Diet of the Dingo in Subtropical Australian Forests: Are Small, Threatened Macropods at Risk?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Scat Collection
2.3. Prey Availability Assessments
2.4. Dietary Analysis
3. Results
3.1. Border Ranges
3.2. Richmond Range
4. Discussion
4.1. Reserve Comparisons
4.2. Seasonal Variation in Diet
4.3. Threatened Mammals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medina, F.M.; Bonnaud, E.; Vidal, E.; Tershy, B.R.; Zavaleta, E.S.; Josh Donlan, C.; Keitt, B.S.; Le Corre, M.; Horwath, S.V.; Nogales, M. A global review of the impacts of invasive cats on island endangered vertebrates. Glob. Chang. Biol. 2011, 17, 3503–3510. [Google Scholar] [CrossRef]
- Woinarski, J.C.Z.; Burbidge, A.A.; Harrison, P.L. Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proc. Natl. Acad. Sci. USA 2015, 112, 4531–4540. [Google Scholar] [CrossRef] [PubMed]
- Doherty, T.S.; Glen, A.S.; Nimmo, D.G.; Ritchie, E.G.; Dickman, C.R. Invasive predators and global biodiversity loss. Proc. Natl. Acad. Sci. USA 2016, 113, 11261–11265. [Google Scholar] [CrossRef] [PubMed]
- Woinarski, J.C.; Braby, M.; Burbidge, A.A.; Coates, D.; Garnett, S.T.; Fensham, R.J.; Legge, S.; McKenzie, N.L.; Silcock, J.; Murphy, B.P. Reading the black book: The number, timing, distribution and causes of listed extinctions in Australia. Biol. Conserv. 2019, 239, 108261. [Google Scholar] [CrossRef]
- Hervieux, D.; Hebblewhite, M.; Stepnisky, D.; Bacon, M.; Boutin, S. Managing wolves (Canis lupus) to recover threatened woodland caribou (Rangifer tarandus caribou) in Alberta. Can. J. Zool. 2014, 92, 1029–1037. [Google Scholar] [CrossRef] [Green Version]
- Wittmer, H.U.; Sinclair, A.R.; McLellan, B.N. The role of predation in the decline and extirpation of woodland caribou. Oecologia 2005, 144, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.F.; McCarthy, M.A.; Firth, R.S.; Woinarski, J.C.; Gillespie, G.R.; Andersen, A.N.; Geyle, H.M.; Nicholson, E.; Murphy, B.P. Top-down control of species distributions: Feral cats driving the regional extinction of a threatened rodent in northern Australia. Divers. Distrib. 2017, 23, 272–283. [Google Scholar] [CrossRef]
- Moseby, K.; Carthey, A.; Schroeder, T. The influence of predators and prey naivety on reintroduction success: Current and future directions. In Advances in Reintroduction Biology of Australian and New Zealand Fauna; Armstrong, D., Hayward, M., Moro, D., Seddon, P., Eds.; CSIRO Publishing: Melbourne, Australia, 2015. [Google Scholar]
- Hardman, B.; Moro, D.; Calver, M. Direct evidence implicates feral cat predation as the primary cause of failure of a mammal reintroduction programme. Ecol. Manag. Restor. 2016, 17, 152–158. [Google Scholar] [CrossRef]
- Augusteyn, J.; Rich, M.; Story, G.; Nolan, B. Canids potentially threaten bilbies at Astrebla Downs National Park. Aust. Mammal. 2020, 43, 300–310. [Google Scholar] [CrossRef]
- Burbidge, A.A.; Manly, B.F. Mammal extinctions on Australian islands: Causes and conservation implications. J. Biogeogr. 2002, 29, 465–473. [Google Scholar] [CrossRef]
- Nogales, M.; Martín, A.; Tershy, B.R.; Donlan, C.J.; Veitch, D.; Puerta, N.; Wood, B.; Alonso, J. A review of feral cat eradication on islands. Conserv. Biol. 2004, 18, 310–319. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.F.; Sattler, P.S.; Evans, M.; Fuller, R.A.; Watson, J.E.; Possingham, H.P. What works for threatened species recovery? An empirical evaluation for Australia. Biodivers. Conserv. 2011, 20, 767–777. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P.R.; Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. USA 2017, 114, E6089–E6096. [Google Scholar] [CrossRef] [PubMed]
- Byers, O.; Copsey, J.; Lees, C.; Miller, P.; Traylor-Holzer, K. Reversing the Decline in Threatened Species through Effective Conservation Planning. Diversity 2022, 14, 754. [Google Scholar] [CrossRef]
- Marolla, F.; Aarvak, T.; Øien, I.J.; Mellard, J.P.; Henden, J.A.; Hamel, S.; Stien, A.; Tveraa, T.; Yoccoz, N.G.; Ims, R.A. Assessing the effect of predator control on an endangered goose population subjected to predator-mediated food web dynamics. J. Appl. Ecol. 2019, 56, 1245–1255. [Google Scholar] [CrossRef] [Green Version]
- Steffens, K.E.; Malham, J.P.; Davies, R.S.; Elliott, G.P. Testing the effectiveness of integrated pest control at protecting whio (Hymenolaimus malacorhynchos) from stoat (Mustela erminea) predation in beech forest (Nothofagaceae). N. Z. J. Ecol. 2022, 46, 1–13. [Google Scholar] [CrossRef]
- Mahoney, P.J.; Young, J.K.; Hersey, K.R.; Larsen, R.T.; McMillan, B.R.; Stoner, D.C. Spatial processes decouple management from objectives in a heterogeneous landscape: Predator control as a case study. Ecol. Appl. 2018, 28, 786–797. [Google Scholar] [CrossRef] [Green Version]
