Impaired Testicular Function without Altering Testosterone Concentration Using an Anti-Follicular-Stimulating Hormone Receptor (Anti-FSHr) Single-Chain Variable Fragment (scFv) in Long-Tailed Macaques (Macaca fascicularis)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Development of Anti-FSHr scFvs
2.1.1. Selection of Anti-FSHr scFvs by Phage Library Biopanning
2.1.2. Binding Screening of FSHr Protein Bound-scFv Clones by Indirect Enzyme-Linked Immunosorbent Assay (ELISA)
2.1.3. Anti-FSHr scFv Expression and Purification
2.2. Kinetics and Affinity Determination by Surface Plasmon Resonance (SPR)
2.3. Animals
2.4. Intratesticular Administration
2.5. Semen Collection and Evaluation
2.6. Testicular Biopsy
2.7. Reverse-Transcription Polymerase Chain Reaction (RT-PCR) for Sertoli Cell Markers
2.7.1. RNA Isolation and Reverse Transcription
2.7.2. Primer Sequences and Optimization
2.7.3. Real-Time qPCR
2.8. Testosterone Assay
2.9. Statistical Analysis
3. Results
3.1. Characterization of Anti-FSHr scFv
3.2. Testicular Appearance
3.3. Semen Quality
3.4. Sertoli Cell Function and Related Gene Expression
3.5. Serum Testosterone Levels
4. Discussion
4.1. Characterization of scFV Anti-FSHr
4.2. Anti-FSHr scFv Effects on Testicular Tissues
4.3. Anti-FSHr scFv Effects on Semen Production and Sperm Morphology
4.4. Anti-FSHr scfv Effects on Related Gene Expression
4.5. Anti-FSHr scfv Effects on Testosterone Levels
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malaivijitnond, S.; Hamada, Y. Current Situation and Status of Long-tailed Macaques (Macaca fascicularis) in Thailand. Nat. Hist. J. Chulalongkorn Univ. 2008, 8, 185–204. [Google Scholar]
- Suwannarong, K.; Soonthornworasiri, N.; Maneekan, P.; Balthip, K.; Yimsamran, S.; Maneewatchararangsri, S.; Ponlap, T.; Saengkul, C.; Lantican, C.; Thammasutti, K.; et al. Love or conflict: A qualitative study of the human-long tailed macaque interface in Nakhon Sawan Province, Thailand. Acta Trop. 2023, 240, 106861. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, R.S.C.; Huffman, M.A.; Kinoshita, K.; Bercovitch, F.B. Effect of castration on social behavior and hormones in male Japanese macaques (Macaca fuscata). Physiol. Behav. 2017, 181, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Hedger, M.P.; de Kretser, D.M. Leydig Cell Function and Its Regulation. In The Genetic Basis of Male Infertility; McElreavey, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 69–110. [Google Scholar]
- Escott, G.M.; da Rosa, L.A.; Loss Eda, S. Mechanisms of hormonal regulation of sertoli cell development and proliferation: A key process for spermatogenesis. Curr. Mol. Pharmacol. 2014, 7, 96–108. [Google Scholar] [CrossRef]
- Hai, Y.; Hou, J.; Liu, Y.; Liu, Y.; Yang, H.; Li, Z.; He, Z. The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis. Semin. Cell Dev. Biol. 2014, 29, 66–75. [Google Scholar] [CrossRef]
- Moudgal, N.R.; Sairam, M.R.; Krishnamurthy, H.N.; Sridhar, S.; Krishnamurthy, H.; Khan, H. Immunization of male bonnet monkeys (M. radiata) with a recombinant FSH receptor preparation affects testicular function and fertility. Endocrinology 1997, 138, 3065–3068. [Google Scholar] [CrossRef]
