Google Scholar] [CrossRef]
- O’Connor, A.B.; Dworkin, R.H. Treatment of Neuropathic Pain: An Overview of Recent Guidelines. Am. J. Med. 2009, 122, S22–S32. [Google Scholar] [CrossRef]
- Peckham, A.M.; Evoy, K.E.; Ochs, L.; Covvey, J.R. Gabapentin for Off-Label Use: Evidence-Based or Cause for Concern? Subst. Abus. Res. Treat. 2018, 12, 117822181880131. [Google Scholar] [CrossRef] [Green Version]
- Russo, M.; Graham, B.; Santarelli, D.M. Gabapentin—Friend or foe? Pain Pract. 2023, 23, 63–69. [Google Scholar] [CrossRef]
- Govendir, M.; Perkins, M.; Malik, R. Improving seizure control in dogs with refractory epilepsy using gabapentin as an adjunctive agent. Aust. Veter J. 2005, 83, 602–608. [Google Scholar] [CrossRef]
- Platt, S.R.; Adams, V.; Garosi, L.; Abramson, C.J.; Penderis, J.; De Stefani, A.; Matiasek, L. Treatment with gabapentin of 11 dogs with refractory idiopathic epilepsy. Veter Rec. 2006, 159, 881–884. [Google Scholar]
- Plessas, I.N.; Volk, H.A.; Rusbridge, C.; Vanhaesebrouck, A.; Jeffery, N. Comparison of gabapentin versus topiramate on clinically affected dogs with Chiari-like malformation and syringomyelia. Veter Rec. 2015, 177, 288. [Google Scholar] [CrossRef]
- Ruel, H.L.M.; Watanabe, R.; Evangelista, M.C.; Beauchamp, G.; Auger, J.-P.; Segura, M.; Steagall, P.V. Pain burden, sensory profile and inflammatory cytokines of dogs with naturally-occurring neuropathic pain treated with gabapentin alone or with meloxicam. PLoS ONE 2020, 15, e0237121. [Google Scholar] [CrossRef]
- Brioschi, F.A.; Di Cesare, F.; Gioeni, D.; Rabbogliatti, V.; Ferrari, F.; D’urso, E.S.; Amari, M.; Ravasio, G. Oral Transmucosal Cannabidiol Oil Formulation as Part of a Multimodal Analgesic Regimen: Effects on Pain Relief and Quality of Life Improvement in Dogs Affected by Spontaneous Osteoarthritis. Animals 2020, 10, 1505. [Google Scholar] [CrossRef]
- Bleuer-Elsner, S.; Medam, T.; Masson, S. Effects of a single oral dose of gabapentin on storm phobia in dogs: A double-blind, placebo-controlled crossover trial. Veter Rec. 2021, 189, e453. [Google Scholar] [CrossRef]
- Stollar, O.O.; Moore, G.E.; Mukhopadhyay, A.; Gwin, W.; Ogata, N. Effects of a single dose of orally administered gabapentin in dogs during a veterinary visit: A double-blinded, placebo-controlled study. J. Am. Veter Med. Assoc. 2022, 260, 1–10. [Google Scholar] [CrossRef]
- Fantinati, M.; Trnka, J.; Signor, A.; Dumond, S.; Jourdan, G.; Verwaerde, P.; Priymenko, N. Appetite-stimulating effect of gabapentin vs. mirtazapine in healthy cats post-ovariectomy. J. Feline Med. Surg. 2020, 22, 1176–1183. [Google Scholar] [CrossRef]
- Steagall, B.P.M.; Benito, J.; Monteiro, B.P.; Doodnaught, G.M.; Beauchamp, G.; Evangelista, M.C. Analgesic effects of gabapentin and buprenorphine in cats undergoing ovariohysterectomy using two pain-scoring systems: A randomized clinical trial. J. Feline Med. Surg. 2018, 20, 741–748. [Google Scholar] [CrossRef]
- Pankratz, K.E.; Ferris, K.K.; Griffith, E.H.; Sherman, B.L. Use of single-dose oral gabapentin to attenuate fear responses in cage-trap confined community cats: A double-blind, placebo-controlled field trial. J. Feline Med. Surg. 2018, 20, 535–543. [Google Scholar] [CrossRef]
- Van Haaften, K.A.; Forsythe, L.R.E.; Stelow, E.A.; Bain, M.J. Effects of a single preappointment dose of gabapentin on signs of stress in cats during transportation and veterinary examination. J. Am. Veter Med. Assoc. 2017, 251, 1175–1181. [Google Scholar] [CrossRef]
- Gurney, M.; Gower, L. Randomised clinical trial evaluating the effect of a single preappointment dose of gabapentin on signs of stress in hyperthyroid cats. J. Feline Med. Surg. 2022, 24, e85–e89. [Google Scholar] [CrossRef]
- Allen, M.E.; LeBlanc, N.L.; Scollan, K.F. Hemodynamic, Echocardiographic, and Sedative Effects of Oral Gabapentin in Healthy Cats. J. Am. Anim. Hosp. Assoc. 2021, 57, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Lanneau, C.; Green, A.; Hirst, W.D.; Wise, A.; Brown, J.T.; Donnier, E.; Charles, K.J.; Wood, M.; Davies, C.H.; Pangalos, M.N. Gabapentin is not a GABAB receptor agonist. Neuropharmacology 2001, 41, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Gee, N.S.; Brown, J.P.; Dissanayake, V.U.K.; Offord, J.; Thurlow, R.; Woodruff, G.N. The Novel Anticonvulsant Drug, Gabapentin (Neurontin), Binds to the α2δ Subunit of a Calcium Channel. J. Biol. Chem. 1996, 271, 5768–5776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radulovic, L.L.; Türck, D.; Von Hodenberg, A.; Vollmer, K.O.; McNally, W.P.; Dehart, P.D.; Hanson, B.J.; Bockbrader, H.N.; Chang, T. Disposition of gabapentin (neurontin) in mice, rats, dogs, and monkeys. Drug Metab. Dispos. 1995, 23, 441–448. [Google Scholar] [PubMed]