- Bergstrom, B.J. Carnivore conservation: Shifting the paradigm from control to coexistence. J. Mammal. 2017, 98, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.; Dugelby, B.; Foreman, D.; del Rio, C.M.; Noss, R.; Phillips, M. The importance of large carnivores to healthy ecosystems. Endanger. Species Update 2001, 18, 202–210. [Google Scholar]
- Goodrich, J.; Buskirk, S. Control of abundant native vertebrates for conservation of endangered species. Conserv. Biol. 1995, 9, 1357–1364. [Google Scholar] [CrossRef]
- Ritchie, E.G.; Johnson, C.N. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 2009, 12, 982–998. [Google Scholar] [CrossRef] [PubMed]
- Ripple, W.J.; Estes, J.A.; Beschta, R.L.; Wilmers, C.C.; Ritchie, E.G.; Hebblewhite, M.; Berger, J.; Elmhagen, B.; Letnic, M.; Nelson, M.P. Status and ecological effects of the world’s largest carnivores. Science 2014, 343, 1241484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, T.; Letnic, M. Removal of an apex predator initiates a trophic cascade that extends from herbivores to vegetation and the soil nutrient pool. Proc. R. Soc. B Biol. Sci. USA 2017, 284, 20170111. [Google Scholar] [CrossRef] [PubMed]
- Leo, V.; Reading, R.P.; Gordon, C.; Letnic, M. Apex predator suppression is linked to restructuring of ecosystems via multiple ecological pathways. Oikos 2019, 128, 630–639. [Google Scholar] [CrossRef] [Green Version]
- Brun, M.; Oliver, A.S.; Alves, J.; Nankivell, A.; Letnic, M. Irrupting prey populations in the absence of a mammalian apex predator drive shifts in prey selection by eagles. Sci. Nat. 2022, 109, 32. [Google Scholar] [CrossRef]
- Johnson, C.N.; Isaac, J.L.; Fisher, D.O. Rarity of a top predator triggers continent-wide collapse of mammal prey: Dingoes and marsupials in Australia. Proc. R. Soc. B Biol. Sci. 2007, 274, 341–346. [Google Scholar] [CrossRef]
- Berger, K.M.; Gese, E.M.; Berger, J. Indirect effects and traditional trophic cascades: A test involving wolves, coyotes, and pronghorn. Ecology 2008, 89, 818–828. [Google Scholar] [CrossRef] [Green Version]
- Brook, L.A.; Johnson, C.N.; Ritchie, E.G. Effects of predator control on behaviour of an apex predator and indirect consequences for mesopredator suppression. J. Appl. Ecol. 2012, 49, 1278–1286. [Google Scholar] [CrossRef]
- Estes, J.A.; Terborgh, J.; Brashares, J.S.; Power, M.E.; Berger, J.; Bond, W.J.; Carpenter, S.R.; Essington, T.E.; Holt, R.D.; Jackson, J.B. Trophic downgrading of planet Earth. Science 2011, 333, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Stantial, M.L.; Cohen, J.B.; Darrah, A.J.; Farrell, S.L.; Maslo, B. The effect of top predator removal on the distribution of a mesocarnivore and nest survival of an endangered shorebird. Avian Conserv. Ecol. 2021, 16, 8. [Google Scholar] [CrossRef]
- Treves, A.; Krofel, M.; McManus, J. Predator control should not be a shot in the dark. Front. Ecol. Environ. 2016, 14, 380–388. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.; Cairns, K.M.; Adams, J.W.; Newsome, T.M.; Fillios, M.; Deaux, E.C.; Parr, W.C.; Letnic, M.; Van Eeden, L.M.; Appleby, R.G. Taxonomic status of the Australian dingo: The case for Canis dingo Meyer, 1793. Zootaxa 2019, 4564, 173–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowther, M.S.; Fillios, M.; Colman, N.; Letnic, M. An updated description of the Australian dingo (Canis dingo Meyer, 1793). J. Zool. 2014, 293, 192–203. [Google Scholar] [CrossRef]
- Jackson, S.M.; Fleming, P.J.; Eldridge, M.D.; Ingleby, S.; Flannery, T.; Johnson, R.N.; Cooper, S.J.; Mitchell, K.J.; Souilmi, Y.; Cooper, A. The Dogma of Dingoes—Taxonomic status of the dingo: A reply to Smith et al. Zootaxa 2019, 4564, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Jackson, S.M.; Fleming, P.J.; Eldridge, M.D.; Archer, M.; Ingleby, S.; Johnson, R.N.; Helgen, K.M. Taxonomy of the Dingo: It’s an ancient dog. Aust. Zool. 2020, 41, 347–357. [Google Scholar] [CrossRef]
- Donfrancesco, V.; Allen, B.L.; Appleby, R.; Behrendorff, L.; Conroy, G.; Crowther, M.S.; Dickman, C.R.; Doherty, T.; Fancourt, B.A.; Gordon, C.E. Understanding conflict among experts working on controversial species: A case study on the Australian dingo. Conserv. Sci. Pract. 2023, 5, e12900. [Google Scholar] [CrossRef]
- Van Eeden, L.M.; Dickman, C.R.; Newsome, T.M.; Crowther, M.S. What should we do with wild dogs? Taxonomic tangles and the management of dingo-dog hybridisation. Aust. Zool. 2019, 40, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Shipman, P. What the dingo says about dog domestication. Anat. Rec. 2021, 304, 19–30. [Google Scholar] [CrossRef]
- Fleming, P.; Corbett, L.; Harden, R.; Thomson, P. Managing the Impacts of Dingoes and Other Wild Dogs; Bureau of Rural Sciences: Canberra, ACT, Australia, 2001.