- Xu, C.; Li, Y.C.; Yang, H.; Long, Y.; Chen, M.J.; Qin, Y.F.; Xia, Y.K.; Song, L.; Gu, A.H.; Wang, X.R. The preparation and application of N-terminal 57 amino acid protein of the follicle-stimulating hormone receptor as a candidate male contraceptive vaccine. Asian J. Androl. 2014, 16, 623–630. [Google Scholar]
- Yang, L.H.; Li, J.T.; Yan, P.; Liu, H.L.; Zeng, S.Y.; Wu, Y.Z.; Liang, Z.Q.; He, W. Follicle-stimulating hormone receptor (FSHR)-derived peptide vaccine induced infertility in mice without pathological effect on reproductive organs. Reprod. Fertil. Dev. 2011, 23, 544–550. [Google Scholar] [CrossRef]
- Bhartiya, D.; Patel, H. An overview of FSH-FSHR biology and explaining the existing conundrums. J. Ovarian Res. 2021, 14, 144. [Google Scholar] [CrossRef]
- Song, Y.S.; Ji, I.; Beauchamp, J.; Isaacs, N.W.; Ji, T.H. Hormone interactions to Leu-rich repeats in the gonadotropin receptors. II. Analysis of Leu-rich repeat 4 of human luteinizing hormone/chorionic gonadotropin receptor. J. Biol. Chem. 2001, 276, 3436–3442. [Google Scholar] [CrossRef] [Green Version]
- Vassart, G.; Pardo, L.; Costagliola, S. A molecular dissection of the glycoprotein hormone receptors. Trends Biochem. Sci. 2004, 29, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.J.; Ramachandra, S.G.; Ramesh, V.; Couture, L.; Abdennebi, L.; Salesse, R.; Remy, J.J. Induction of infertility in adult male bonnet monkeys by immunization with phage-expressed peptides of the extracellular domain of FSH receptor. Reprod. Biomed. Online 2004, 8, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Abdennebi, L.; Couture, L.; Grebert, D.; Pajot, E.; Salesse, R.; Remy, J.J. Generating FSH antagonists and agonists through immunization against FSH receptor N-terminal decapeptides. J. Mol. Endocrinol. 1999, 22, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alukal, J.P.; Lamb, D.J. The Sertoli Cell: Morphology, Function, and Regulation. In Infertility in the Male, 4th ed.; Niederberger, C.S., Lipshultz, L.I., Howards, S.S., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 48–73. [Google Scholar]
- O’Connor, S.J.; Forsyth, P.D.; Dalal, S.; Evans, P.A.; Short, M.A.; Shiach, C.; Jack, A.S.; Morgan, G.J. The rapid diagnosis of acute promyelocytic leukaemia using PML (5E10) monoclonal antibody. Br. J. Haematol. 1997, 99, 597–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, Z.A.; Yeap, S.K.; Ali, A.M.; Ho, W.Y.; Alitheen, N.B.; Hamid, M. scFv antibody: Principles and clinical application. Clin. Dev. Immunol. 2012, 2012, 980250. [Google Scholar] [CrossRef] [PubMed]
- Skerra, A.; Plückthun, A. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 1988, 240, 1038–1041. [Google Scholar] [CrossRef]
- Li, Z.; Krippendorff, B.-F.; Sharma, S.; Walz, A.C.; Lavé, T.; Shah, D.K. Influence of molecular size on tissue distribution of antibody fragments. MAbs 2016, 8, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Clackson, T.; Hoogenboom, H.R.; Griffiths, A.D.; Winter, G. Making antibody fragments using phage display libraries. Nature 1991, 352, 624–628. [Google Scholar] [CrossRef]
- Smith, G.P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 1985, 228, 1315–1317. [Google Scholar] [CrossRef]
- Sarkar, K.; Joedicke, L.; Westwood, M.; Burnley, R.; Wright, M.; McMillan, D.; Byrne, B. Modulation of PTH1R signaling by an ECD binding antibody results in inhibition of beta-arrestin 2 coupling. Sci. Rep. 2019, 9, 14432. [Google Scholar] [CrossRef] [Green Version]
