An Overview on Assay Methods to Quantify ROS and Enzymatic Antioxidants in Erythrocytes and Spermatozoa of Small Domestic Ruminants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Oxidative Stress in Erythrocytes
3. Oxidative Stress in Spermatozoa
4. Assays for Measurement of ROS
4.1. ROS Assay in Erythrocytes
4.2. ROS Assay in Spermatozoa
Method | Instrument | Probe | Specie | Detected ROS | Concentration ROS | Refs. |
---|---|---|---|---|---|---|
ABSORBANCE | Spectrophotometer | DEPPD | Goat | Hydroperoxides Other oxidizing agents | 0.16 ÷ 0.74 mg H2O2/108 spermatozoa | [87] |
FLUORESCENCE | Multimode plate reader | CM-H2DCFDA | Ram | Hydrogen peroxide Superoxide radical hydroxyl radical | ≈30 ÷ 65 rfu/min | [88] |
Commercial kit (CA1410) by Solarbio | Goat | N.S. | 397.6 ÷ 461.8 U/mL | [104] | ||
DCFH-DC | Bucks | Hydrogen peroxide | 3000 ÷ 3800 rfu | [105] | ||
DHE | Bucks Breed | Superoxide radical | 437.8 ÷ 347.6 rfu | [97] | ||
Fluorescent microscope | DCFH-DA DCFH-DC | Ram | Hydrogen peroxide | 10 ÷ 30% | [91,94] | |
Epifluorescence microscope | CellROX R green | Ram Mouflon Buck Iberian ibex | Intracell.FreeRadicals | 100 ÷ 350 SR (stress resistance ratio) | [92] | |
Flow Cytometer | H2DCF-DA | Ram | Hydrogen peroxide | 1.5 ÷ 6 rfu | [79] | |
DCFH-DA/PI DHE/Yo-Pro-1 | Ram | Hydrogen peroxide Superoxide radical | 22.8 ÷ 56.1% 0.4 ÷ 3.1% | [80] | ||
CellROX Rgreen/PI | Goat | Intracell.FreeRadicals | 10 ÷ 60% | [81] | ||
DCFH-DA | Ram | Hydrogen peroxide | 10 ÷ 100 rfu | [82] | ||
H2DCF-DA/PI | Ram | Hydrogen peroxide | 3.9 ÷ 11.2 rfu | [83] | ||
DCFH-DA | Goat | Hydrogen peroxide | 8.4 ÷ 53.8% | [84] | ||
H2DCF-DA | Goat | Hydrogen peroxide | 54 ÷ 67% | [85] | ||
DCFH-DA | Goat | Hydrogen peroxide | 38.7 ÷ 62.0% | [86] | ||
CM-H2DCFDA | Ram | N.S | 3.3 ÷ 4.0% | [89] | ||
CM-H2DCFDA | Ram | N.S. | 25 ÷ 40% | [90] | ||
DHE | Superoxide radical | 15 ÷ 25% | ||||
MitoSOX™ | Mitochondrial superoxide | 10 ÷ 20% | ||||
BODIPY™ | Lipid peroxides | 8 ÷ 20% | ||||
DHE | Ram | Superoxide radical | 10 ÷ 45% | [93] | ||
H2DCF-DA Assay Kit (SAS, China) | Ram | Hydrogen peroxide | 0.25 ÷ 0.8% | [95] | ||
DCFH-DA/PI | Goat | Hydrogen peroxide | 20 ÷ 25% | [99] | ||
Commercial kit (Invitrogen Life Technologies) | Ram | N.S. | 62.1 ÷ 79.4% | [40] | ||
CM-H2DCFDA/PI | Goat | Hydrogen peroxide | 79.0 ÷ 88.7% | [98] | ||
DCFH-DA DHE/PI | Goat | Hydrogen peroxide Superoxide radical | 19.2 ÷ 52.8% 1.7 ÷ 2.6% | [100] | ||
H2DCFDA/PI | Goat | Hydrogen peroxide | 60 ÷ 65% | [101] | ||
H2DCF-DA | Goat buck | Hydrogen peroxide | 45 ÷ 60%. | [96] | ||
CHEMOLUMINESCENCE | Chemoluminescence reader | Luminol | Goat | N.S. | 34.9 ÷ 60.6% | [102] |
Luminol | Ram | N.S. | 2 ÷ 4.5 × 103 cpm/106 sperma | [103] |
5. Assays for the Measurement of Enzymatic Antioxidants
5.1. SOD
5.1.1. SOD in Erythrocytes
Specie | Method | Erythrocytes Lysis | SOD Concentration | Refs. |
---|---|---|---|---|
Sheep | Commercial Kit (Nanjing Jiancheng Institute of Biotech., Nanjing, China) | Ultrapure water | 2 ÷ 13 U/mg protein | [49] |
