Scientific Productions on Precision Livestock Farming: An Overview of the Evolution and Current State of Research Based on a Bibliometric Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Descriptive Analysis
3.1.1. Main Information and Publication Growth
3.1.2. Collection Sources
- Journals that began publishing papers on PLF in the early years of the collection and maintained a steady growth throughout the entire period studied, such as the Journal of Dairy Science and Computers and Electronics in Agriculture;
- Journals that started producing papers in the middle of the period considered (around 2014–2018) and subsequently showed significant and continuous growth, such as Animal, Biosystems Engineering, and Animals.
3.1.3. Relevant Authors and Top PLF Papers
3.1.4. Cited References, Reference Publication Year Spectroscopy, and Historiography
3.1.5. Document Co-Citation Analysis: Semantic Similarity
3.1.6. International Research Collaboration
3.2. Text Mining Analysis
Most Frequent Words: Author Keywords and Keywords Plus
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cox, S. Precision Livestock Farming; Wageningen Academic Publishers: Wageningen, The Netherlands, 2003; ISBN 978-90-76998-22-0. [Google Scholar]
- Hooven, N.W. Cow Identification and Recording Systems. J. Dairy Sci. 1978, 61, 1167–1180. [Google Scholar] [CrossRef]
- Rossing, W. Animal identification: Introduction and history. Comput. Electron. Agric. 1999, 24, 1–4. [Google Scholar] [CrossRef]
- de Koning, C.J.A.M. Milking. In Encyclopedia of Dairy Sciences, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 952–958. ISBN 9780123744029. [Google Scholar]
- Morota, G.; Ventura, R.V.; Silva, F.F.; Koyama, M.; Fernando, S.C. Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture. J. Anim. Sci. 2018, 96, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Borchers, M.R.; Bewley, J.M. An assessment of producer precision dairy farming technology use, prepurchase considerations, and usefulness. J. Dairy Sci. 2015, 98, 4198–4205. [Google Scholar] [CrossRef] [Green Version]
- Abeni, F.; Petrera, F.; Galli, A. A survey of italian dairy farmers’ propensity for precision livestock farming tools. Animals 2019, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Lora, I.; Gottardo, F.; Contiero, B.; Zidi, A.; Magrin, L.; Cassandro, M.; Cozzi, G. A survey on sensor systems used in Italian dairy farms and comparison between performances of similar herds equipped or not equipped with sensors. J. Dairy Sci. 2020, 103, 10264–10272. [Google Scholar] [CrossRef]
- Morrone, S.; Dimauro, C.; Gambella, F.; Cappai, M.G. Industry 4.0 and Precision Livestock Farming (PLF): An up to Date Overview across Animal Productions. Sensors 2022, 22, 4319. [Google Scholar] [CrossRef]
- Kleen, J.L.; Guatteo, R. Precision Livestock Farming: What Does It Contain and What Are the Perspectives? Animals 2023, 13, 779. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. How to normalize cooccurrence data? An analysis of some well-known similarity measures. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 1635–1651. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Gygax, L.; Neuffer, I.; Kaufmann, C.; Hauser, R.; Wechsler, B. Restlessness behaviour, heart rate and heart-rate variability of dairy cows milked in two types of automatic milking systems and auto-tandem milking parlours. Appl. Anim. Behav. Sci. 2008, 109, 167–179. [Google Scholar] [CrossRef]
- Borderas, T.F.; Fournier, A.; Rushen, J.; De Passillé, A.M.B. Effect of lameness on dairy cows’ visits to automatic milking systems. Can. J. Anim. Sci. 2008, 88, 1–8. [Google Scholar] [CrossRef]
- Bruckmaier, R.M.; Wellnitz, O. Induction of milk ejection and milk removal in different production systems. J. Anim. Sci. 2008, 86, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Bradford, S.C. Sources of information on specific subjects 1934. J. Inf. Sci. 1985, 10, 176–180. [Google Scholar] [CrossRef]
- Barkema, H.W.; von Keyserlingk, M.A.G.; Kastelic, J.P.; Lam, T.J.G.M.; Luby, C.; Roy, J.P.; LeBlanc, S.J.; Keefe, G.P.; Kelton, D.F. Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J. Dairy Sci. 2015, 98, 7426–7445. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, J.A.; Siegford, J.M. Invited review: The impact of automatic milking systems on dairy cow management, behavior, health, and welfare. J. Dairy Sci. 2012, 95, 2227–2247. [Google Scholar] [CrossRef] [Green Version]
- Rutten, C.J.; Velthuis, A.G.J.; Steeneveld, W.; Hogeveen, H. Invited review: Sensors to support health management on dairy farms. J. Dairy Sci. 2013, 96, 1928–1952. [Google Scholar] [CrossRef] [Green Version]
- Wathes, C.M.; Kristensen, H.H.; Aerts, J.M.; Berckmans, D. Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Comput. Electron. Agric. 2008, 64, 2–10. [Google Scholar] [CrossRef]