- Dhar, N.; Mohan, A.; Thakur, C.; Chandra, N.R.; Dighe, R.R. Dissecting the structural and functional features of the Luteinizing hormone receptor using receptor specific single chain fragment variables. Mol. Cell. Endocrinol. 2016, 427, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Klangprapan, S.; Weng, C.C.; Huang, W.T.; Li, Y.K.; Choowongkomon, K. Selection and Characterization of a Single-Chain Variable Fragment against Porcine Circovirus Type 2 Capsid and Impedimetric Immunosensor Development. ACS Omega 2021, 6, 24233–24243. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Sosa, J.R.; Dobson, H.; Hahnel, A. Isolation and transplantation of spermatogonia in sheep. Theriogenology 2006, 66, 2091–2103. [Google Scholar] [CrossRef]
- Fouquet, J.P.; Dadoune, J.P. Renewal of spermatogonia in the monkey (Macaca fascicularis). Biol. Reprod. 1986, 35, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Robaire, B.; Hinton, B.T. Chapter 17—The Epididymis. In Knobil and Neill’s Physiology of Reproduction, 4th ed.; Plant, T.M., Zeleznik, A.J., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 691–771. [Google Scholar]
- Sakamoto, H.; Saito, K.; Oohta, M.; Inoue, K.; Ogawa, Y.; Yoshida, H. Testicular volume measurement: Comparison of ultrasonography, orchidometry, and water displacement. Urology 2007, 69, 152–157. [Google Scholar] [CrossRef]
- Zainuddin, Z.Z.; Tarmizi, M.R.M.; Chee, Y.K.; Erut, A.; Fitri, W.N.; Salleh, A. A Preliminary Study on Semen Collection, Its Evaluation, and Testicular and Sperm Morphometries in The Wild Proboscis Monkey (Nasalis Larvatus). J. Vet. Res. 2021, 65, 375–381. [Google Scholar] [CrossRef]
- Oliveira, K.G.; Leao, D.L.; Almeida, D.V.; Santos, R.R.; Domingues, S.F. Seminal characteristics and cryopreservation of sperm from the squirrel monkey, Saimiri collinsi. Theriogenology 2015, 84, 743–749.e741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, J.K.; Mean, K.D.; Dusek, B.M.; Hinkle, H.M.; Puntney, R.C.; Alexander, E.S.; Malicki, K.B.; Sneed, E.L.; Moy, A.W.; Golos, T.G. Comparative computer-assisted sperm analysis in non-human primates. J. Med. Primatol. 2021, 50, 108–119. [Google Scholar] [CrossRef]
- Björndahl, L.; Söderlund, I.; Kvist, U. Evaluation of the one-step eosin-nigrosin staining technique for human sperm vitality assessment. Hum. Reprod. 2003, 18, 813–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; Parray, H.A.; Shrivastava, T.; Sinha, S.; Luthra, K. Phage display antibody libraries: A robust approach for generation of recombinant human monoclonal antibodies. Int. J. Biol. Macromol. 2019, 135, 907–918. [Google Scholar] [CrossRef]
- Kholodenko, R.V.; Kalinovsky, D.V.; Doronin, I.I.; Ponomarev, E.D.; Kholodenko, I.V. Antibody Fragments as Potential Biopharmaceuticals for Cancer Therapy: Success and Limitations. Curr. Med. Chem. 2019, 26, 396–426. [Google Scholar] [CrossRef] [PubMed]
- Crepin, R.; Veggiani, G.; Djender, S.; Beugnet, A.; Planeix, F.; Pichon, C.; Moutel, S.; Amigorena, S.; Perez, F.; Ghinea, N.; et al. Whole-cell biopanning with a synthetic phage display library of nanobodies enabled the recovery of follicle-stimulating hormone receptor inhibitors. Biochem. Biophys. Res. Commun. 2017, 493, 1567–1572. [Google Scholar] [CrossRef] [PubMed]