Colorimetric assay: measure at 470 nm using xanthine and xanthine oxidase | HBSS with Triton X100 | 50 ÷ 80 U/106 erythrocyte | [110] | |
Commercial kit Ransod (Randox Lab. Crumlin, Co., Antrim, UK) using xanthine and xanthine oxidase | Freeze–thaw | 11.9 U/g Hb | [108] | |
Ram lamb | Commercial kit Ransod, (Randox Lab., UK) using xanthine and xanthine oxidase | Manufacturer protocols | 1307.2 U/g Hb | [106] |
Commercial kit Ransod (Randox Lab., UK) using xanthine and xanthine oxidase | N.S. | 1127.4 U/g Hb | [109] | |
Goat | Colorimetric assay: using NBT | Hypotonic conditions. | 200 ÷ 300 U/mg protein | [107] |
5.1.2. SOD in Spermatozoa
Specie | Method | Erythrocytes Lysis | SOD Concentration | Refs. |
---|---|---|---|---|
Sheep | Commercial Kit (Nanjing Jiancheng Institute of Biotech., China) | Ultrapure water | 2 ÷ 13 U/mg protein | [94] |
Colorimetric assay: measure at 470 nm using xanthine and xanthine oxidase | HBSS with Triton X100 | 50 ÷ 80 U/106 erythrocyte | [97] | |
Commercial kit Ransod (Randox Lab. UK) using xanthine and xanthine oxidase | Freeze–thaw | 11.9 U/g Hb | [95] | |
Ram lamb | Colorimetric assay: measure at 470 nm using pyrogallol | N.S. | 50 ÷ 60 U/mg protein | [111] |
Commercial kit Ransod, (Randox Lab., UK) using xanthine and xanthine oxidase | Manufacturer protocols | 1307.2 U/g Hb | [92] | |
Commercial kit Ransod (Randox Lab., UK) using xanthine and xanthine oxidase | N.S. | 1127.4 U/g Hb | [96] | |
Goat | Commercial Kit (Nanjing Jiancheng Institute of Biotech., China) | Triton X-100 (1%) | 200 ÷ 250 U/mL | [112] |
Colorimetric assay: using NBT | Hypotonic conditions. | 200 ÷ 300 U/mg protein | [93] |
5.2. CAT, GPX, and GSR
5.2.1. CAT, GPX, and GSR in Erythrocytes
5.2.2. CAT, GPX, and GSR in Spermatozoa
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, Z.; Cao, J.; Chen, Y.; Dong, Y. A Novel and Compact Review on the Role of Oxidative Stress in Female Reproduction. Reprod. Biol. Endocrinol. 2018, 16, 80. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Lian, G. ROS and Diseases: Role in Metabolism and Energy Supply. Mol. Cell Biochem. 2020, 467, 1–12. [Google Scholar] [CrossRef]
- Hardy, M.L.M.; Day, M.L.; Morris, M.B. Redox Regulation and Oxidative Stress in Mammalian Oocytes and Embryos Developed in Vivo and in Vitro. Int. J. Environ. Res. Public Health 2021, 18, 11374. [Google Scholar] [CrossRef] [PubMed]
- Bardaweel, S.K.; Gul, M.; Alzweiri, M.; Ishaqat, A.; Alsalamat, H.A.; Bashatwah, R.M. Reactive Oxygen Species: The Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian J. Med. 2018, 50, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Newsholme, P.; Cruzat, V.F.; Keane, K.N.; Carlessi, R.; Paulo Ivo Homem de Bittencourt, J. Molecular Mechanisms of ROS Production and Oxidative Stress in Diabetes. Biochem. J. 2016, 473, 4527–4550. [Google Scholar] [CrossRef] [PubMed]