- Ballard, G.; Fleming, P.; Meek, P.; Doak, S. Aerial baiting and wild dog mortality in south-eastern Australia. Wildl. Res. 2020, 47, 99–105. [Google Scholar] [CrossRef]
- Claridge, A.W.; Mills, D.J.; Barry, S.C. Prevalence of threatened native species in canid scats from coastal and near-coastal landscapes in south-eastern Australia. Aust. Mammal. 2010, 32, 117–126. [Google Scholar] [CrossRef]
- Allen, B.L.; Leung, L.K.-P. Assessing predation risk to threatened fauna from their prevalence in predator scats: Dingoes and rodents in arid Australia. PLoS ONE 2012, 7, e36426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, B.L.; Carmelito, E.; Amos, M.; Goullet, M.S.; Allen, L.R.; Speed, J.; Gentle, M.; Leung, L.K.-P. Diet of dingoes and other wild dogs in peri-urban areas of north-eastern Australia. Sci. Rep. 2016, 6, 23028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldon, E.L.; Feit, B.; Feit, A.; Letnic, M. Negative frequency dependent prey selection by two generalist predators and its implications for the conservation of a threatened rodent in arid Australia. Biodivers. Conserv. 2023, 32, 1–16. [Google Scholar] [CrossRef]
- Allen, B.L.; Fleming, P.J.; Allen, L.R.; Engeman, R.M.; Ballard, G.; Leung, L.K.-P. As clear as mud: A critical review of evidence for the ecological roles of Australian dingoes. Biol. Conserv. 2013, 159, 158–174. [Google Scholar] [CrossRef] [Green Version]
- Allen, B.; Fleming, P. Reintroducing the dingo: The risk of dingo predation to threatened vertebrates of western New South Wales. Wildl. Res. 2012, 39, 35–50. [Google Scholar] [CrossRef]
- Moseby, K.; Read, J.; Paton, D.; Copley, P.; Hill, B.; Crisp, H. Predation determines the outcome of 10 reintroduction attempts in arid South Australia. Biol. Conserv. 2011, 144, 2863–2872. [Google Scholar] [CrossRef]
- Prowse, T.A.; Johnson, C.N.; Cassey, P.; Bradshaw, C.J.; Brook, B.W. Ecological and economic benefits to cattle rangelands of restoring an apex predator. J. Appl. Ecol. 2015, 52, 455–466. [Google Scholar] [CrossRef]
- Pollock, D. Managing the unmanageable: Reinstating the dingo for pastoral sustainability in Australian rangelands. Proc. R. Soc. Vic. 2021, 133, 27–31. [Google Scholar] [CrossRef]
- Forsyth, D.M.; Latham, A.D.M.; Davis, N.E.; Caley, P.; Letnic, M.; Moloney, P.D.; Woodford, L.P.; Woolnough, A.P. Interactions between dingoes and introduced wild ungulates: Concepts, evidence and knowledge gaps. Aust. Mammal. 2018, 41, 12–26. [Google Scholar] [CrossRef]
- Allen, B.L.; Allen, L.R.; Graham, M.; Buckman, M. Elucidating dingo’s ecological roles: Contributions from the Pelorus Island feral goat biocontrol project. Aust. Zool. 2021, 41, 374–387. [Google Scholar] [CrossRef]
- Dawson, S.J.; Kreplins, T.L.; Kennedy, M.S.; Renwick, J.; Cowan, M.A.; Fleming, P.A. Land use and dingo baiting are correlated with the density of kangaroos in rangeland systems. Integr. Zool. 2023, 18, 299–315. [Google Scholar] [CrossRef] [PubMed]
- Dickman, C.R.; Glen, A.S.; Letnic, M. Reintroducing the dingo: Can Australia’s conservation wastelands be restored. Reintrod. Top-Order Predat. 2009, 238, 269. [Google Scholar]
- Letnic, M.; Crowther, M.; Koch, F. Does a top-predator provide an endangered rodent with refuge from an invasive mesopredator? Anim. Conserv. 2009, 12, 302–312. [Google Scholar] [CrossRef]
- Letnic, M.; Koch, F. Are dingoes a trophic regulator in arid Australia? A comparison of mammal communities on either side of the dingo fence. Austral Ecol. 2010, 35, 167–175. [Google Scholar] [CrossRef]
- Letnic, M.; Greenville, A.; Denny, E.; Dickman, C.R.; Tischler, M.; Gordon, C.; Koch, F. Does a top predator suppress the abundance of an invasive mesopredator at a continental scale? Glob. Ecol. Biogeogr. 2011, 20, 343–353. [Google Scholar] [CrossRef]
- Feit, B.; Feit, A.; Letnic, M. Apex predators decouple population dynamics between mesopredators and their prey. Ecosystems 2019, 22, 1606–1617. [Google Scholar] [CrossRef] [Green Version]