- Dumoulin, M.; Conrath, K.; Van Meirhaeghe, A.; Meersman, F.; Heremans, K.; Frenken, L.G.; Muyldermans, S.; Wyns, L.; Matagne, A. Single-domain antibody fragments with high conformational stability. Protein Sci. 2002, 11, 500–515. [Google Scholar] [CrossRef] [PubMed]
- Salahudeen, M.S.; Nishtala, P.S. An overview of pharmacodynamic modelling, ligand-binding approach and its application in clinical practice. Saudi Pharm. J. 2017, 25, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Andre, A.S.; Moutinho, I.; Dias, J.N.R.; Aires-da-Silva, F. In vivo Phage Display: A promising selection strategy for the improvement of antibody targeting and drug delivery properties. Front. Microbiol. 2022, 13, 962124. [Google Scholar] [CrossRef]
- Murphy, C.J.; Richburg, J.H. Implications of Sertoli cell induced germ cell apoptosis to testicular pathology. Spermatogenesis 2014, 4, e979110. [Google Scholar] [CrossRef] [Green Version]
- Rebourcet, D.; Wu, J.; Cruickshanks, L.; Smith, S.E.; Milne, L.; Fernando, A.; Wallace, R.J.; Gray, C.D.; Hadoke, P.W.; Mitchell, R.T.; et al. Sertoli Cells Modulate Testicular Vascular Network Development, Structure, and Function to Influence Circulating Testosterone Concentrations in Adult Male Mice. Endocrinology 2016, 157, 2479–2488. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, E.C.; Moura, M.R.; Silva, V.A., Jr.; Peixoto, C.A.; Saraiva, K.L.; de Sa, M.J.; Douglas, R.H.; de Pinho Marques, A., Jr. Intratesticular injection of a zinc-based solution as a contraceptive for dogs. Theriogenology 2007, 68, 137–145. [Google Scholar] [CrossRef]
- Forzan, M.J.; Garde, E.; Perez, G.E.; Vanderstichel, R.V. Necrosuppurative orchitis and scrotal necrotizing dermatitis following intratesticular administration of zinc gluconate neutralized with arginine (EsterilSol) in 2 mixed-breed dogs. Vet. Pathol. 2014, 51, 820–823. [Google Scholar] [CrossRef] [Green Version]
- Rafatmah, D.; Mogheiseh, A.; Eshghi, D. Chemical sterilization with intratesticular administration of zinc gluconate in adult dogs: A preliminary report. Basic. Clin. Androl. 2019, 29, 12. [Google Scholar] [CrossRef]
- Mital, P.; Hinton, B.T.; Dufour, J.M. The blood-testis and blood-epididymis barriers are more than just their tight junctions. Biol. Reprod. 2011, 84, 851–858. [Google Scholar] [CrossRef] [Green Version]
- Hau, R.K.; Tash, J.S.; Georg, G.I.; Wright, S.H.; Cherrington, N.J. Physiological Characterization of the Transporter-Mediated Uptake of the Reversible Male Contraceptive H2-Gamendazole Across the Blood-Testis Barrier. J. Pharmacol. Exp. Ther. 2022, 382, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Schnabolk, G.W.; Gupta, B.; Mulgaonkar, A.; Kulkarni, M.; Sweet, D.H. Organic anion transporter 6 (Slc22a20) specificity and Sertoli cell-specific expression provide new insight on potential endogenous roles. J. Pharmacol. Exp. Ther. 2010, 334, 927–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Condorelli, R.; Calogero, A.E.; La Vignera, S. Relationship between Testicular Volume and Conventional or Nonconventional Sperm Parameters. Int. J. Endocrinol. 2013, 2013, 145792. [Google Scholar] [CrossRef] [Green Version]
- Setchell, B.P.; Breed, W.G. Chapter 17—Anatomy, Vasculature, and Innervation of the Male Reproductive Tract. In Knobil and Neill’s Physiology of Reproduction, 3rd ed.; Neill, J.D., Ed.; Academic Press: St. Louis, MO, USA, 2006; pp. 771–825. [Google Scholar]