- Berckmans, D. Precision livestock farming technologies for welfare management in intensive livestock systems. OIE Rev. Sci. Tech. 2014, 33, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Dufour, S.; Fréchette, A.; Barkema, H.W.; Mussell, A.; Scholl, D.T. Invited review: Effect of udder health management practices on herd somatic cell count. J. Dairy Sci. 2011, 94, 563–579. [Google Scholar] [CrossRef] [PubMed]
- Wigboldus, S.; Klerkx, L.; Leeuwis, C.; Schut, M.; Muilerman, S.; Jochemsen, H. Systemic perspectives on scaling agricultural innovations. A review. Agron. Sustain. Dev. 2016, 36, 46. [Google Scholar] [CrossRef] [Green Version]
- Føre, M.; Frank, K.; Norton, T.; Svendsen, E.; Alfredsen, J.A.; Dempster, T.; Eguiraun, H.; Watson, W.; Stahl, A.; Sunde, L.M.; et al. Precision fish farming: A new framework to improve production in aquaculture. Biosyst. Eng. 2018, 173, 176–193. [Google Scholar] [CrossRef]
- Hogeveen, H.; Kamphuis, C.; Steeneveld, W.; Mollenhorst, H. Sensors and clinical mastitis-the quest for the perfect alert. Sensors 2010, 10, 7991–8009. [Google Scholar] [CrossRef] [Green Version]
- Tullo, E.; Finzi, A.; Guarino, M. Review: Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Sci. Total Environ. 2019, 650, 2751–2760. [Google Scholar] [CrossRef]
- Hovinen, M.; Pyörälä, S. Invited review: Udder health of dairy cows in automatic milking. J. Dairy Sci. 2011, 94, 547–562. [Google Scholar] [CrossRef] [Green Version]
- Lassen, J.; Løvendahl, P.; Madsen, J. Accuracy of noninvasive breath methane measurements using Fourier transform infrared methods on individual cows. J. Dairy Sci. 2012, 95, 890–898. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, M.; Kawamura, S.; Tsukahara, M.; Morita, S.; Komiya, M.; Natsuga, M. Near-infrared spectroscopic sensing system for on-line milk quality assessment in a milking robot. Comput. Electron. Agric. 2008, 63, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Bewley, J.M.; Boyce, R.E.; Hockin, J.; Munksgaard, L.; Eicher, S.D.; Einstein, M.E.; Schutz, M.M. Influence of milk yield, stage of lactation, and body condition on dairy cattle lying behaviour measured using an automated activity monitoring sensor. J. Dairy Res. 2010, 77, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Berckmans, D. General introduction to precision livestock farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Nasirahmadi, A.; Edwards, S.A.; Sturm, B. Implementation of machine vision for detecting behaviour of cattle and pigs. Livest. Sci. 2017, 202, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Lassen, J.; Løvendahl, P. Heritability estimates for enteric methane emissions from Holstein cattle measured using noninvasive methods. J. Dairy Sci. 2016, 99, 1959–1967. [Google Scholar] [CrossRef] [Green Version]
- Viazzi, S.; Ismayilova, G.; Oczak, M.; Sonoda, L.T.; Fels, M.; Guarino, M.; Vranken, E.; Hartung, J.; Bahr, C.; Berckmans, D. Image feature extraction for classification of aggressive interactions among pigs. Comput. Electron. Agric. 2014, 104, 57–62. [Google Scholar] [CrossRef]
- Neethirajan, S.; Tuteja, S.K.; Huang, S.T.; Kelton, D. Recent advancement in biosensors technology for animal and livestock health management. Biosens. Bioelectron. 2017, 98, 398–407. [Google Scholar] [CrossRef]
- Spoliansky, R.; Edan, Y.; Parmet, Y.; Halachmi, I. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera. J. Dairy Sci. 2016, 99, 7714–7725. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.; Pereira, J.M.; Amiama, C.; Bueno, J. Estimating efficiency in automatic milking systems. J. Dairy Sci. 2012, 95, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Løvendahl, P.; Chagunda, M. Covariance among milking frequency, milk yield, and milk composition from automatically milked cows. J. Dairy Sci. 2011, 94, 5381–5392. [Google Scholar] [CrossRef] [Green Version]
- Lyons, N.A.; Kerrisk, K.L.; Garcia, S.C. Comparison of 2 systems of pasture allocation on milking intervals and total daily milk yield of dairy cows in a pasture-based automatic milking system. J. Dairy Sci. 2013, 96, 4494–4504. [Google Scholar] [CrossRef] [Green Version]
- Dohmen, W.; Neijenhuis, F.; Hogeveen, H. Relationship between udder health and hygiene on farms with an automatic milking system. J. Dairy Sci. 2010, 93, 4019–4033. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, M.; Hess, J.P.; Christenson, B.M.; McIntyre, K.K.; Smink, B.; van der Kamp, A.J.; de Jong, L.G.; Döpfer, D. Factors associated with increased milk production for automatic milking systems. J. Dairy Sci. 2016, 99, 3824–3837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamphuis, C.; Mollenhorst, H.; Heesterbeek, J.A.P.; Hogeveen, H. Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction. J. Dairy Sci. 2010, 93, 3616–3627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyons, N.A.; Kerrisk, K.L.; Garcia, S.C. Milking frequency management in pasture-based automatic milking systems: A review. Livest. Sci. 2014, 159, 102–116. [Google Scholar] [CrossRef]