- Dewey, C.W. Anticonvulsant Therapy in Dogs and Cats. Veter Clin. North Am. Small Anim. Pract. 2006, 36, 1107–1127. [Google Scholar] [CrossRef]
- Goa, K.L.; Sorkin, E.M. Gabapentin: A Review of Its Pharmacological Properties and Clinical Potential in Epilepsy. Drugs 1993, 46, 409–427. [Google Scholar] [CrossRef]
- Patel, M.K.; Gonzalez, M.I.; Bramwell, S.; Pinnock, R.D.; Lee, K. Gabapentin inhibits excitatory synaptic transmission in the hyperalgesic spinal cord. Br. J. Pharmacol. 2000, 130, 1731–1734. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.R.; Suman-Chauhan, N.; Woodruff, G.N. Localization of [3H]gabapentin to a novel site in rat brain: Autoradiographic studies. Eur. J. Pharmacol. 1993, 244, 303–309. [Google Scholar] [CrossRef]
- Sills, G.J.; Rogawski, M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 2020, 168, 107966. [Google Scholar] [CrossRef]
- Muñana, K.R. Management of Refractory Epilepsy. Top. Companion Anim. Med. 2013, 28, 67–71. [Google Scholar] [CrossRef]
- Gordon, D.B.; Love, G. Pharmacologic management of neuropathic pain. Pain Manag. Nurs. 2004, 5, 19–33. [Google Scholar] [CrossRef]
- Jensen, T.S.; Gottrup, H.; Sindrup, S.H.; Bach, F.W. The clinical picture of neuropathic pain. Eur. J. Pharmacol. 2001, 429, 1–11. [Google Scholar] [CrossRef]
- Bennett, D.L.H. Informed drug choices for neuropathic pain. Lancet Neurol. 2015, 14, 129–130. [Google Scholar] [CrossRef]
- Walters, E.T. Neuroinflammatory contributions to pain after SCI: Roles for central glial mechanisms and nociceptor-mediated host defense. Exp. Neurol. 2014, 258, 48–61. [Google Scholar] [CrossRef]
- Moore, S.A. Managing Neuropathic Pain in Dogs. Front. Veter Sci. 2016, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Epstein, M.; Rodan, I.; Griffenhagen, G.; Kadrlik, J.; Petty, M.; Robertson, S.; Simpson, W. AAHA/AAFP Pain Manage-ment Guidelines for Dogs and Cats. J. Am. Anim. Hosp. Assoc. 2015, 51, 67–84. [Google Scholar] [CrossRef]
- Mathews, K.; Kronen, P.W.; Lascelles, D.; Nolan, A.; Robertson, S.; Steagall, P.V.; Wright, B.; Yamashita, K. Guidelines for Recognition, Assessment and Treatment of Pain. J. Small Anim. Pract. 2014, 55, E10–E68. [Google Scholar] [CrossRef]
- Wolfe, K.C.; Poma, R. Syringomyelia in the Cavalier King Charles spaniel (CKCS) dog. Can. Vet. J. 2010, 51, 95–102. [Google Scholar]
- Guedes, A.G.P.; Meadows, J.M.; Pypendop, B.H.; Johnson, E.G.; Zaffarano, B. Assessment of the effects of gabapentin on activity levels and owner-perceived mobility impairment and quality of life in osteoarthritic geriatric cats. J. Am. Veter Med. Assoc. 2018, 253, 579–585. [Google Scholar] [CrossRef]
- Lorenz, N.D.; Comerford, E.J.; Iff, I. Long-term use of gabapentin for musculoskeletal disease and trauma in three cats. J. Feline Med. Surg. 2013, 15, 507–512. [Google Scholar] [CrossRef]
- Vettorato, E.; Corletto, F. Gabapentin as part of multi-modal analgesia in two cats suffering multiple injuries. Veter-Anaesth. Analg. 2011, 38, 518–520. [Google Scholar] [CrossRef] [PubMed]
- Young, J.M.; Schoonover, M.J.; Kembel, S.L.; Taylor, J.D.; Bauck, A.G.; Gilliam, L.L. Efficacy of orally administered gabapentin in horses with chronic thoracic limb lameness. Veter Anaesth. Analg. 2020, 47, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Readford, P.K.; Lester, G.D.; Secombe, C.J. Temporohyoid osteoarthropathy in two young horses. Aust. Veter J. 2013, 91, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.L.; Posner, L.P.; Elce, Y. Gabapentin for the treatment of neuropathic pain in a pregnant horse. J. Am. Veter Med. Assoc. 2007, 231, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.D.; Chaplan, S.R.; Higuera, E.S.; Sorkin, L.S.; Stauderman, K.A.; Williams, M.E.; Yaksh, T.L. Upregulation of Dorsal Root Ganglion α2δ Calcium Channel Subunit and Its Correlation with Allodynia in Spinal Nerve-Injured Rats. J. Neurosci. 2001, 21, 1868–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witcher, D.R.; De Waard, M.; Sakamoto, J.; Franzini-Armstrong, C.; Pragnell, M.; Kahl, S.D.; Campbell, K.P. Subunit Identification and Reconstitution of the N-Type Ca2+ Channel Complex Purified from Brain. Science 1993, 261, 486–489. [Google Scholar] [CrossRef]