- Hunter, D.O.; Letnic, M. Dingoes have greater suppressive effect on fox populations than poisoning campaigns. Aust. Mammal. 2022, 44, 387–396. [Google Scholar] [CrossRef]
- Johnson, C.N.; VanDerWal, J. Evidence that dingoes limit abundance of a mesopredator in eastern Australian forests. J. Appl. Ecol. 2009, 46, 641–646. [Google Scholar] [CrossRef]
- Colman, N.J.; Gordon, C.E.; Crowther, M.S.; Letnic, M. Lethal control of an apex predator has unintended cascading effects on forest mammal assemblages. Proc. R. Soc. B Biol. Sci. 2014, 281, 20133094. [Google Scholar] [CrossRef]
- Hayward, M.W.; Marlow, N. Will dingoes really conserve wildlife and can our methods tell? J. Appl. Ecol. 2014, 51, 835–838. [Google Scholar] [CrossRef]
- Fancourt, B.A.; Cremasco, P.; Wilson, C.; Gentle, M.N. Do introduced apex predators suppress introduced mesopredators? A multiscale spatiotemporal study of dingoes and feral cats in Australia suggests not. J. Appl. Ecol. 2019, 56, 2584–2595. [Google Scholar] [CrossRef]
- Castle, G.; Smith, D.; Allen, L.R.; Allen, B.L. Terrestrial mesopredators did not increase after top-predator removal in a large-scale experimental test of mesopredator release theory. Sci. Rep. 2021, 11, 18205. [Google Scholar] [CrossRef] [PubMed]
- Kreplins, T.; Kennedy, M.; O’Leary, R.; Adams, P.; Dundas, S.; Fleming, P. Fighting like cats and dogs? Dingoes do not constrain spatial and temporal movements of feral cats. Food Webs 2021, 27, e00173. [Google Scholar] [CrossRef]
- Wang, Y.; Fisher, D.O. Dingoes affect activity of feral cats, but do not exclude them from the habitat of an endangered macropod. Wildl. Res. 2012, 39, 611–620. [Google Scholar] [CrossRef]
- Letnic, M.; Koch, F.; Gordon, C.; Crowther, M.S.; Dickman, C.R. Keystone effects of an alien top-predator stem extinctions of native mammals. Proc. R. Soc. B Biol. Sci. 2009, 276, 3249–3256. [Google Scholar] [CrossRef] [PubMed]
- Mills, C.H.; Wijas, B.; Gordon, C.E.; Lyons, M.; Feit, A.; Wilkinson, A.; Letnic, M. Two alternate states: Shrub, bird and mammal assemblages differ on either side of the Dingo Barrier Fence. Aust. Zool. 2021, 41, 534–549. [Google Scholar] [CrossRef]
- Doherty, T.S.; Davis, N.E.; Dickman, C.R.; Forsyth, D.M.; Letnic, M.; Nimmo, D.G.; Palmer, R.; Ritchie, E.G.; Benshemesh, J.; Edwards, G. Continental patterns in the diet of a top predator: Australia’s dingo. Mammal Rev. 2019, 49, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Odden, J.; Linnell, J.D.; Andersen, R. Diet of Eurasian lynx, Lynx lynx, in the boreal forest of southeastern Norway: The relative importance of livestock and hares at low roe deer density. Eur. J. Wildl. Res. 2006, 52, 237–244. [Google Scholar] [CrossRef]
- Newsome, T.M.; Boitani, L.; Chapron, G.; Ciucci, P.; Dickman, C.R.; Dellinger, J.A.; López-Bao, J.V.; Peterson, R.O.; Shores, C.R.; Wirsing, A.J. Food habits of the world’s grey wolves. Mammal Rev. 2016, 46, 255–269. [Google Scholar] [CrossRef]
- Karandikar, H.; Serota, M.W.; Sherman, W.C.; Green, J.R.; Verta, G.; Kremen, C.; Middleton, A.D. Dietary patterns of a versatile large carnivore, the puma (Puma concolor). Ecol. Evol. 2022, 12, e9002. [Google Scholar] [CrossRef]
- Lunney, D.; Matthews, A.; Triggs, B. Long-term changes in the mammal fauna of logged, coastal forests near Bega, New South Wales, detected by analysis of dog and fox scats. Aust. Mammal. 2001, 23, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Davis, N.E.; Forsyth, D.M.; Triggs, B.; Pascoe, C.; Benshemesh, J.; Robley, A.; Lawrence, J.; Ritchie, E.G.; Nimmo, D.G.; Lumsden, L.F. Interspecific and geographic variation in the diets of sympatric carnivores: Dingoes/wild dogs and red foxes in south-eastern Australia. PLoS ONE 2015, 10, e0120975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, P.A.; Stobo-Wilson, A.M.; Crawford, H.M.; Dawson, S.J.; Dickman, C.R.; Doherty, T.S.; Fleming, P.J.; Newsome, T.M.; Palmer, R.; Thompson, J.A. Distinctive diets of eutherian predators in Australia. R. Soc. Open Sci. 2022, 9, 220792. [Google Scholar] [CrossRef] [PubMed]