- John, A.J.; Clark, C.E.F.; Freeman, M.J.; Kerrisk, K.L.; Garcia, S.C.; Halachmi, I. Review: Milking robot utilization, a successful precision livestock farming evolution. Animal 2016, 10, 1484–1492. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.; Devant, M.; Igleasias, C.; Ferrer, A. Forced traffic in automatic milking systems effectively reduces the need to get cows, but alters eating behavior and does not improve milk yield of dairy cattle. J. Dairy Sci. 2009, 92, 1272–1280. [Google Scholar] [CrossRef] [Green Version]
- Kamphuis, C.; Sherlock, R.; Jago, J.; Mein, G.; Hogeveen, H. Automatic detection of clinical mastitis is improved by in-line monitoring of somatic cell count. J. Dairy Sci. 2008, 91, 4560–4570. [Google Scholar] [CrossRef] [Green Version]
- André, G.; Berentsen, P.B.M.; Engel, B.; de Koning, C.J.A.M.; Oude Lansink, A.G.J.M. Increasing the revenues from automatic milking by using individual variation in milking characteristics. J. Dairy Sci. 2010, 93, 942–953. [Google Scholar] [CrossRef] [Green Version]
- Deming, J.A.; Bergeron, R.; Leslie, K.E.; DeVries, T.J. Associations of housing, management, milking activity, and standing and lying behavior of dairy cows milked in automatic systems. J. Dairy Sci. 2013, 96, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Marx, W.; Bornmann, L.; Barth, A.; Leydesdorff, L. Detecting the historical roots of research fields by reference publication year spectroscopy (RPYS). J. Assoc. Inf. Sci. Technol. 2014, 65, 751–764. [Google Scholar] [CrossRef] [Green Version]
- Norberg, E.; Hogeveen, H.; Korsgaard, I.R.; Friggens, N.C.; Sloth, K.H.M.N.; Løvendahl, P. Electrical Conductivity of Milk: Ability to Predict Mastitis Status. J. Dairy Sci. 2004, 87, 1099–1107. [Google Scholar] [CrossRef] [Green Version]
- Wagner-Storch, A.M.; Palmer, R.W. Feeding Behavior, Milking Behavior, and Milk Yields of Cows Milked in a Parlor Versus an Automatic Milking System. J. Dairy Sci. 2003, 86, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Schirmann, K.; von Keyserlingk, M.A.G.; Weary, D.M.; Veira, D.M.; Heuwieser, W. Technical note: Validation of a system for monitoring rumination in dairy cows. J. Dairy Sci. 2009, 92, 6052–6055. [Google Scholar] [CrossRef] [Green Version]
- Frost, A.R.; Schofield, C.P.; Beaulah, S.A.; Mottram, T.T.; Lines, J.A.; Wathes, C.M. A review of livestock monitoring and the need for integrated systems. Comput. Electron. Agric. 1997, 17, 139–159. [Google Scholar] [CrossRef]
- Hogeveen, H.; Ouweltjes, W.; De Koning, C.J.A.M.; Stelwagen, K. Milking interval, milk production and milk flow-rate in an automatic milking system. Livest. Prod. Sci. 2001, 72, 157–167. [Google Scholar] [CrossRef]
- Klungel, G.H.; Slaghuis, B.A.; Hogeveen, H. The Effect of the Introduction of Automatic Milking Systems on Milk Quality. J. Dairy Sci. 2000, 83, 1998–2003. [Google Scholar] [CrossRef]
- Melin, M.; Hermans, G.G.N.; Pettersson, G.; Wiktorsson, H. Cow traffic in relation to social rank and motivation of cows in an automatic milking system with control gates and an open waiting area. Appl. Anim. Behav. Sci. 2006, 96, 201–214. [Google Scholar] [CrossRef]
- Prescott, N.B.; Mottram, T.T.; Webster, A.J.F. Relative motivations of dairy cows to be milked or fed in a Y-maze and an automatic milking system. Appl. Anim. Behav. Sci. 1998, 57, 23–33. [Google Scholar] [CrossRef]
- Hopster, H.; Bruckmaier, R.M.; Van Der Werf, J.T.N.; Korte, S.M.; Macuhova, J.; Korte-Bouws, G.; Van Reenen, C.G. Stress Responses during Milking; Comparing Conventional and Automatic Milking in Primiparous Dairy Cows. J. Dairy Sci. 2002, 85, 3206–3216. [Google Scholar] [CrossRef]
- Garfield, E. Historiographic mapping of knowledge domains literature. J. Inf. Sci. 2004, 30, 119–145. [Google Scholar] [CrossRef]
- Nixon, M.; Bohmanova, J.; Jamrozik, J.; Schaeffer, L.R.; Hand, K.; Miglior, F. Genetic parameters of milking frequency and milk production traits in Canadian Holsteins milked by an automated milking system. J. Dairy Sci. 2009, 92, 3422–3430. [Google Scholar] [CrossRef] [Green Version]
- Steeneveld, W.; van der Gaag, L.C.; Ouweltjes, W.; Mollenhorst, H.; Hogeveen, H. Discriminating between true-positive and false-positive clinical mastitis alerts from automatic milking systems. J. Dairy Sci. 2010, 93, 2559–2568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halachmi, I.; Guarino, M.; Bewley, J.; Pastell, M. Smart Animal Agriculture: Application of Real-Time Sensors to Improve Animal Well-Being and Production. Annu. Rev. Anim. Biosci. 2019, 7, 403–425. [Google Scholar] [CrossRef] [PubMed]