- Sutton, K.G.; Martin, D.J.; Pinnock, R.D.; Lee, K.; Scott, R.H. Gabapentin inhibits high-threshold calcium channel currents in cultured rat dorsal root ganglion neurones. Br. J. Pharmacol. 2002, 135, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Suto, T.; Severino, A.L.; Eisenach, J.C.; Hayashida, K.-I. Gabapentin increases extracellular glutamatergic level in the locus coeruleus via astroglial glutamate transporter-dependent mechanisms. Neuropharmacology 2014, 81, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Hayashida, K.-I.; Obata, H.; Nakajima, K.; Eisenach, J.C. Gabapentin Acts within the Locus Coeruleus to Alleviate Neuropathic Pain. Anesthesiology 2008, 109, 1077–1084. [Google Scholar] [CrossRef] [Green Version]
- Yoshizumi, M.; Parker, R.A.; Eisenach, J.C.; Hayashida, K.-I. Gabapentin Inhibits γ-Amino Butyric Acid Release in the Locus Coeruleus but Not in the Spinal Dorsal Horn after Peripheral Nerve Injury in Rats. Anesthesiology 2012, 116, 1347–1353. [Google Scholar] [CrossRef] [Green Version]
- Takasu, K.; Ono, H.; Tanabe, M. Gabapentin produces PKA-dependent pre-synaptic inhibition of GABAergic synaptic transmission in LC neurons following partial nerve injury in mice. J. Neurochem. 2008, 105, 933–942. [Google Scholar] [CrossRef]
- Hayashida, K.-I.; Obata, H. Strategies to Treat Chronic Pain and Strengthen Impaired Descending Noradrenergic Inhibitory System. Int. J. Mol. Sci. 2019, 20, 822. [Google Scholar] [CrossRef] [Green Version]
- Laughlin, T.M.; Tram, K.V.; Wilcox, G.L.; Birnbaum, A.K. Comparison of antiepileptic drugs tiagabine, lamotrigine, and gabapentin in mouse models of acute, prolonged, and chronic nociception. J. Pharmacol. Exp. Ther. 2002, 302, 1168–1175. [Google Scholar] [CrossRef] [Green Version]
- Field, M.; Oles, R.J.; Lewis, S.; McCleary, S.; Hughes, J.; Singh, L. Gabapentin (neurontin) and S-(+)-3-isobutylgaba represent a novel class of selective antihyperalgesic agents. Br. J. Pharmacol. 1997, 121, 1513–1522. [Google Scholar] [CrossRef] [Green Version]
- Wagner, A.E.; Mich, P.M.; Uhrig, S.R.; Hellyer, P.W. Clinical evaluation of perioperative administration of gabapentin as an adjunct for postoperative analgesia in dogs undergoing amputation of a forelimb. J. Am. Veter Med. Assoc. 2010, 236, 751–756. [Google Scholar] [CrossRef]
- Aghighi, S.A.; Tipold, A.; Piechotta, M.; Lewczuk, P.; Kästner, S.B. Assessment of the effects of adjunctive gabapentin on postoperative pain after intervertebral disc surgery in dogs. Veter Anaesth. Analg. 2012, 39, 636–646. [Google Scholar] [CrossRef]
- Crociolli, G.C.; Cassu, R.N.; Barbero, R.C.; Rocha, T.L.A.; Gomes, D.R.; Nicácio, G.M. Gabapentin as an adjuvant for postoperative pain management in dogs undergoing mastectomy. J. Veter Med. Sci. 2015, 77, 1011–1015. [Google Scholar] [CrossRef] [Green Version]
- Singh, L.; Field, M.J.; Ferris, P.; Hunter, J.C.; Oles, R.J.; Williams, R.G.; Woodruff, G.N. The antiepileptic agent gabapentin (Neurontin) possesses anxiolytic-like and antinociceptive actions that are reversed byd-serine. Psychopharmacology 1996, 127, 1–9. [Google Scholar] [CrossRef]
- Sethi, A.; Das, B.P.; Bajaj, B.K. The Anxiolytic Activity of Gabapentin in Mice. J. Appl. Res. 2005, 5, 415–422. [Google Scholar]
- Erfurth, A.; Kammerer, C.; Grunze, H.; Normann, C.; Walden, J. An open label study of gabapentin in the treatment of acute mania. J. Psychiatr. Res. 1998, 32, 261–264. [Google Scholar] [CrossRef]
- Schaffer, B.; Schaffer, L. Gabapentin in the Treatment of Bipolar Disorder. Am. J. Psychiatry 1997, 154, 291–292. [Google Scholar] [PubMed] [Green Version]
- Hatzimanolis, J.; Lykouras, L.; Oulis, P.; Christodoulou, G.N.; Oulis, P. Gabapentin as monotherapy in the treatment of acute mania. Eur. Neuropsychopharmacol. 1999, 9, 257–258. [Google Scholar] [CrossRef] [PubMed]
- Pollack, M.H.; Matthews, J.; Scott, E.L. Gabapentin as a Potential Treatment for Anxiety Disorders. Am. J. Psychiatry 1998, 155, 992–993. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.S.W.; Atkinson, L.Z.; Al-Juffali, N.; Awad, A.; Geddes, J.R.; Tunbridge, E.M.; Harrison, P.J.; Cipriani, A. Gabapentin and pregabalin in bipolar disorder, anxiety states, and insomnia: Systematic review, meta-analysis, and rationale. Mol. Psychiatry 2022, 27, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
- Garakani, A.; Murrough, J.W.; Freire, R.C.; Thom, R.P.; Larkin, K.; Buono, F.D.; Iosifescu, D.V. Pharmacotherapy of Anxiety Disorders: Current and Emerging Treatment Options. Front. Psychiatry 2020, 11, 595584. [Google Scholar] [CrossRef] [PubMed]
- Platt, M.K.; Adams, V.; Garosi, L.S. Gabapentin as Adjunctive Therapy for Refractory Idiopathic Epilepsy in Dogs. In Proceedings of the 16th Annual European College of Veterinary Neurologist Symposium (Prague), Prague, Czech Republic, 20 February 2003. [Google Scholar]
- Ghaffari, M.S.; Moghaddassi, A.P.; Khorami, N. Successful management of refractory psychomotor seizures with gabapentin and phenobarbital in a Doberman pinscher dog. Comp. Clin. Pathol. 2010, 19, 125–127. [Google Scholar] [CrossRef]