- McHugh, D.; Goldingay, R.L.; Link, J.; Letnic, M. Habitat and introduced predators influence the occupancy of small threatened macropods in subtropical Australia. Ecol. Evol. 2019, 9, 6300–6317. [Google Scholar] [CrossRef] [Green Version]
- Cairns, K.M.; Crowther, M.S.; Nesbitt, B.; Letnic, M. The myth of wild dogs in Australia: Are there any out there? Aust. Mammal. 2021, 44, 67–75. [Google Scholar] [CrossRef]
- Lunney, D.; Law, B.; Rummery, C. Contrast between the visible abundance of the brush-tailed rock-wallaby, Petrogale penicillata, and its rarity in fox and dog scats in the gorges east of Armidale, New South Wales. Wildl. Res. 1996, 23, 373–379. [Google Scholar] [CrossRef]
- Robertshaw, J.; Harden, R. The ecology of the dingo in northeastern New-South-Wales. 4. Prey selection by dingoes, and its effect on the major prey species, the Swamp Wallaby, Wallabia-bicolor (Desmarest). Wildl. Res. 1986, 13, 141–163. [Google Scholar] [CrossRef]
- Robertshaw, J.; Harden, R. The ecology of the dingo in north-eastern New South Wales. 2. Diet. Wildl. Res. 1985, 12, 39–50. [Google Scholar] [CrossRef]
- Vernes, K.; Dennis, A.; Winter, J. Mammalian diet and broad hunting strategy of the dingo (Canis familiaris dingo) in the wet tropical rain forests of northeastern Australia 1. Biotropica 2001, 33, 339–345. [Google Scholar] [CrossRef]
- Barker, J.; Lunney, D.; Bubela, T. Mammal surveys in the forests of the Carrai Plateau and Richmond Range in north-east New South Wales. Aust. Mammal. 1994, 17, 19–29. [Google Scholar] [CrossRef]
- Glen, A.; Fay, A.; Dickman, C. Diets of sympatric red foxes Vulpes vulpes and wild dogs Canis lupus in the Northern Rivers Region, New South Wales. Aust. Mammal. 2006, 28, 101–104. [Google Scholar] [CrossRef]
- Cupples, J.B.; Crowther, M.S.; Story, G.; Letnic, M. Dietary overlap and prey selectivity among sympatric carnivores: Could dingoes suppress foxes through competition for prey? J. Mammal. 2011, 92, 590–600. [Google Scholar] [CrossRef]
- Letnic, M.; Story, P.; Story, G.; Field, J.; Brown, O.; Dickman, C.R. Resource pulses, switching trophic control, and the dynamics of small mammal assemblages in arid Australia. J. Mammal. 2011, 92, 1210–1222. [Google Scholar] [CrossRef] [Green Version]
- Long, K.I. Spatio-temporal interactions among male and female Long-nosed Potoroos, Potorous tridactylus (Marsupialia: Macropodoidea): Mating system implications. Aust. J. Zool. 2001, 49, 17–26. [Google Scholar] [CrossRef]
- Vernes, K.; Marsh, H.; Winter, J. Home-range characteristics and movement patterns of the red-legged pademelon (Thylogale stigmatica) in a fragmented tropical rainforest. Wildl. Res. 1995, 22, 699–707. [Google Scholar] [CrossRef]
- McHugh, D. Factors That Influence the Persistence and Decline of Threatened Small Macropods: An Ecological Investigation at Multiple Spatial Scales; Southern Cross University: Lismore, Australia, 2020. [Google Scholar]
- McHugh, D.; Goldingay, R.L. Utilising power analyses and occupancy modelling to inform population monitoring of the regionally endangered black-striped wallaby (Macropus dorsalis) in New South Wales. Austral Ecol. 2022, 47, 400–411. [Google Scholar] [CrossRef]
- Corbett, L.K. Assessing the diet of dingoes from feces: A comparison of 3 methods. J. Wildl. Manag. 1989, 53, 343–346. [Google Scholar] [CrossRef]
- Glen, A.S.; Dickman, C.R. Diet of the spotted-tailed quoll (Dasyurus maculatus) in eastern Australia: Effects of season, sex and size. J. Zool. 2006, 269, 241–248. [Google Scholar] [CrossRef]
- Glen, A.S.; Pennay, M.; Dickman, C.R.; Wintle, B.A.; Firestone, K.B. Diets of sympatric native and introduced carnivores in the Barrington Tops, eastern Australia. Austral Ecol. 2011, 36, 290–296. [Google Scholar] [CrossRef]
- Kutt, A. Feral cat (Felis catus) prey size and selectivity in north-eastern Australia: Implications for mammal conservation. J. Zool. 2012, 287, 292–300. [Google Scholar] [CrossRef]