- Meroni, S.B.; Galardo, M.N.; Rindone, G.; Gorga, A.; Riera, M.F.; Cigorraga, S.B. Molecular Mechanisms and Signaling Pathways Involved in Sertoli Cell Proliferation. Front. Endocrinol. 2019, 10, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riera, M.F.; Meroni, S.B.; Schteingart, H.F.; Pellizzari, E.H.; Cigorraga, S.B. Regulation of lactate production and glucose transport as well as of glucose transporter 1 and lactate dehydrogenase A mRNA levels by basic fibroblast growth factor in rat Sertoli cells. J. Endocrinol. 2002, 173, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Griswold, M.D. The central role of Sertoli cells in spermatogenesis. Semin. Cell Dev. Biol. 1998, 9, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.; Carrageta, D.F.; Alves, M.G.; Oliveira, P.F. Testicular Glycogen Metabolism: An Overlooked Source of Energy for Spermatogenesis? BioChem 2022, 2, 198–214. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, H.Z.; Xu, L.M.; Huang, Y.R.; Dai, H.L.; Kang, X.N. Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells. Sci. Rep. 2015, 5, 8894. [Google Scholar] [CrossRef] [Green Version]
- Hermo, L.; Barin, K.; Oko, R. Androgen binding protein secretion and endocytosis by principal cells in the adult rat epididymis and during postnatal development. J. Androl. 1998, 19, 527–541. [Google Scholar]
- James, E.R.; Carrell, D.T.; Aston, K.I.; Jenkins, T.G.; Yeste, M.; Salas-Huetos, A. The Role of the Epididymis and the Contribution of Epididymosomes to Mammalian Reproduction. Int. J. Mol. Sci. 2020, 21, 5377. [Google Scholar] [CrossRef]
- Grover, A.; Sairam, M.R.; Smith, C.E.; Hermo, L. Structural and functional modifications of sertoli cells in the testis of adult follicle-stimulating hormone receptor knockout mice. Biol. Reprod. 2004, 71, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Vadakkadath Meethal, S.; Atwood, C.S. The role of hypothalamic-pituitary-gonadal hormones in the normal structure and functioning of the brain. Cell. Mol. Life Sci. 2005, 62, 257–270. [Google Scholar] [CrossRef]
- Pierik, F.H.; Burdorf, A.; de Jong, F.H.; Weber, R.F. Inhibin B: A novel marker of spermatogenesis. Ann. Med. 2003, 35, 12–20. [Google Scholar] [CrossRef]
- Ho, Q.T.; Kuo, C.J. Vascular endothelial growth factor: Biology and therapeutic applications. Int. J. Biochem. Cell Biol. 2007, 39, 1349–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebisch, I.M.W.; Thomas, C.M.G.; Wetzels, A.M.M.; Willemsen, W.N.P.; Sweep, F.C.G.J.; Steegers-Theunissen, R.P.M. Review of the role of the plasminogen activator system and vascular endothelial growth factor in subfertility. Fertil. Steril. 2008, 90, 2340–2350. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.; Sargent, K.M.; Clopton, D.T.; Pohlmeier, W.E.; Brauer, V.M.; McFee, R.M.; Weber, J.S.; Ferrara, N.; Silversides, D.W.; Cupp, A.S. Loss of vascular endothelial growth factor A (VEGFA) isoforms in the testes of male mice causes subfertility, reduces sperm numbers, and alters expression of genes that regulate undifferentiated spermatogonia. Endocrinology 2013, 154, 4790–4802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caires, K.C.; de Avila, J.M.; Cupp, A.S.; McLean, D.J. VEGFA family isoforms regulate spermatogonial stem cell homeostasis in vivo. Endocrinology 2012, 153, 887–900. [Google Scholar] [CrossRef] [Green Version]