- Dewey, C.W.; Berg, J.M.; Barone, G.; Marino, D.J.; Stefanacci, J.D. Foramen magnum decompression for treatment of caudal occipital malformation syndrome in dogs. J. Am. Veter Med. Assoc. 2005, 227, 1270–1275. [Google Scholar] [CrossRef]
- Kaya, F.N.; Yavascaoglu, B.; Baykara, M.; Altun, G.T.; Gülhan, N.; Ata, F. Effect of oral gabapentin on the intraocular pressure and haemodynamic responses induced by tracheal intubation. Acta Anaesthesiol. Scand. 2008, 52, 1076–1080. [Google Scholar] [CrossRef]
- Memiş, D.; Turan, A.; Karamanloğlu, B.; Şeker, Ş.; Türe, M. Gabapentin reduces cardiovascular responses to laryngoscopy and tracheal intubation. Eur. J. Anaesthesiol. 2006, 23, 686–690. [Google Scholar] [CrossRef]
- Bala, I.; Bharti, N.; Ramesh, N.P. Effect of gabapentin pretreatment on the hemodynamic response to laryngoscopy and tracheal intubation in treated hypertensive patients. Acta Anaesthesiol. Taiwanica 2015, 53, 95–98. [Google Scholar] [CrossRef]
- Trbolova, A.; Ghaffari, M.S.; Capik, I. Effects of premedication with oral gabapentin on intraocular pressure changes following tracheal intubation in clinically normal dogs. BMC Veter Res. 2017, 13, 288. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.K.; Pinard, C.L.; Flynn, B.L.; Bauman, C.A. Effects of orally administered gabapentin, tramadol, and meloxicam on ocular variables in healthy dogs. Am. J. Veter Res. 2020, 81, 973–984. [Google Scholar] [CrossRef]
- Johnson, B.A.; Aarnes, T.K.; Wanstrath, A.W.; Pereira, C.H.R.; Bednarski, R.M.; Lerche, P.; McLoughlin, M.A. Effect of oral administration of gabapentin on the minimum alveolar concentration of isoflurane in dogs. Am. J. Veter Res. 2019, 80, 1007–1011. [Google Scholar] [CrossRef]
- Bhatti, S.F.; De Risio, L.; Muñana, K.; Penderis, J.; Stein, V.M.; Tipold, A.; Berendt, M.; Farquhar, R.G.; Fischer, A.; Long, S.; et al. International Veterinary Epilepsy Task Force consensus proposal: Medical treatment of canine epilepsy in Europe. BMC Veter Res. 2015, 11, 176. [Google Scholar] [CrossRef] [Green Version]
- Steagall, P.V.; Steagall, B.P.M. Multimodal analgesia for perioperative pain in three cats. J. Feline Med. Surg. 2013, 15, 737–743. [Google Scholar] [CrossRef]
- Slovak, J.E.; Costa, A.P. A pilot study of transdermal gabapentin in cats. J. Veter Intern. Med. 2021, 35, 1981–1987. [Google Scholar] [CrossRef]
- Pypendop, B.H.; Siao, K.T.; Ilkiw, J.E. Thermal antinociceptive effect of orally administered gabapentin in healthy cats. Am. J. Veter Res. 2010, 71, 1027–1032. [Google Scholar] [CrossRef]
- Buckley, L.A. Cats that get stressed when visiting the veterinary practice: Can gabapentin help improve their welfare? Vet. Evid. 2019, 4, 1–12. [Google Scholar] [CrossRef]
- Erickson, A.; Harbin, K.; MacPherson, J.; Rundle, K.; Overall, K.L. A review of pre-appointment medications to reduce fear and anxiety in dogs and cats at veterinary visits. Can. Vet. J. 2021, 62, 952–960. [Google Scholar]
- Hudec, C.P.; Griffin, C.E. Changes in the stress markers cortisol and glucose before and during intradermal testing in cats after single administration of pre-appointment gabapentin. J. Feline Med. Surg. 2020, 22, 138–145. [Google Scholar] [CrossRef]
- Tuleski, G.L.R.; Silveira, M.F.; Bastos, R.F.; Pscheidt, M.J.G.R.; Prieto, W.D.S.; Sousa, M.G. Behavioral and cardiovascular effects of a single dose of gabapentin or melatonin in cats: A randomized, double-blind, placebo-controlled trial. J. Feline Med. Surg. 2022, 24, e524–e534. [Google Scholar] [CrossRef] [PubMed]
- Reid, P.; Pypendop, B.H.; Ilkiw, J.E. The Effects of Intravenous Gabapentin Administration on the Minimum Alveolar Concentration of Isoflurane in Cats. Anesth. Analg. 2010, 111, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.A.; Garosi, L.S.; Behr, S.; Toni, C.; Tabanez, J.; Rusbridge, C.; Targett, M.; Lowrie, M. Clinical features, treatment and outcome of discospondylitis in cats. J. Feline Med. Surg. 2022, 24, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.; Viñuela-Fernandez, I.; Eager, R.A.; Delaney, A.; Anderson, H.; Patel, A.; Robertson, D.C.; Allchorne, A.; Sirinathsinghji, E.C.; Milne, E.M.; et al. Neuropathic changes in equine laminitis pain. Pain 2007, 132, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Aleman, M.; Rhodes, D.; Williams, D.; Guedes, A.; Madigan, J. Sensory Evoked Potentials of the Trigeminal Nerve for the Diagnosis of Idiopathic Headshaking in a Horse. J. Veter Intern. Med. 2014, 28, 250–253. [Google Scholar] [CrossRef] [Green Version]