- Klare, U.; Kamler, J.F.; Macdonald, D.W. A comparison and critique of different scat-analysis methods for determining carnivore diet. Mammal Rev. 2011, 41, 294–312. [Google Scholar] [CrossRef]
- Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Brillouin, L. Science and Information Theory; Courier Corporation: Chelmsford, MA, USA, 2013. [Google Scholar]
- Menkhorst, P.W.; Knight, F. A Field Guide to the Mammals of Australia/Peter Menkhorst, Frank Knight; Oxford University Press: Melbourne, Australia, 2004. [Google Scholar]
- Clark, K.; Gorley, R. PRIMER v6: User Manual; Plymouth Marine Laboratory: Plymouth, UK, 2006. [Google Scholar]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Jacobs, J. Quantitative measurement of food selection. Oecologia 1974, 14, 413–417. [Google Scholar] [CrossRef]
- Butchart, S.H.; Walpole, M.; Collen, B.; Van Strien, A.; Scharlemann, J.P.; Almond, R.E.; Baillie, J.E.; Bomhard, B.; Brown, C.; Bruno, J. Global biodiversity: Indicators of recent declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Newsome, A.; Catling, P.; Corbett, L. The feeding ecology of the dingo II. Dietary and numerical relationships with fluctuating prey populations in south-eastern Australia. Aust. J. Ecol. 1983, 8, 345–366. [Google Scholar] [CrossRef]
- Southwell, C. Macropod Studies at Wallaby Creek. 2. Density and Distribution of Macropod Species in Relation to Environmental Variables. Wildl. Res. 1987, 14, 15–33. [Google Scholar] [CrossRef]
- Hollis, C.; Robertshaw, J.; Harden, R. Ecology of the swamp wallaby (Wallabia-Bicolor) in northeastern New-South-Wales. 1. Diet. Wildl. Res. 1986, 13, 355–365. [Google Scholar] [CrossRef]
- Jarman, P.; Johnson, C.; Southwell, C.; Stuartdick, R. Macropod studies at Wallaby Creek. 1. The area and animals. Wildl. Res. 1987, 14, 1–14. [Google Scholar] [CrossRef]
- McHugh, D.; Goldingay, R.L.; Parkyn, J.; Goodwin, A.; Letnic, M. Short-term response of threatened small macropods and their predators to prescribed burns in subtropical Australia. Ecol. Manag. Restor. 2020, 21, 97–107. [Google Scholar] [CrossRef]
- Nilar, H.; Maute, K.; Dawson, M.J.; Scarborough, R.; Hudson, J.; Reay, J.; Gooden, B. Effectiveness of different herbivore exclusion strategies for restoration of an endangered rainforest community. For. Ecol. Manag. 2019, 435, 18–26. [Google Scholar] [CrossRef]
- Corbett, L.; Newsome, A. The feeding ecology of the dingo: III. Dietary relationships with widely fluctuating prey populations in arid Australia: An hypothesis of alternation of predation. Oecologia 1987, 74, 215–227. [Google Scholar] [CrossRef]
- Paltridge, R. The diets of cats, foxes and dingoes in relation to prey availability in the Tanami Desert, Northern Territory. Wildl. Res. 2002, 29, 389–403. [Google Scholar] [CrossRef] [Green Version]
- Newsome, T.M.; Ballard, G.-A.; Fleming, P.J.; van de Ven, R.; Story, G.L.; Dickman, C.R. Human-resource subsidies alter the dietary preferences of a mammalian top predator. Oecologia 2014, 175, 139–150. [Google Scholar] [CrossRef]
- Thompson, E.R.; Driscoll, D.A.; Venn, S.E.; Geary, W.L.; Ritchie, E.G. Interspecific variation in the diet of a native apex predator and invasive mesopredator in an alpine ecosystem. Austral Ecol. 2022, 47, 1260–1270. [Google Scholar] [CrossRef]
- Innis, G.J.; McEvoy, J. Feeding ecology of green catbirds (Ailuroedus crassirostris) in subtropical rainforests of south-eastern Queensland. Wildl. Res. 1992, 19, 317–329. [Google Scholar] [CrossRef]
- Simpson, K.; Day, N.; Trusler, P. Field Guide to the Birds of Australia, 8th ed.; Simpson, K., Ed.; Penguin Group: Camberwell, VIC, Australia, 2010. [Google Scholar]
- Pickett, K.N.; Hik, D.S.; Newsome, A.E.; Pech, R.P. The influence of predation risk on foraging behaviour of brushtail possums in Australian woodlands. Wildl. Res. 2005, 32, 121–130. [Google Scholar] [CrossRef]
- Carbone, C.; Teacher, A.; Rowcliffe, J.M. The costs of carnivory. PLoS Biol. 2007, 5, e22. [Google Scholar] [CrossRef] [Green Version]