- Mollenhorst, H.; Rijkaart, L.J.; Hogeveen, H. Mastitis alert preferences of farmers milking with automatic milking systems. J. Dairy Sci. 2012, 95, 2523–2530. [Google Scholar] [CrossRef] [Green Version]
- Steeneveld, W.; Tauer, L.W.; Hogeveen, H.; Oude Lansink, A.G.J.M. Comparing technical efficiency of farms with an automatic milking system and a conventional milking system. J. Dairy Sci. 2012, 95, 7391–7398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tse, C.; Barkema, H.W.; DeVries, T.J.; Rushen, J.; Pajor, E.A. Effect of transitioning to automatic milking systems on producers’ perceptions of farm management and cow health in the Canadian dairy industry. J. Dairy Sci. 2017, 100, 2404–2414. [Google Scholar] [CrossRef] [Green Version]
- Fournel, S.; Rousseau, A.N.; Laberge, B. Rethinking environment control strategy of confined animal housing systems through precision livestock farming. Biosyst. Eng. 2017, 155, 96–123. [Google Scholar] [CrossRef]
- Van Hertem, T.; Rooijakkers, L.; Berckmans, D.; Peña Fernández, A.; Norton, T.; Berckmans, D.; Vranken, E. Appropriate data visualisation is key to Precision Livestock Farming acceptance. Comput. Electron. Agric. 2017, 138, 1–10. [Google Scholar] [CrossRef]
- Matthews, S.G.; Miller, A.L.; Clapp, J.; Plötz, T.; Kyriazakis, I. Early detection of health and welfare compromises through automated detection of behavioural changes in pigs. Vet. J. 2016, 217, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Van der Stuyft, E.; Schofield, C.P.; Randall, J.M.; Wambacq, P.; Goedseels, V. Development and application of computer vision systems for use in livestock production. Comput. Electron. Agric. 1991, 6, 243–265. [Google Scholar] [CrossRef]
- Bewley, J.M.; Peacock, A.M.; Lewis, O.; Boyce, R.E.; Roberts, D.J.; Coffey, M.P.; Kenyon, S.J.; Schutz, M.M. Potential for estimation of body condition scores in dairy cattle from digital images. J. Dairy Sci. 2008, 91, 3439–3453. [Google Scholar] [CrossRef] [Green Version]
- Kashiha, M.; Bahr, C.; Ott, S.; Moons, C.P.H.; Niewold, T.A.; Ödberg, F.O.; Berckmans, D. Automatic weight estimation of individual pigs using image analysis. Comput. Electron. Agric. 2014, 107, 38–44. [Google Scholar] [CrossRef]
- Halachmi, I.; Klopčič, M.; Polak, P.; Roberts, D.J.; Bewley, J.M. Automatic assessment of dairy cattle body condition score using thermal imaging. Comput. Electron. Agric. 2013, 99, 35–40. [Google Scholar] [CrossRef]
- Pezzuolo, A.; Guarino, M.; Sartori, L.; González, L.A.; Marinello, F. On-barn pig weight estimation based on body measurements by a Kinect v1 depth camera. Comput. Electron. Agric. 2018, 148, 29–36. [Google Scholar] [CrossRef]
- Kashiha, M.; Bahr, C.; Ott, S.; Moons, C.P.H.; Niewold, T.A.; Ödberg, F.O.; Berckmans, D. Automatic identification of marked pigs in a pen using image pattern recognition. Comput. Electron. Agric. 2013, 93, 111–120. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Richter, U.; Hensel, O.; Edwards, S.; Sturm, B. Using machine vision for investigation of changes in pig group lying patterns. Comput. Electron. Agric. 2015, 119, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Kashiha, M.; Bahr, C.; Haredasht, S.A.; Ott, S.; Moons, C.P.H.; Niewold, T.A.; Ödberg, F.O.; Berckmans, D. The automatic monitoring of pigs water use by cameras. Comput. Electron. Agric. 2013, 90, 164–169. [Google Scholar] [CrossRef]
- Song, X.; Leroy, T.; Vranken, E.; Maertens, W.; Sonck, B.; Berckmans, D. Automatic detection of lameness in dairy cattle-Vision-based trackway analysis in cow’s locomotion. Comput. Electron. Agric. 2008, 64, 39–44. [Google Scholar] [CrossRef]
- Poursaberi, A.; Bahr, C.; Pluk, A.; Van Nuffel, A.; Berckmans, D. Real-time automatic lameness detection based on back posture extraction in dairy cattle: Shape analysis of cow with image processing techniques. Comput. Electron. Agric. 2010, 74, 110–119. [Google Scholar] [CrossRef]
- Viazzi, S.; Bahr, C.; Schlageter-Tello, A.; Van Hertem, T.; Romanini, C.E.B.; Pluk, A.; Halachmi, I.; Lokhorst, C.; Berckmans, D. Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle. J. Dairy Sci. 2013, 96, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Manteuffel, G.; Puppe, B.; Schön, P.C. Vocalization of farm animals as a measure of welfare. Appl. Anim. Behav. Sci. 2004, 88, 163–182. [Google Scholar] [CrossRef]
- Milone, D.H.; Galli, J.R.; Cangiano, C.A.; Rufiner, H.L.; Laca, E.A. Automatic recognition of ingestive sounds of cattle based on hidden Markov models. Comput. Electron. Agric. 2012, 87, 51–55. [Google Scholar] [CrossRef]