- Leise, B.S.; Faleiros, R.R.; Watts, M.; Johnson, P.J.; Black, S.J.; Belknap, J.K. Hindlimb laminar inflammatory response is similar to that present in forelimbs after carbohydrate overload in horses. Equine Veter J. 2012, 44, 633–639. [Google Scholar] [CrossRef] [Green Version]
- Gold, J.R.; Grubb, T.L.; Green, S.; Cox, S.; Villarino, N.F. Plasma disposition of gabapentin after the intragastric administration of escalating doses to adult horses. J. Veter Intern. Med. 2020, 34, 933–940. [Google Scholar] [CrossRef] [Green Version]
- Gold, J.R.; Grubb, T.L.; Cox, S.; Malavasi, L.; Villarino, N.L. Pharmacokinetics and pharmacodynamics of repeat dosing of gabapentin in adult horses. J. Veter Intern. Med. 2022, 36, 792–797. [Google Scholar] [CrossRef]
- Caldwell, F.J.; Taintor, J.; Waguespack, R.W.; Sellers, G.; Johnson, J.; Lin, H.-C. Effect of PO Administered Gabapentin on Chronic Lameness in Horses. J. Equine Veter Sci. 2015, 35, 536–540. [Google Scholar] [CrossRef]
- Terry, R.L.; McDONNELL, S.M.; Van Eps, A.W.; Soma, L.R.; Liu, Y.; Uboh, C.E.; Moate, P.J.; Driessen, B. Pharmacokinetic profile and behavioral effects of gabapentin in the horse. J. Veter Pharmacol. Ther. 2010, 33, 485–494. [Google Scholar] [CrossRef]
- Guedes, A. Pain Management in Horses. Veter Clin. N. Am. Equine Pract. 2017, 33, 181–211. [Google Scholar] [CrossRef]
- Siao, K.T.; Pypendop, B.H.; Ilkiw, J.E. Pharmacokinetics of gabapentin in cats. Am. J. Veter Res. 2010, 71, 817–821. [Google Scholar] [CrossRef]
- Adrian, D.; Papich, M.G.; Baynes, R.; Stafford, E.; Lascelles, B.D.X. The pharmacokinetics of gabapentin in cats. J. Veter Intern. Med. 2018, 32, 1996–2002. [Google Scholar] [CrossRef] [Green Version]
- KuKanich, B.; Cohen, R.L. Pharmacokinetics of oral gabapentin in greyhound dogs. Veter J. 2011, 187, 133–135. [Google Scholar] [CrossRef] [Green Version]
- Golfar, Y.; Shayanfar, A. Prediction of Biopharmaceutical Drug Disposition Classification System (BDDCS) by Structural Parameters. J. Pharm. Pharm. Sci. 2019, 22, 247–269. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.P. Mechanisms of analgesia by gabapentin and pregabalin—Calcium channel α2-δ [Cavα2-δ] ligands. Pain 2009, 142, 13–16. [Google Scholar] [CrossRef]
- Shugarts, S.; Benet, L.Z. The Role of Transporters in the Pharmacokinetics of Orally Administered Drugs. Pharm. Res. 2009, 26, 2039–2054. [Google Scholar] [CrossRef] [Green Version]
- Vollmer, K.O.; von Hodenberg, A.; Kölle, E.U. Pharmacokinetics and Metabolism of Gabapentin in Rat, Dog and Man. Arzneimittel-Forschung 1986, 36, 830–839. [Google Scholar]
- Lockwood, P.A.; Cook, J.A.; Ewy, W.E.; Mandema, J.W. The use of clinical trial simulation to support dose selection: Application to development of a new treatment for chronic neuropathic pain. Pharm. Res. 2003, 20, 1752–1759. [Google Scholar] [CrossRef]
- Larsen, M.S.; Keizer, R.; Munro, G.; Mørk, A.; Holm, R.; Savic, R.; Kreilgaard, M. Pharmacokinetic/Pharmacodynamic Relationship of Gabapentin in a CFA-induced Inflammatory Hyperalgesia Rat Model. Pharm. Res. 2016, 33, 1133–1143. [Google Scholar] [CrossRef]
- Papich, M.G. Papich Handbook of Veterinary Drugs, 5th ed.; Elsevier eBook on VitalSource: Amsterdam, The Netherlands, 2021; pp. 398–400. [Google Scholar]
- Quimby, J.M.; Lorbach, S.K.; Saffire, A.; Kennedy, A.; Wittenburg, L.A.; Aarnes, T.K.; Creighton, K.J.; Jones, S.E.; Paschall, R.E.; King, E.M.; et al. Serum concentrations of gabapentin in cats with chronic kidney disease. J. Feline Med. Surg. 2022, 24, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Dirikolu, L.; Dafalla, A.; Ely, K.J.; Connerly, A.L.; Jones, C.N.; ElkHOLY, H.; Lehner, A.F.; Thompson, K.; Tobin, T. Pharmacokinetics of gabapentin in horses. J. Veter-Pharmacol. Ther. 2008, 31, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.J.; Beran, R.G.; Plunkeft, M.J.; Clarke, L.A.; Hung, W.T. The Absorption of Gabapentin Following High Dose Escala-tion. Seizure 2003, 12, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Amo, E.M.; Urtti, A.; Yliperttula, M. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur. J. Pharm. Sci. 2008, 35, 161–174. [Google Scholar] [CrossRef]
- Stewart, B.H.; Kugler, A.R.; Thompson, P.R.; Bockbrader, H.N. A Saturable Transport Mechanism in the Intestinal Absorption of Gabapentin Is the Underlying Cause of the Lack of Proportionality Between Increasing Dose and Drug Levels in Plasma. Pharm. Res. 1993, 10, 276–281. [Google Scholar] [CrossRef]
Medical Condition | Therapeutic Regimen | Clinical Endpoint | Outcome | Study Type | Reference |
---|---|---|---|---|---|