- Prokopenko, C.M.; Avgar, T.; Ford, A.; Vander Wal, E. Optimal prey switching: Predator foraging costs provide a mechanism for functional responses in multi-prey systems. Ecology 2023, 104, e3928. [Google Scholar] [CrossRef]
- Behrendorff, L.; Leung, L.K.-P.; McKinnon, A.; Hanger, J.; Belonje, G.; Tapply, J.; Jones, D.; Allen, B.L. Insects for breakfast and whales for dinner: The diet and body condition of dingoes on Fraser Island (K’gari). Sci. Rep. 2016, 6, 23469. [Google Scholar] [CrossRef]
- Claridge, A.W.; Paull, D.J.; Welbourne, D.J. Elucidating patterns in the occurrence of threatened ground-dwelling marsupials using camera-traps. Animals 2019, 9, 913. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A. Microhabitat use by the long-nosed potoroo, Potorous tridactylus, and other small mammals in remnant forest vegetation, south-western Victoria. Wildl. Res. 1993, 20, 267–285. [Google Scholar] [CrossRef]
- Claridge, A.W.; Barry, S.C. Factors influencing the distribution of medium-sized ground-dwelling mammals in southeastern mainland Australia. Austral Ecol. 2000, 25, 676–688. [Google Scholar] [CrossRef]
- Goldingay, R.L.; McHugh, D.; Parkyn, J.L. Multiyear monitoring of threatened iconic arboreal mammals in a mid-elevation conservation reserve in eastern Australia. Ecol. Evol. 2022, 12, e8935. [Google Scholar] [CrossRef] [PubMed]
- Marsh, K.J.; Moore, B.D.; Wallis, I.R.; Foley, W.J. Continuous monitoring of feeding by koalas highlights diurnal differences in tree preferences. Wildl. Res. 2014, 40, 639–646. [Google Scholar] [CrossRef]
- Lunney, D.; Gresser, S.M.; Mahon, P.S.; Matthews, A. Post-fire survival and reproduction of rehabilitated and unburnt koalas. Biol. Conserv. 2004, 120, 567–575. [Google Scholar] [CrossRef]
- Rhodes, J.R.; Ng, C.F.; de Villiers, D.L.; Preece, H.J.; McAlpine, C.A.; Possingham, H.P. Using integrated population modelling to quantify the implications of multiple threatening processes for a rapidly declining population. Biol. Conserv. 2011, 144, 1081–1088. [Google Scholar] [CrossRef]
- McAlpine, C.; Lunney, D.; Melzer, A.; Menkhorst, P.; Phillips, S.; Phalen, D.; Ellis, W.; Foley, W.; Baxter, G.; De Villiers, D. Conserving koalas: A review of the contrasting regional trends, outlooks and policy challenges. Biol. Conserv. 2015, 192, 226–236. [Google Scholar] [CrossRef]
- Beyer, H.L.; de Villiers, D.; Loader, J.; Robbins, A.; Stigner, M.; Forbes, N.; Hanger, J. Management of multiple threats achieves meaningful koala conservation outcomes. J. Appl. Ecol. 2018, 55, 1966–1975. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.; Lindenmayer, D.B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 2007, 16, 265–280. [Google Scholar] [CrossRef]
- Wolf, C.; Ripple, W.J. Prey depletion as a threat to the world’s large carnivores. R. Soc. Open Sci. 2016, 3, 160252. [Google Scholar] [CrossRef] [Green Version]
- Letnic, M.; Tamayo, B.; Dickman, C.R. The responses of mammals to La Nina (El Nino Southern Oscillation)–associated rainfall, predation, and wildfire in central Australia. J. Mammal. 2005, 86, 689–703. [Google Scholar] [CrossRef]
- Doherty, T.S.; Geary, W.L.; Jolly, C.J.; Macdonald, K.J.; Miritis, V.; Watchorn, D.J.; Cherry, M.J.; Conner, L.M.; González, T.M.; Legge, S.M. Fire as a driver and mediator of predator–prey interactions. Biol. Rev. 2022, 97, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.M.; Viljoen, P. African large carnivore population changes in response to a drought. Afr. J. Wildl. Res. 2022, 52, 1–11. [Google Scholar] [CrossRef]
Prey Item | Border Ranges | Richmond Range | |||
---|---|---|---|---|---|
n = 322 | n = 190 | ||||
Common Name | Species Name | FOC (%) | Vol (%) | FOC (%) | Vol (%) |
Small mammals | 8.1 | 3.2 | 5.3 | 1.8 | |
Fawn-footed melomys | Melomys cervinipes | 2.5 | 0.9 | 0.5 | 0.1 |
House mouse * | Mus musculus * | 1.6 | 0.6 | ||
Bush rat | Rattus fuscipes | 3.4 | 1.7 | ||
Swamp rat | Rattus lutreolus | 0.3 | 0.2 | ||
Black rat * | Rattus rattus * | 1.2 | 0.2 | 0.5 | 0.5 |