- Navon, S.; Mizrach, A.; Hetzroni, A.; Ungar, E.D. Automatic recognition of jaw movements in free-ranging cattle, goats and sheep, using acoustic monitoring. Biosyst. Eng. 2013, 114, 474–483. [Google Scholar] [CrossRef]
- Chelotti, J.O.; Vanrell, S.R.; Milone, D.H.; Utsumi, S.A.; Galli, J.R.; Rufiner, H.L.; Giovanini, L.L. A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattle. Comput. Electron. Agric. 2016, 127, 64–75. [Google Scholar] [CrossRef] [Green Version]
- DeVries, T.J.; Von Keyserlingk, M.A.G.; Weary, D.M.; Beauchemin, K.A. Measuring the Feeding Behavior of Lactating Dairy Cows in Early to Peak Lactation. J. Dairy Sci. 2003, 86, 3354–3361. [Google Scholar] [CrossRef] [Green Version]
- Bach, A.; Dinarés, M.; Devant, M.; Carré, X. Associations between lameness and production, feeding and milking attendance of Holstein cows milked with an automatic milking system. J. Dairy Res. 2007, 74, 40–46. [Google Scholar] [CrossRef]
- Westin, R.; Vaughan, A.; de Passillé, A.M.; DeVries, T.J.; Pajor, E.A.; Pellerin, D.; Siegford, J.M.; Witaifi, A.; Vasseur, E.; Rushen, J. Cow- and farm-level risk factors for lameness on dairy farms with automated milking systems. J. Dairy Sci. 2016, 99, 3732–3743. [Google Scholar] [CrossRef] [Green Version]
- Svennersten-Sjaunja, K.M.; Pettersson, G. Pros and cons of automatic milking in Europe. J. Anim. Sci. 2008, 86, 37–46. [Google Scholar] [CrossRef]
- Abeni, F.; Degano, L.; Calza, F.; Giangiacomo, R.; Pirlo, G. Milk Quality and Automatic Milking: Fat Globule Size, Natural Creaming, and Lipolysis. J. Dairy Sci. 2005, 88, 3519–3529. [Google Scholar] [CrossRef]
- Bach, A.; Busto, I. Effects on milk yield of milking interval regularity and teat cup attachment failures with robotic milking systems. J. Dairy Res. 2005, 72, 101–106. [Google Scholar] [CrossRef]
- Speroni, M.; Pirlo, G.; Lolli, S. Effect of Automatic Milking Systems on Milk Yield in a Hot Environment. J. Dairy Sci. 2006, 89, 4687–4693. [Google Scholar] [CrossRef]
- Abeni, F.; Calamari, L.; Calza, F.; Speroni, M.; Bertoni, G.; Pirlo, G. Welfare assessment based on metabolic and endocrine aspects in primiparous cows milked in a parlor or with an automatic milking system. J. Dairy Sci. 2005, 88, 3542–3552. [Google Scholar] [CrossRef] [Green Version]
- Abeni, F.; Terzano, M.G.; Speroni, M.; Migliorati, L.; Capelletti, M.; Calza, F.; Bianchi, L.; Pirlo, G. Evaluation of Milk Enzymes and Electrolytes, Plasma Metabolites, and Oxidative Status in Twin Cows Milked in an Automatic Milking System or Twice Daily in a Conventional Milking Parlor. J. Dairy Sci. 2008, 91, 3372–3384. [Google Scholar] [CrossRef] [Green Version]
- Hogeveen, H.; Klaas, I.C.; Dalen, G.; Honig, H.; Zecconi, A.; Kelton, D.F.; Sánchez Mainar, M. Novel ways to use sensor data to improve mastitis management. J. Dairy Sci. 2021, 104, 11317–11332. [Google Scholar] [CrossRef]
- Claycomb, R.W.; Johnstone, P.T.; Mein, G.A.; Sherlock, R.A. An automated in-line clinical mastitis detection system using measurement of conductivity from foremilk of individual udder quarters. N. Z. Vet. J. 2009, 57, 208–214. [Google Scholar] [CrossRef]
- Huijps, K.; Lam, T.J.G.M.; Hogeveen, H. Costs of mastitis: Facts and perception. J. Dairy Res. 2008, 75, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Maatje, K.; Huijsmans, P.J.M.; Rossing, W.; Hogewerf, P.H. The efficacy of in-line measurement of quarter milk electrical conductivity, milk yield and milk temperature for the detection of clinical and subclinical mastitis. Livest. Prod. Sci. 1992, 30, 239–249. [Google Scholar] [CrossRef]
- Hogeveen, H.; Ouweltjes, W. Sensors and management support in high-technology milking. J. Anim. Sci. 2003, 81 (Suppl. S3), 1–10. [Google Scholar] [CrossRef] [Green Version]
- Khatun, M.; Thomson, P.C.; Kerrisk, K.L.; Lyons, N.A.; Clark, C.E.F.; Molfino, J.; García, S.C. Development of a new clinical mastitis detection method for automatic milking systems. J. Dairy Sci. 2018, 101, 9385–9395. [Google Scholar] [CrossRef]
- Gebre-Egziabher, A.; Wood, H.C.; Robar, J.D.; Blankenagel, G. Evaluation of Automatic Mastitis Detection Equipment. J. Dairy Sci. 1979, 62, 1108–1114. [Google Scholar] [CrossRef]
- Nielen, M.; Deluyker, H.; Schukken, Y.H.; Brand, A. Electrical Conductivity of Milk: Measurement, Modifiers, and Meta Analysis of Mastitis Detection Performance. J. Dairy Sci. 1992, 75, 606–614. [Google Scholar] [CrossRef]
- Garfield, E.; Sher, I.H. KeyWords PlusTM—Algorithmic derivative indexing. J. Assoc. Inf. Sci. Technol. 1993, 44, 298. [Google Scholar] [CrossRef]
- Halasa, T.; Huijps, K.; Østerås, O.; Hogeveen, H. Economic effects of bovine mastitis and mastitis management: A review. Vet. Q. 2007, 29, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Ragazou, K.; Garefalakis, A.; Zafeiriou, E.; Passas, I. Agriculture 5.0: A New Strategic Management Mode for a Cut Cost and an Energy Efficient Agriculture Sector. Energies 2022, 15, 3113. [Google Scholar] [CrossRef]