Refractory idiopathic epilepsy | An amount of 35–50 mg/kg every 24 h, divided in three times for four months as adjunctive therapy | To assess a change in seizure activity | Beneficial in increasing the interictal period | Prospective clinical trial (n = 17) | [10] |
Refractory idiopathic epilepsy | An amount of 10 mg/kg every 8 h for a minimum three months as adjunctive therapy | To assess a change in seizure activity | Beneficial in reducing seizures episodes | Prospective clinical trial (n = 11) | [11] |
Refractory psychomotor seizures | An amount of 10 mg/kg every 8 h | To assess a change in seizure activity | Beneficial in resetting seizures episodes | Case report (n = 1) | [68] |
Postoperative pain after intervertebral disc surgery | An amount of 10 mg/kg every 12 h, starting from 2 h before anaesthesia to five days after surgery, in addition to opioid analgesia | To assess the effect of adjunctive gabapentin after surgery | Nonbeneficial | Randomized, placebo-controlled, masked trial (n = 63) | [57] |
Neurogenic pain from syringomyelia | An amount of 10 mg/kg every 8–12 h, long-term therapy depending on clinical response | Medical treatment for neurogenic pain | Beneficial | Case report (n = 2) | [39] |
Pain from Chiari-like malformation and syringomyelia | An amount of 11.5 ± 2.5 mg/kg every 8 h for six weeks with carprofen | Medical treatment for neurogenic pain | Beneficial | Cross-over, masked trial (n = 40) | [12] |
Chronic neuropathic pain | An amount of 10 mg/kg every 8 h for seven days alone or in combination with meloxicam every 24 h | Medical treatment for neurogenic pain | Beneficial | Randomized, cross-over, placebo-controlled, partially masked trial (n = 31) | [13] |
Postoperative pain after amputation of a forelimb | An amount of 5–10 mg/kg every 12 h, from one day before surgery to three days after in a multimodal analgesic regimen | To assess postoperative pain reduction | Nonbeneficial | Randomized, placebo-controlled, masked trial (n = 30) | [56] |
Postoperative pain after mastectomy | An amount of 10 mg/kg prior to surgery and every 12 h for three days after surgery, as adjunctive therapy | To assess postoperative pain reduction | Nonbeneficial in reducing pain, beneficial in reducing the requirement of rescue analgesia after surgery | Randomized, placebo-controlled, masked trial (n = 20) | [58] |
Osteoarthritis | An amount of 10 mg/kg every 12 h (first week), 5 mg/kg every 12 h (rest of the period), 12 weeks in a multimodal analgesic regimen | Medical treatment for neurogenic pain and quality of life improvement | Beneficial in association with anti-inflammatory drugs, cannabidiol, and amitriptyline | Prospective, randomized clinical trial (n = 21) | [14] |
Healthy dogs | An amount of 50 mg/kg 2 h before anaesthesia in single administration | To assess intraoperative ocular pressure changes | Beneficial in attenuating intubation-related intraocular pressure increase | Randomized, placebo-controlled, masked trial (n = 20) | [73] |
Healthy dogs | An amount of 10 mg/kg every 8 h for three days | To assess intraocular pressure, tears production and film stability, pupillary diameter, and corneal sensitivity variation | Nonbeneficial | Randomized, cross-over, masked trial (n = 9) | [74] |
Healthy dogs | An amount of 20 mg/kg 2 h before anaesthesia and after seven days | Evaluation of gabapentin effect in premedication on the MAC of isoflurane | Beneficial in reducing the MAC | Randomized, cross-over, masked trial (n = 6) | [75] |
Storm phobia and anxiety | An amount of 25–30 mg/kg 90 min before the exposure, single dose | Reduction in fear responses | Beneficial | Cross-over, placebo-controlled, double-blinded trial (n = 18) | [15] |
Anxiety and fear | An amount of 50 mg/kg, single dose 2 h before the visit | To create fear-free veterinary visits | Beneficial | Randomized, cross-over, placebo-controlled, double-blinded trial (n = 22) | [16] |
Medical Condition | Therapeutic Regimen | Clinical Endpoint | Outcome | Study Type | Reference |
---|---|---|---|---|---|
Major trauma from road traffic accident | An amount of 10 mg/kg every 8 h for two weeks in a multimodal analgesic regimen | Managing chronic neuropathic pain | Beneficial | Case report (n = 2) | [42] |
Musculoskeletal injuries and trauma | An amount of 6.5 mg/kg every 12 h up to 12 months initially as adjunctive therapy and then as single analgesic at home | Managing chronic neuropathic pain | Beneficial | Case report (n = 3) | [41] |
Postoperative pain after ovariohysterectomy | An amount of 50 mg, administered 12 h and 1 h before surgery in combination with buprenorphine | Managing postoperative pain | Beneficial | Randomized, placebo-controlled, masked trial (n = 52) | [18] |