- Jelic, M.D.; Mandic, A.D.; Maricic, S.M.; Srdjenovic, B.U. Oxidative Stress and Its Role in Cancer. J. Cancer Res. Ther. 2021, 17, 22–28. [Google Scholar] [CrossRef]
- Klaunig, J.E. Oxidative Stress and Cancer. Curr. Pharm. Des. 2018, 24, 4771–4778. [Google Scholar] [CrossRef] [PubMed]
- Moloney, J.N.; Cotter, T.G. ROS Signalling in the Biology of Cancer. Semin. Cell Dev. Biol. 2018, 80, 50–64. [Google Scholar] [CrossRef]
- Wojsiat, J.; Korczyński, J.; Borowiecka, M.; Żbikowska, H.M. The Role of Oxidative Stress in Female Infertility and in Vitro Fertilization. Postep. Hig. Med. Dosw. 2017, 71, 359–366. [Google Scholar] [CrossRef]
- Adeoye, O.; Olawumi, J.; Opeyemi, A.; Christiania, O. Review on the Role of Glutathione on Oxidative Stress and Infertility. J. Bras. Reprod. Assist. 2018, 22, 61–66. [Google Scholar] [CrossRef]
- Celi, P.; Gabai, G. Oxidant/Antioxidant Balance in Animal Nutrition and Health: The Role of Protein Oxidation. Front. Vet. Sci. 2015, 2, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacetera, N. Impact of Climate Change on Animal Health and Welfare. Anim. Front. 2019, 9, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.P.P. Nutrients and Oxidative Stress: Friend or Foe? Oxid. Med. Cell Longev. 2018, 2018, 9719584. [Google Scholar] [CrossRef] [Green Version]
- Guvvala, P.R.; Ravindra, J.P.; Selvaraju, S. Impact of Environmental Contaminants on Reproductive Health of Male Domestic Ruminants: A Review. Environ. Sci. Pollut. Res. 2020, 27, 3819–3836. [Google Scholar] [CrossRef]
- Eid, J.I.; Eissa, S.M.; El-Ghor, A.A. Bisphenol A Induces Oxidative Stress and DNA Damage in Hepatic Tissue of Female Rat Offspring. J. Basic. Appl. Zool. 2015, 71, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Su, L.-J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid. Med. Cell Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef] [Green Version]
- Baralla, E.; Demontis, M.P.; Varoni, M.V.; Pasciu, V. Bisphenol A and Bisphenol S Oxidative Effects in Sheep Red Blood Cells: An In Vitro Study. BioMed Res. Int. 2021, 2021, 6621264. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Wang, M.; Wang, Y.; Huang, A. Superoxide Anion Generation Response to Wound in Arabidopsis Hypocotyl Cutting. Plant Signal. Behav. 2021, 16, 1848086. [Google Scholar] [CrossRef]
- Mittler, R. ROS Are Good. Trends Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Sinha, N.; Dabla, P. Oxidative Stress and Antioxidants in Hypertension—A Current Review. Curr. Hypertens. Rev. 2015, 11, 132–142. [Google Scholar] [CrossRef]
- Snezhkina, A.V.; Kudryavtseva, A.V.; Kardymon, O.L.; Savvateeva, M.V.; Melnikova, N.V.; Krasnov, G.S.; Dmitriev, A.A. ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. Oxid. Med. Cell Longev. 2020, 2019, 6175804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, X.; Zhang, J.; Gu, Z.; Chen, Y. Nanocatalysts-Augmented Fenton Chemical Reaction for Nanocatalytic Tumor Therapy. Biomaterials 2019, 211, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Roschek, B.; Tallman, K.A.; Rector, C.L.; Gillmore, J.G.; Pratt, D.A.; Punta, C.; Porter, N.A. Peroxyl Radical Clocks. J. Org. Chem. 2006, 71, 3527–3532. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.Y.; Guo, Y.X.; Yin, Y.L.; Sun, F.F.; Gong, T.T.; Xian, Q.M. Physiological and Antioxidant Responses of Euryale Ferox Salisb Seedlings to Microcystins. Toxicon 2021, 190, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Ukeda, H.; Maeda, S.; Ishii, T.; Sawamura, M. Spectrophotometric Assay for Superoxide Dismutase Based on Tetrazolium Salt 3′-{1-[(Phenylamino)-Carbonyl]-3,4-Tetrazolium}-Bis(4-Methoxy-6-Nitro)Benzenesulfonic Acid Hydrate Reduction by Xanthine-Xanthine Oxidase. Anal. Biochem. 1997, 251, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Berlinguer, F.; Pasciu, V.; Succu, S.; Cossu, I.; Caggiu, S.; Addis, D.; Castagna, A.; Fontani, V.; Rinaldi, S.; Passino, E.S. REAC Technology as Optimizer of Stallion Spermatozoa Liquid Storage. Reprod. Biol. Endocrinol. 2017, 15, 11. [Google Scholar] [CrossRef] [Green Version]
- Casao, A.; Cebrián, I.; Asumpção, M.E.; Pérez-Pé, R.; Abecia, J.A.; Forcada, F.; Cebrián-Pérez, J.A.; Muiño-Blanco, T. Seasonal Variations of Melatonin in Ram Seminal Plasma Are Correlated to Those of Testosterone and Antioxidant Enzymes. Reprod. Biol. Endocrinol. 2010, 8, 59. [Google Scholar] [CrossRef] [Green Version]
- Antunes Wilhelm, E.; Ricardo Jesse, C.; Folharini Bortolatto, C.; Wayne Nogueira, C. Correlations between Behavioural and Oxidative Parameters in a Rat Quinolinic Acid Model of Huntington’s Disease: Protective Effect of Melatonin. Eur. J. Pharmacol. 2013, 701, 65–72. [Google Scholar] [CrossRef]
- Song, Y.; Loor, J.J.; Li, C.; Liang, Y.; Li, N.; Shu, X.; Yang, Y.; Feng, X.; Du, X.; Wang, Z.; et al. Enhanced Mitochondrial Dysfunction and Oxidative Stress in the Mammary Gland of Cows with Clinical Ketosis. J. Dairy Sci. 2021, 104, 6909–6918. [Google Scholar] [CrossRef]
- Zheng, S.; Qin, G.; Zhen, Y.; Zhang, X.; Chen, X.; Dong, J.; Li, C.; Aschalew, N.D.; Wang, T.; Sun, Z. Correlation of Oxidative Stress-Related Indicators with Milk Composition and Metabolites in Early Lactating Dairy Cows. Vet. Med. Sci. 2021, 7, 2250–2259. [Google Scholar] [CrossRef]
- Majrashi, M.; Fujihashi, A.; Almaghrabi, M.; Fadan, M.; Fahoury, E.; Ramesh, S.; Govindarajulu, M.; Beamon, H.; Bradford, C.N.; Bolden-Tiller, O.; et al. Augmented Oxidative Stress and Reduced Mitochondrial Function in Ageing Goat Testis. Vet. Med. Sci. 2020, 6, 766–774. [Google Scholar] [CrossRef]
- Çelik, H.T.; Aslan, F.A.; Altay, D.U.; Kahveci, M.E.; Konanç, K.; Noyan, T.; Ayhan, S. Effects of Transport and Altitude on Hormones and Oxidative Stress Parameters in Sheep. PLoS ONE 2021, 16, e0244911. [Google Scholar] [CrossRef]