Sources | No. of Articles | Percentage of Articles |
---|---|---|
Journal of Dairy Science | 203 | 22.9 |
Computers and Electronics in Agriculture | 76 | 8.5 |
Animals | 54 | 6.1 |
Animal | 35 | 3.9 |
Biosystems Engineering | 29 | 3.3 |
Livestock Science | 27 | 3.0 |
Journal of Dairy Research | 20 | 2.2 |
Journal of Animal Science | 19 | 2.1 |
Animal Production Science | 15 | 1.7 |
Sensors | 13 | 1.5 |
(A) | |||||
Document | Title | DOI | * TC | * TC1 | * TC2 |
[19] | Invited review: Changes in the dairy industry affecting dairy cattle health and welfare | 10.3168/jds.2015-9377 | 258 | 32.2 | 13.8 |
[21] | Invited review: Sensors to support health management on dairy farms | 10.3168/jds.2012-6107 | 232 | 23.2 | 11.2 |
[22] | Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? | 10.1016/j.compag.2008.05.005 | 162 | 10.8 | 5.5 |
[20] | Invited review: The impact of automatic milking systems on dairy cow management, behavior, health, and welfare | 10.3168/jds.2011-4943 | 151 | 13.7 | 7.3 |
[23] | Precision livestock farming technologies for welfare management in intensive livestock systems | 10.20506/rst.33.1.2273 | 124 | 13.8 | 5.8 |
[24] | Invited review: Effect of udder health management practices on herd somatic cell count | 10.3168/jds.2010-3715 | 119 | 10.0 | 7.3 |
[25] | Systemic perspectives on scaling agricultural innovations. A review | 10.1007/s13593-016-0380-z | 110 | 15.7 | 5.6 |
[26] | Precision fish farming: A new framework to improve production in aquaculture | 10.1016/j.biosystemseng.2017.10.014 | 102 | 20.4 | 11.1 |
[27] | Sensors and clinical mastitis—The quest for the perfect alert | 10.3390/s100907991 | 87 | 6.7 | 3.7 |
[28] | Review: Environmental impact of livestock farming and precision livestock farming as a mitigation strategy | 10.1016/j.scitotenv.2018.10.018 | 87 | 21.7 | 10.7 |
[29] | Invited review: Udder health of dairy cows in automatic milking | 10.3168/jds.2010-3556 | 86 | 7.2 | 5.2 |
[30] | Accuracy of noninvasive breath methane measurements using Fourier transform infrared methods on individual cows | 10.3168/jds.2011-4544 | 85 | 7.7 | 4.1 |
[31] | Near-infrared spectroscopic sensing system for on-line milk quality assessment in a milking robot | 10.1016/j.compag.2008.01.006 | 77 | 5.1 | 2.6 |
[32] | Influence of milk yield, stage of lactation, and body condition on dairy cattle lying behaviour measured using an automated activity monitoring sensor | 10.1017/S0022029909990227 | 76 | 5.8 | 3.3 |
[33] | General introduction to precision livestock farming | 10.2527/af.2017.0102 | 76 | 12.7 | 4.6 |
[34] | Implementation of machine vision for detecting behaviour of cattle and pigs | 10.1016/j.livsci.2017.05.014 | 75 | 12.5 | 4.5 |
[35] | Heritability estimates for enteric methane emissions from Holstein cattle measured using noninvasive methods | 10.3168/jds.2015-10012 | 73 | 10.4 | 3.7 |
[36] | Image feature extraction for classification of aggressive interactions among pigs | 10.1016/j.compag.2014.03.010 | 69 | 7.7 | 3.2 |
[37] | Recent advancement in biosensors technology for animal and livestock health management | 10.1016/j.bios.2017.07.015 | 60 | 10 | 3.6 |
[38] | Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera | 10.3168/jds.2015-10607 | 56 | 8 | 2.8 |
(B) | |||||
Document | Title | DOI | * LC | * TC | * LC/TC |
[20] | Invited review: The impact of automatic milking systems on dairy cow management, behavior, health, and welfare | 10.3168/jds.2011-4943 | 91 | 151 | 60.26 |
[22] | Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? | 10.1016/j.compag.2008.05.005 | 55 | 162 | 33.95 |
[23] | Precision livestock farming technologies for welfare management in intensive livestock systems | 10.20506/rst.33.1.2273 | 51 | 124 | 41.13 |
[29] | Invited review: Udder health of dairy cows in automatic milking | 10.3168/jds.2010-3556 | 45 | 86 | 52.33 |
[21] | Invited review: Sensors to support health management on dairy farms | 10.3168/jds.2012-6107 | 45 | 232 | 19.40 |
[39] | Estimating efficiency in automatic milking systems | 10.3168/jds.2010-3912 | 44 | 54 | 81.48 |
[33] | General introduction to precision livestock farming | 10.2527/af.2017.0102 | 40 | 76 | 52.63 |
[19] | Invited review: Changes in the dairy industry affecting dairy cattle health and welfare | 10.3168/jds.2015-9377 | 38 | 258 | 14.73 |
[40] | Covariance among milking frequency, milk yield, and milk composition from automatically milked cows | 10.3168/jds.2010-3589 | 30 | 42 | 71.43 |
[41] | Comparison of 2 systems of pasture allocation on milking intervals and total daily milk yield of dairy cows in a pasture-based automatic milking system | 10.3168/jds.2013-6716 | 29 | 30 | 96.67 |