- Kutzler, M.A. Possible Relationship between Long-Term Adverse Health Effects of Gonad-Removing Surgical Sterilization and Luteinizing Hormone in Dogs. Animals 2020, 10, 559. [Google Scholar] [CrossRef] [Green Version]
- Brent, L.; Lissner, E.A.; Kutzler, M.A. Restoration of Reproductive Hormone Concentrations in a Male Neutered Dog Improves Health: A Case Study. Top. Companion Anim. Med. 2021, 45, 100565. [Google Scholar] [CrossRef]
- Ilani, N.; Swerdloff, R.S.; Wang, C. Male hormonal contraception: Potential risks and benefits. Rev. Endocr. Metab. Disord. 2011, 12, 107–117. [Google Scholar] [CrossRef] [PubMed]
Gene #. | Primer Sequence (5′-3′ Orientation) | GenBank Accession | Product Length (bp) | Annealing Temp (°C) |
---|---|---|---|---|
ABP | FP: GCACATGACATACACAATCTT RP: GGGTTGGTATCCCCATAAAAA | XM_015437363.1 | 110 | 60 |
IHBB | FP: CTCCCCTTAGGTTCTGTTTC RP: CGTGGCACTCAATCTTTTAT | XM_005573058.2 | 116 | 60 |
VEGFA | FP: GTACATCTTCAAGCCATCCT RP: GAACGCTCCAGGACTTAT | NM_001110502.1 | 136 | 60 |
GAPDH | FP: CTCTGGGCGCATCCC RP: CTTGAGGCTGTTGTCATACT | XM_015430282.1 | 459 | 60 |
Pre-Treatment | Post-Treatment | |||
---|---|---|---|---|
Day 0 | Day 7 | Day 28 | Day 56 | |
Total sperm number (106 cells) | 36.4 ± 4.6 a | 15.1 ± 1.1 a | 9.5 ± 0.7 ab | 1.6 ± 0.2 b |
Motile sperm (%) | 81.7 ± 1.0 a | 23.3 ± 1.9 b | 41.7 ± 5.4 bc | 8.3 ± 1.9 c |
Viable sperm (%) | 86.8 ± 0.5 a | 64.2 ± 1.5 b | 67.1 ± 2.2 b | 9.3 ± 1.1 c |
Normal head morphology (%) | 93.4 ± 0.7 a | 87.1 ± 1.4 a | 91.0 ± 0.2 a | 84.1 ± 0.9 a |
Normal tail morphology (%) | 88.2 ± 1.9 a | 75.4 ± 3.3 b | 85.2 ± 0.9 ab | 75.8 ± 0.6 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navanukraw, P.; Chotimanukul, S.; Kemthong, T.; Choowongkomon, K.; Chatdarong, K. Impaired Testicular Function without Altering Testosterone Concentration Using an Anti-Follicular-Stimulating Hormone Receptor (Anti-FSHr) Single-Chain Variable Fragment (scFv) in Long-Tailed Macaques (Macaca fascicularis). Animals 2023, 13, 2282. https://doi.org/10.3390/ani13142282
Navanukraw P, Chotimanukul S, Kemthong T, Choowongkomon K, Chatdarong K. Impaired Testicular Function without Altering Testosterone Concentration Using an Anti-Follicular-Stimulating Hormone Receptor (Anti-FSHr) Single-Chain Variable Fragment (scFv) in Long-Tailed Macaques (Macaca fascicularis). Animals. 2023; 13(14):2282. https://doi.org/10.3390/ani13142282
Chicago/Turabian StyleNavanukraw, Pakpoom, Sroisuda Chotimanukul, Taratorn Kemthong, Kiattawee Choowongkomon, and Kaywalee Chatdarong. 2023. "Impaired Testicular Function without Altering Testosterone Concentration Using an Anti-Follicular-Stimulating Hormone Receptor (Anti-FSHr) Single-Chain Variable Fragment (scFv) in Long-Tailed Macaques (Macaca fascicularis)" Animals 13, no. 14: 2282. https://doi.org/10.3390/ani13142282
APA StyleNavanukraw, P., Chotimanukul, S., Kemthong, T., Choowongkomon, K., & Chatdarong, K. (2023). Impaired Testicular Function without Altering Testosterone Concentration Using an Anti-Follicular-Stimulating Hormone Receptor (Anti-FSHr) Single-Chain Variable Fragment (scFv) in Long-Tailed Macaques (Macaca fascicularis). Animals, 13(14), 2282. https://doi.org/10.3390/ani13142282