- Belhadj Slimen, I.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat Stress Effects on Livestock: Molecular, Cellular and Metabolic Aspects, a Review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Aboul Naga, A.M.; Abdel Khalek, T.M.; Osman, M.; Elbeltagy, A.R.; Abdel-Aal, E.S.; Abou-Ammo, F.F.; El-Shafie, M.H. Physiological and Genetic Adaptation of Desert Sheep and Goats to Heat Stress in the Arid Areas of Egypt. Small Rumin. Res. 2021, 203, 106499. [Google Scholar] [CrossRef]
- McManus, C.M.; Faria, D.A.; Lucci, C.M.; Louvandini, H.; Pereira, S.A.; Paiva, S.R. Heat Stress Effects on Sheep: Are Hair Sheep More Heat Resistant? Theriogenology 2020, 155, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Schütz, K.E. Ministry for Primary Industries. Effects of Heat Stress on the Health, Production and Welfare of Sheep Managed on Pasture; Ministry for Primary Industries by AgResearch: Wellington, New Zeland, 2022; Volume 6, ISBN 978-1-99-105234-6. [Google Scholar]
- Chauhan, S.S.; Rashamol, V.P.; Bagath, M.; Sejian, V.; Dunshea, F.R. Impacts of Heat Stress on Immune Responses and Oxidative Stress in Farm Animals and Nutritional Strategies for Amelioration. Int. J. Biometeorol. 2021, 65, 1231–1244. [Google Scholar] [CrossRef]
- Oke, O.E.; Uyanga, V.A.; Iyasere, O.S.; Oke, F.O.; Majekodunmi, B.C.; Logunleko, M.O.; Abiona, J.A.; Nwosu, E.U.; Abioja, M.O.; Daramola, J.O.; et al. Environmental Stress and Livestock Productivity in Hot-Humid Tropics: Alleviation and Future Perspectives. J. Therm. Biol. 2021, 100, 103077. [Google Scholar] [CrossRef]
- Shahat, A.M.; Thundathil, J.C.; Kastelic, J.P. Melatonin or L-Arginine in Semen Extender Mitigate Reductions in Quality of Frozen-Thawed Sperm from Heat-Stressed Rams. Anim. Reprod. Sci. 2022, 238, 106934. [Google Scholar] [CrossRef] [PubMed]
- Porcu, C.; Manca, C.; Cabiddu, A.; Dattena, M.; Gallus, M.; Pasciu, V.; Succu, S.; Naitana, S.; Berlinguer, F.; Molle, G. Effects of Short-Term Administration of a Glucogenic Mixture at Mating on Feed Intake, Metabolism, Milk Yield and Reproductive Performance of Lactating Dairy Ewes. Anim. Feed Sci. Technol. 2018, 243, 10–21. [Google Scholar] [CrossRef]
- Jarosiewicz, M.; Michałowicz, J.; Bukowska, B. In Vitro Assessment of Eryptotic Potential of Tetrabromobisphenol A and Other Bromophenolic Flame Retardants. Chemosphere 2019, 215, 404–412. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, G.; Jiang, Y.; Wang, H.; Xiao, H.; Guan, G. Erythropoietin Protects Erythrocytes against Oxidative Stress-Induced Eryptosis in Vitro. Clin. Lab. 2018, 64, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Chianese, R.; Pierantoni, R. Mitochondrial Reactive Oxygen Species (ROS) Production Alters Sperm Quality. Antioxidants 2021, 10, 92. [Google Scholar] [CrossRef] [PubMed]
- Sotgiu, F.D.; Porcu, C.; Pasciu, V.; Dattena, M.; Gallus, M.; Argiolas, G.; Berlinguer, F.; Molle, G. Towards a Sustainable Reproduction Management of Dairy Sheep: Glycerol-Based Formulations as Alternative to Ecg in Milked Ewes Mated at the End of Anoestrus Period. Animals 2021, 11, 922. [Google Scholar] [CrossRef] [PubMed]