[42] | Relationship between udder health and hygiene on farms with an automatic milking system | 10.3168/jds.2009-3028 | 28 | 48 | 58.33 |
[27] | Sensors and clinical mastitis—The quest for the perfect alert | 10.3390/s100907991 | 28 | 87 | 32.18 |
[43] | Factors associated with increased milk production for automatic milking systems | 10.3168/jds.2015-10152 | 28 | 39 | 71.79 |
[44] | Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction | 10.3168/jds.2010-3228 | 26 | 45 | 57.78 |
[45] | Milking frequency management in pasture-based automatic milking systems: A review | 10.1016/j.livsci.2013.11.011 | 26 | 33 | 78.79 |
[46] | Review: Milking robot utilization, a successful precision livestock farming evolution | 10.1017/S1751731116000495 | 26 | 37 | 70.27 |
[47] | Forced traffic in automatic milking systems effectively reduces the need to get cows, but alters eating behavior and does not improve milk yield of dairy cattle | 10.3168/jds.2008-1443 | 24 | 31 | 77.42 |
[48] | Automatic detection of clinical mastitis is improved by in-line monitoring of somatic cell count | 10.3168/jds.2008-1160 | 23 | 50 | 46.00 |
[49] | Increasing the revenues from automatic milking by using individual variation in milking characteristics | 10.3168/jds.2009-2373 | 23 | 32 | 71.88 |
[50] | Associations of housing, management, milking activity, and standing and lying behavior of dairy cows milked in automatic systems | 10.3168/jds.2012-5985 | 23 | 46 | 50.00 |
Year | * TCY | * diffMedian5 | Document | Title | DOI | * LC |
---|---|---|---|---|---|---|
2004 | 1225 | 386 | [52] | Electrical conductivity of milk: Ability to predict mastitis status | 10.3168/jds.S0022-0302(04)73256-7 | 28 |
2003 | 1059 | 288 | [53] | Feeding behavior, milking behavior, and milk yields of cows milked in a parlor versus an automatic milking system | 10.3168/jds.S0022-0302(03)73735-7 | 37 |
2009 | 1509 | 253 | [47] | Forced traffic in automatic milking systems effectively reduces the need to get cows, but alters eating behavior and does not improve milk yield of dairy cattle | 10.3168/jds.2008-1443 | 24 |
2009 | 1509 | 253 | [54] | Technical note: Validation of a system for monitoring rumination in dairy cows | 10.3168/jds.2009-2361 | 23 |
2013 | 1836 | 252 | [21] | Invited review: Sensors to support health management on dairy farms | 10.3168/jds.2012-6107 | 45 |
2016 | 2019 | 235 | [43] | Factors associated with increased milk production for automatic milking systems | 10.3168/jds.2015-10152 | 28 |
1997 | 542 | 234 | [55] | A review of livestock monitoring and the need for integrated systems | 10.1016/S0168-1699(96)01301-4 | 19 |
2001 | 771 | 229 | [56] | Sensors and clinical mastitis—The quest for the perfect alert | 10.1016/S0301-6226(01)00276-7 | 50 |
2017 | 2053 | 217 | [33] | General introduction to precision livestock farming | 10.2527/af.2017.0102 | 40 |
2000 | 727 | 211 | [57] | The effect of the introduction of automatic milking systems on milk quality | 10.3168/jds.S0022-0302(00)75077-6 | 25 |
2008 | 1428 | 203 | [22] | Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? | 10.1016/j.compag.2008.05.005 | 55 |
2012 | 1685 | 176 | [20] | Invited review: The impact of automatic milking systems on dairy cow management, behavior, health, and welfare | 10.3168/jds.2011-4943 | 91 |
2006 | 1223 | 164 | [58] | Cow traffic in relation to social rank and motivation of cows in an automatic milking system with control gates and an open waiting area | 10.1016/j.applanim.2005.06.013 | 24 |
2010 | 1584 | 156 | [42] | Relationship between udder health and hygiene on farms with an automatic milking system | 10.3168/jds.2009-3028 | 28 |
2010 | 1584 | 156 | [27] | Milking interval, milk production and milk flow-rate in an automatic milking system | 10.3390/s100907991 | 28 |
1998 | 455 | 134 | [59] | Relative motivations of dairy cows to be milked or fed in a Y-maze and an automatic milking system | 10.1016/S0168-1591(97)00112-3 | 44 |
2002 | 839 | 112 | [60] | Stress responses during milking; Comparing conventional and automatic milking in primiparous dairy cows | 10.3168/jds.S0022-0302(02)74409-3 | 25 |
2014 | 1784 | 99 | [23] | Precision livestock farming technologies for welfare management in intensive livestock systems | 10.20506/rst.33.1.2273 | 51 |
Document | Title | DOI | * LC | * TC |
---|---|---|---|---|
[16] | Effect of lameness on dairy cows’ visits to automatic milking systems | 10.4141/CJAS07014 | 21 | 51 |
[22] | Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? | 10.1016/j.compag.2008.05.005 | 55 | 162 |
[48] | Automatic detection of clinical mastitis is improved by in-line monitoring of somatic cell count | 10.3168/jds.2008-1160 | 23 | 50 |
[62] | Genetic parameters of milking frequency and milk production traits in Canadian Holsteins milked by an automated milking system | 10.3168/jds.2008-1689 | 20 | 35 |