Osteoarthritis | An amount of 10 mg/kg every 12 h for two weeks | Managing chronic pain | Beneficial, sedation as unique side effect | Randomized, cross-over, placebo-controlled, masked trial (n = 20) | [40] |
Osteoarthritis and dental disease | An amount of 10 mg/kg every 8 h for five days (transdermal route) | Managing chronic pain | Beneficial | Prospective clinical trial (n = 15) | [78] |
Discospondylitis-related chronic neuropathic pain | Not reported | Managing chronic neuropathic pain | Not reported | Retrospective clinical trial (n = 17) | [85] |
Thermal antinociceptive threshold test | Amounts of 5, 10, and 30 mg/kg, single administration | Determination of the thermal antinociceptive effect of various single doses | Non beneficial | Randomized, cross-over, placebo-controlled, masked trial (n = 6) | [79] |
Anxiety and fear | An amount of 9.2–47.6 mg/kg, single administration | To create a fear-free veterinary visits | Beneficial | Randomized, placebo-controlled, double-blinded trial (n = 53) | [19] |
Anxiety and fear | An amount of 13.0–29.4 mg/kg, single administration 90 min prior to placing the cat into the carrier | To create a fear-free veterinary visits | Beneficial | Randomized, cross-over, placebo-controlled, masked trial (n = 20) | [20] |
Anxiety and fear | An amount of 100 mg/cat ≤ 4 kg, 150 mg/cat ≥ 4.1 kg, single administration 30 min before the visit | To create a fear-free veterinary visits and provoke mild sedation to execute an hemodynamical and cardiological evaluation | Beneficial | Randomized, cross-over, placebo-controlled, double-blinded trial (n = 10) | [22] |
Anxiety and fear | An amount of 20 mg/kg, single administration 1 h prior to leaving home | To evaluate the efficacy of gabapentin as an anxiolytic in hyperthyroid patients | Beneficial | Randomized, placebo-controlled, double-blinded trial (n = 10) | [21] |
Healthy cats undergoing ovariectomy | An amount of 5 mg/kg, two administrations after surgery, during an 8 h observation period | Evaluation of the appetite-stimulating effect | Beneficial | Randomized, placebo-controlled, double-blinded trial (n = 60) | [17] |
Medical Condition | Therapeutic Regimen | Clinical Endpoint | Outcome | Study Type | Reference |
---|---|---|---|---|---|
Neuropathic pain following colic surgery | An amount of 2.5 mg/kg every 8 h for six days | Managing chronic neuropathic pain | Beneficial | Case report (n = 1) | [45] |
Healthy | An amount of 20 mg/kg, single dose | To assess cardiovascular, sedative and behavioral effects | Nonbeneficial | Randomized, cross-over trial (n = 6) | [92] |
Temporohyoid osteoarthropathy | An amount of 5 mg/kg every 12 h for 10 weeks as adjunctive therapy | Reducing the violent head shaking | Beneficial | Case report (n = 1) | [44] |
Chronic lameness | An amount of 5–10 mg/kg every 8 h for 14 days | Managing chronic pain | Nonbeneficial | Randomized, cross-over, placebo-controlled, double-blinded trial (n = 6) | [91] |
Chronic lameness | An amount of 20 mg/kg every 12 h for 6.5 days | Managing chronic pain | Potentially beneficial if associated with firocoxib (57 mg/day) | Randomized, cross-over, placebo-controlled, masked trial (n = 14) | [43] |
Anticonvulsant Dosage | Neuropathic Pain | Treatment of Behaviour Disorders |
---|---|---|
10–20 mg/kg every 8 h orally (PO). The higher dose may be needed in some dogs to control seizures. | Start with 5–15 mg/kg every 12 h PO and increase dose gradually to as high as 40 mg/kg every 8–12 h PO if necessary. | 5–30 mg/kg up to three times daily. Start at the low end and titrate up to achieve the desired event, but avoid adverse effects. Dose changes should occur about seven days apart. For short-term treatment to achieve anxiolysis, doses have been as high as 30–60 mg/kg 1–2 h before an event that is anticipated to trigger anxiety in a dog. |
Dose and Formulation | Bioavaila-Bility (%) | CMAX (µg/mL) | TMAX (h) | Terminal Half-Life (h) | AUC (µg × h/mL) | CL (ml/min/kg) | VD (L/kg) | KEL (1/h) | Effective Dose (Supposed or Proven) | N. of Subjects | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
DOG | |||||||||||
10 mg/kg orally (po)-tablets | 9.68 (5.32–10.90) | 1.50 (0.75–2.00) | 3.35 (2.63–3.68) | 49.5 (39.77–63.02) | 3.49 (2.97–4.26) | 0.94 (0.85–1.26) | - | 10–20 mg/kg every 8 h | 6 | [96] | |
20 mg/kg po-tablets | 12.95 (10.70–18.20) | 1.75 (1.00–2.00) | 3.39 (3.07–3.91) | 83.01 (60–151.24) | 3.97 (2.65–5.56) | 1.20 (0.83–1.48) | - | ||||
50 mg/kg po | 80 | 56.3 | 1.1 | 2.2 | 242 | - | - | - | 1 | [25] | |
50 mg/kg iv | - | - | - | 2.9 | 367 | 2.27 | 0.16 | - | |||
CAT | |||||||||||