Unidentified rat | Rattus sp. | 0.3 | 0.0 | 1.6 | 0.1 |
Sugar glider | Petaurus breviceps | 0.3 | 0.2 | 0.5 | 0.2 |
Squirrel glider | Petaurus norfolcensis | 0.5 | 0.4 | ||
Medium-sized mammals | 96.0 | 88.6 | 64.2 | 57.5 | |
Short-beaked echidna | Tachyglossus aculeatus | 0.3 | 0.1 | 12.1 | 8.7 |
Northern brown bandicoot | Isoodon macrourus | 1.9 | 1.2 | 1.6 | 0.7 |
Long-nosed bandicoot | Perameles nasuta | 0.9 | 0.8 | ||
Unidentified bandicoot | Isoodon/Perameles sp. | 1.2 | 0.1 | 1.1 | 0.3 |
Grey-headed flying fox | Pteropus poliocephalus | 0.3 | 0.3 | 0.5 | 0.0 |
Common ringtail possum | Pseudocheirus peregrinus | 53.1 | 48.3 | 2.1 | 1.5 |
Short-eared possum | Trichosurus caninus | 24.5 | 22.9 | 3.2 | 2.9 |
Common brushtail possum | Trichosurus vulpecula | 10.9 | 10.1 | 2.1 | 1.8 |
Unidentified possum | Trichosurus sp. | 4.0 | 2.4 | 1.6 | 1.1 |
Rufous bettong | Aepyprymnus rufescens | 0.5 | 0.5 | ||
Red-legged pademelon | Thylogale stigmatica | 1.2 | 1.2 | 23.2 | 21.4 |
Red-necked pademelon | Thylogale thetis | 0.3 | 0.3 | 7.4 | 7.4 |
Unidentified pademelon | Thylogale sp. | 1.2 | 0.3 | 16.3 | 11.1 |
Feral cat * | Felis catus * | 0.9 | 0.6 | ||
Large mammals | 26.8 | 31.3 | |||
Canid | Canis sp. | 1.1 | 1.1 | ||
Black-striped wallaby | Notamacropus dorsalis | 1.1 | 1.1 | ||
Pretty-face wallaby | Notamacropus parryi | 0.5 | 0.5 | ||
Red-necked wallaby | Notamacropus rufogriseus | 1.1 | 1.1 | ||
Swamp wallaby | Wallabia bicolor | 5.8 | 5.8 | ||
Domestic cattle * | Bos taurus * | 17.4 | 14.1 | ||
Unidentified macropod | 0.9 | 0.6 | 8.9 | 7.7 | |
Birds | 18.6 | 4.2 | 12.1 | 5.2 | |
Reptiles | 7.5 | 1.7 | 0.5 | 0.2 | |
Skink | 4.0 | 1.1 | |||
Varanid | 0.5 | 0.2 | |||
Dragon | 0.3 | 0.0 | |||
Snake | 3.1 | 0.6 | |||
Invertebrates | 0.9 | 0.0 | 1.1 | 0.0 | |
Plant material | 3.4 | 1.8 | 8.9 | 4.0 |
Sample Group Comparisons | Species/Category | Avg. Dissimilarity | Contribution (%) | Cumulative (%) |
---|---|---|---|---|
BR 1 vs. RR 2 | Ringtail possum | 20.46 1 | 21.19 | 21.19 |
Short-eared possum | 10.46 1 | 10.83 | 32.01 | |
Red-legged pademelon | 10.13 2 | 10.48 | 42.50 | |
Border Ranges | ||||
Summer 1 vs. winter 2 | Bird | 12.91 1 | 45.56 | 45.56 |
Plant matter | 4.90 1 | 17.29 | 62.85 | |
S | 4.36 2 | 15.38 | 78.23 | |
M | 4.12 2 | 14.54 | 92.77 | |
Winter 1 vs. spring 2 | Bird | 9.53 2 | 36.73 | 36.73 |
S | 5.43 1 | 20.92 | 57.65 | |
Reptile | 5.22 2 | 20.13 | 77.78 | |
M | 3.06 2 | 11.79 | 89.58 |
Potential Prey | r | p | D | n | |
---|---|---|---|---|---|
BR | Red-legged pademelon | 0.02 | 0.43 | −0.94 | 131.0 |
Long-nosed potoroo | 0.00 | 0.09 | −1.00 | 28.0 | |
Short-eared brushtail possum | 0.27 | 0.27 | 0.01 | 81.5 | |
Long-nosed bandicoot | 0.01 | 0.15 | −0.86 | 46.0 | |
Feral cat | 0.01 | 0.06 | −0.72 | 17.5 | |
RR | Red-legged pademelon | 0.36 | 0.28 | 0.16 | 138.5 |
Red-necked pademelon | 0.11 | 0.11 | 0.03 | 52.0 | |
Long-nosed potoroo | 0.00 | 0.02 | −1.00 | 10.0 | |
Short-eared brushtail possum | 0.04 | 0.06 | −0.23 | 31.5 | |
Long-nosed bandicoot | 0.00 | 0.41 | −1.00 | 201.5 | |
Northern brown bandicoot | 0.03 | 0.09 | −0.57 | 44.0 | |
Koala | 0.00 | 0.02 | −1.00 | 11.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McLean, D.; Goldingay, R.; Letnic, M. Diet of the Dingo in Subtropical Australian Forests: Are Small, Threatened Macropods at Risk? Animals 2023, 13, 2257. https://doi.org/10.3390/ani13142257
McLean D, Goldingay R, Letnic M. Diet of the Dingo in Subtropical Australian Forests: Are Small, Threatened Macropods at Risk? Animals. 2023; 13(14):2257. https://doi.org/10.3390/ani13142257
Chicago/Turabian StyleMcLean, Dusty, Ross Goldingay, and Mike Letnic. 2023. "Diet of the Dingo in Subtropical Australian Forests: Are Small, Threatened Macropods at Risk?" Animals 13, no. 14: 2257. https://doi.org/10.3390/ani13142257
APA StyleMcLean, D., Goldingay, R., & Letnic, M. (2023). Diet of the Dingo in Subtropical Australian Forests: Are Small, Threatened Macropods at Risk? Animals, 13(14), 2257. https://doi.org/10.3390/ani13142257