[47] | Forced traffic in automatic milking systems effectively reduces the need to get cows, but alters eating behavior and does not improve milk yield of dairy cattle | 10.3168/jds.2008-1443 | 24 | 31 |
[42] | Relationship between udder health and hygiene on farms with an automatic milking system | 10.3168/jds.2009-3028 | 28 | 48 |
[49] | Increasing the revenues from automatic milking by using individual variation in milking characteristics | 10.3168/jds.2009-2373 | 23 | 32 |
[27] | Milking interval, milk production and milk flow-rate in an automatic milking system | 10.3390/s100907991 | 28 | 87 |
[63] | Discriminating between true-positive and false-positive clinical mastitis alerts from automatic milking systems | 10.3168/jds.2009-3020 | 19 | 28 |
[44] | Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction | 10.3168/jds.2010-3228 | 26 | 45 |
[40] | Covariance among milking frequency, milk yield, and milk composition from automatically milked cows | 10.3168/jds.2010-3589 | 30 | 42 |
[29] | Invited review: Udder health of dairy cows in automatic milking | 10.3168/jds.2010-3556 | 45 | 86 |
[20] | Invited review: The impact of automatic milking systems on dairy cow management, behavior, health, and welfare | 10.3168/jds.2011-4943 | 91 | 151 |
[39] | Estimating efficiency in automatic milking systems | 10.3168/jds.2010-3912 | 44 | 54 |
[65] | Mastitis alert preferences of farmers milking with automatic milking systems | 10.3168/jds.2011-4993 | 20 | 32 |
[66] | Comparing technical efficiency of farms with an automatic milking system and a conventional milking system | 10.3168/jds.2012-5482 | 20 | 36 |
[41] | Comparison of 2 systems of pasture allocation on milking intervals and total daily milk yield of dairy cows in a pasture-based automatic milking system | 10.3168/jds.2013-6716 | 29 | 30 |
[21] | Invited review: Sensors to support health management on dairy farms | 10.3168/jds.2012-6107 | 45 | 232 |
[50] | Associations of housing, management, milking activity, and standing and lying behavior of dairy cows milked in automatic systems | 10.3168/jds.2012-5985 | 23 | 46 |
[45] | Milking frequency management in pasture-based automatic milking systems: A review | 10.1016/j.livsci.2013.11.011 | 26 | 33 |
[23] | Precision livestock farming technologies for welfare management in intensive livestock systems | 10.20506/rst.33.1.2273 | 51 | 124 |
[36] | Image feature extraction for classification of aggressive interactions among pigs | 10.1016/j.compag.2014.03.010 | 19 | 69 |
[19] | Invited review: Changes in the dairy industry affecting dairy cattle health and welfare | 10.3168/jds.2015-9377 | 38 | 258 |
[46] | Review: Milking robot utilization, a successful precision livestock farming evolution | 10.1017/S1751731116000495 | 26 | 37 |
[43] | Factors associated with increased milk production for automatic milking systems | 10.3168/jds.2015-10152 | 28 | 39 |
[67] | Effect of transitioning to automatic milking systems on producers’ perceptions of farm management and cow health in the Canadian dairy industry | 10.3168/jds.2016-11521 | 21 | 27 |
[68] | Rethinking environment control strategy of confined animal housing systems through precision livestock farming | 10.1016/j.biosystemseng.2016.12.005 | 23 | 54 |
[69] | Appropriate data visualisation is key to precision livestock farming acceptance | 10.1016/j.compag.2017.04.003 | 21 | 36 |
[33] | General introduction to precision livestock farming | 10.2527/af.2017.0102 | 40 | 76 |
[64] | Smart animal agriculture: Application of real-time sensors to improve animal well-being and production. | 10.1146/annurev-animal-020518-114851 | 19 | 52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marino, R.; Petrera, F.; Abeni, F. Scientific Productions on Precision Livestock Farming: An Overview of the Evolution and Current State of Research Based on a Bibliometric Analysis. Animals 2023, 13, 2280. https://doi.org/10.3390/ani13142280
Marino R, Petrera F, Abeni F. Scientific Productions on Precision Livestock Farming: An Overview of the Evolution and Current State of Research Based on a Bibliometric Analysis. Animals. 2023; 13(14):2280. https://doi.org/10.3390/ani13142280
Chicago/Turabian StyleMarino, Rosanna, Francesca Petrera, and Fabio Abeni. 2023. "Scientific Productions on Precision Livestock Farming: An Overview of the Evolution and Current State of Research Based on a Bibliometric Analysis" Animals 13, no. 14: 2280. https://doi.org/10.3390/ani13142280
APA StyleMarino, R., Petrera, F., & Abeni, F. (2023). Scientific Productions on Precision Livestock Farming: An Overview of the Evolution and Current State of Research Based on a Bibliometric Analysis. Animals, 13(14), 2280. https://doi.org/10.3390/ani13142280