4 mg/kg iv-bolus | 47.39 ± 5.10 (30.21–62.38) | - | - | - | 3.02 ± 0.18 (2.45–3.46) | 0.65 ± 0.01 (0.60–0.70) | 0.035 ± 0.004 (0.026–0.049) | 6 | [94] | ||
10 mg/kg po-capsules | 88.7 ± 11.1 (49.6–118.3) | 7.98 ± 1.05 (4.64–10.55) | 1.66 ± 0.3 (1.0–2.92) | 2.95 ± 0.3 | - | 2.99 ± 0.22 (2.45–3.46) | - | 0.004 ± 0.000 (0.003–0.003) | |||
5 mg/kg iv-bolus | - | - | - | 3.78 (3.12–4-47) | 32.01 (24.61–42.38) | 2.67 (1.99–3.31) | 0.804 (0.643–1.05) | 1.21 (0.87–1.67) | 8 | [95] | |
10 mg/kg po-capsules-single dose | 94.8 (82.5–122.8) | 12.42 (8.31–18.35) | 1.05 (0.74–2.11) | 3.53 (2.96–4.78) | 73.68 (55.71–107.19) | - | - | 0.20 (0.14–0.23) | 8 mg/kg every 6 h | ||
10 mg/kg po-capsules-repeated doses | - | 14.78 (9.70–18.41) | 0.77 (0.58–1.64) | 3.90 (3.12–4.51) | 77.25 (66.26–121.06) | - | - | 0.18 (0.15–0.22) | |||
20 mg/kg po-capsules single dose | - | 24.2 (18.4–27.1) | 1.5 (1–2) | 4.1 ± 0.5 | 158 (144–172) | - | - | 0.17 (0.14–0.2) | 5 | [104] | |
HORSE | |||||||||||
5 mg/kg po | - | 0.27 ± 0.02 | 1.41 ± 0.1 | 3.40 ± 0.48 | 1.78 ± 0.26 | 0.05± 0.01 | - | - | 4 | [105] | |
20 mg/kg iv | 73.0 (66.2–76.3) | - | 8.53 (7.06–13.3) | 216.6 (195.1–267.5) | 1.61 (1.28–1.68) | 0.81 (0.66–0.90) | - | 6 | [92] | ||
20 mg/kg po | 16.2 ± 2.8 | 3.75 (1.89–5.76) | 1.00 (0.75–2.00) | 7.73 (6.70–11.93) | 38.8 (22.9–61.6) | 1.45 (1.21–1.6) | - | 0.09 (0.06–0.1) | |||
10 mg/kg nasogastric po-water dissolved tablets | - | 1.6 (1.5–2.4) | 2.6 (2.0–3.3) | 5.5 (3.9–11.3) | 31 (27–35) | - | - | 0.6 (0.478–0.760) | 10 mg/kg every 8 h or 20 mg/kg every 12 h or 80 mg/kg every 24 h | 3 | [89] |
20 mg/kg nasogastric po-water dissolved tablets | - | 3.2 (3.2–3.5) | 2.7 (2.5–2.9) | 7.6 (6.1–8.2) | 49 (48–61) | - | - | 0.9 (0.467–1.09) | 3 | ||
60 mg/kg nasogastric po-water dissolved tablets | - | 4.0 (2.8–8.4) | 1.9 (1.5–2.4) | 7.2 (2.1–13.8) | 79 (52–150) | - | - | 1.5 (0.747–2.07) | 6 | ||
80 mg/kg nasogastric po-water dissolved tablets | - | 6.7 (3.2–10.0) | 2.2 (1.0–2.7) | 6.0 (4.1–11.9) | 110 (69–180) | - | - | 0.8 (0.506–2.818) | 6 | ||
120 mg/kg nasogastric po-water dissolved tablets | - | 8.4 (4.8–15) | 1.8 (1.4–3.7) | 7.9 (13.3–15.7) | 150 (120–220) | - | - | 0.8 (0.792–1.81) | 6 | ||
160 mg/kg nasogastric po-water dissolved tablets | - | 8.5 (5.0–11.0) | 1.4 (1.0–2.6) | 11.5 (4.1–13.9) | 160 (110–230) | - | - | 2.3 (0.522–3.492) | 6 | ||
40 mg/kg po-tablets mixed with corn oil and applesauce or molasses every 12 h for 14 days | - | 7.6 (6.2–11) first dose 8 (6.6–11) last dose | 1 (1–2) first dose 0.4 (0–8) last dose | 11 (6–30) first dose 15 (13–29) last dose | 146 (104–400) after last dose | - | - | - | 120 mg/kg every 12 h | 6 | [90] |
120 mg/kg po-tablets mixed with corn oil and applesauce or molasses every 12 h for 14 days | - | 9.9 (6.1–27) first dose 22 (14–33) last dose | 1 (1–2) first dose 0.0 (0.0–0.3) last dose | 7.2 (6.2–19) first dose 20 (12–22) last dose | 550 (270–650 after last dose) | - | - | - |
Anticonvulsant Dosage | Neuropathic Pain | Treatment of Anxiety |
---|---|---|
An amount of 5–10 mg/kg every 12 h orally (PO) The dosage has been increased to 20 mg/kg every 8–12 h in some cats to control seizures. | An amount of 5–10 mg/kg every 12 h PO | An amount of 100 mg per cat PO (20–30 mg/kg) Administer 90 min prior to stressful events (such as a veterinary visit) with a peak effect at 2–3 h. |
Neuropathic Pain | Laminitis |
---|---|
2.5 mg/kg every 12 h orally (PO), increased to higher doses if needed (see laminitis dose). | An amount of 2.5 mg/kg every 8 or 12 or 24 h, increased to higher doses when needed. Doses of 10 mg/kg and higher administered every 8–12 h reached concentrations that are effective in other animals. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Cesare, F.; Negro, V.; Ravasio, G.; Villa, R.; Draghi, S.; Cagnardi, P. Gabapentin: Clinical Use and Pharmacokinetics in Dogs, Cats, and Horses. Animals 2023, 13, 2045. https://doi.org/10.3390/ani13122045
Di Cesare F, Negro V, Ravasio G, Villa R, Draghi S, Cagnardi P. Gabapentin: Clinical Use and Pharmacokinetics in Dogs, Cats, and Horses. Animals. 2023; 13(12):2045. https://doi.org/10.3390/ani13122045
Chicago/Turabian StyleDi Cesare, Federica, Viviana Negro, Giuliano Ravasio, Roberto Villa, Susanna Draghi, and Petra Cagnardi. 2023. "Gabapentin: Clinical Use and Pharmacokinetics in Dogs, Cats, and Horses" Animals 13, no. 12: 2045. https://doi.org/10.3390/ani13122045
APA StyleDi Cesare, F., Negro, V., Ravasio, G., Villa, R., Draghi, S., & Cagnardi, P. (2023). Gabapentin: Clinical Use and Pharmacokinetics in Dogs, Cats, and Horses. Animals, 13(12), 2045. https://doi.org/10.3390/ani13122045