- Pasciu, V.; Sotgiu, F.D.; Porcu, C.; Berlinguer, F. Effect of Media with Different Glycerol Concentrations on Sheep Red Blood Cells’ Viability in Vitro. Animals 2021, 11, 1592. [Google Scholar] [CrossRef]
- Alahmar, A. Role of Oxidative Stress in Male Infertility: An Updated Review. J. Hum. Reprod. Sci. 2019, 12, 4–18. [Google Scholar] [CrossRef]
- Aitken, R.J. Reactive Oxygen Species Generation by Human Spermatozoa—Reply. Int. J. Androl. 2003, 26, 127. [Google Scholar] [CrossRef]
- Zheng, Q.; Tan, W.; Feng, X.; Feng, K.; Zhong, W.; Liao, C.; Liu, Y.; Li, S.; Hu, W. Protective Effect of Flavonoids from Mulberry Leaf on AAPH-Induced Oxidative Damage in Sheep Erythrocytes. Molecules 2022, 27, 7625. [Google Scholar] [CrossRef]
- Chabory, E.; Damon, C.; Lenoir, A.; Henry-Berger, J.; Vernet, P.; Cadet, R.; Saez, F.; Drevet, J.R. Mammalian Glutathione Peroxidases Control Acquisition and Maintenance of Spermatozoa Integrity. J. Anim. Sci. 2010, 88, 1321–1331. [Google Scholar] [CrossRef] [Green Version]
- Brooks, M.B.; Harr, K.E.; Seelig, D.M.; Wardrop, K.J.; Weiss, D.J. Stem Cell Biology. In Schalm’s Veterinary Hematology, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; Chapter 3. [Google Scholar]
- Olver, C.S. Erythropoiesis. In Schalm’s Veterinary Hematology, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; Chapter 6. [Google Scholar]
- Olver, C.S.; Andrews, G.A.; Smith, J.E.; Kaneko, J.J. Erythrocytes Section III; Erythrocyte Structure and Function. In Schalm’s Veterinary Hematology, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; Chapter 20. [Google Scholar]
- Pantaleo, A.; Giribaldi, G.; Mannu, F.; Arese, P.; Turrini, F. Naturally Occurring Anti-Band 3 Antibodies and Red Blood Cell Removal under Physiological and Pathological Conditions. Autoimmun. Rev. 2008, 7, 457–462. [Google Scholar] [CrossRef]
- Remigante, A.; Morabito, R.; Marino, A. Band 3 Protein Function and Oxidative Stress in Erythrocytes. J. Cell Physiol. 2021, 236, 6225–6234. [Google Scholar] [CrossRef] [PubMed]
- Caimi, G.; Montana, M.; Canino, B.; Calandrino, V.; Presti, R.L.; Hopps, E. Erythrocyte Deformability, Plasma Lipid Peroxidation and Plasma Protein Oxidation in a Group of OSAS Subjects. Clin. Hemorheol. Microcirc. 2016, 64, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, J.W. Erythrocytes Section III; Erythrocyte Biochemistry. In Schalm’s Veterinary Hematology, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; Chapter 21. [Google Scholar]
- Bamm, V.V.; Tsemakhovich, V.A.; Shaklai, N. Oxidation of Low-Density Lipoprotein by Hemoglobin-Hemichrome. Int. J. Biochem. Cell Biol. 2003, 35, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Nyakundi, B.B.; Erdei, J.; Tóth, A.; Balogh, E.; Nagy, A.; Nagy, B.; Novák, L.; Bognár, L.; Paragh, G.; Kappelmayer, J.; et al. Formation and Detection of Highly Oxidized Hemoglobin Forms in Biological Fluids during Hemolytic Conditions. Oxid. Med. Cell Longev. 2020, 2020, 8929020. [Google Scholar] [CrossRef]
- Christian, J.A. Erythrokinetics and Erythrocyte Destruction. In Schalm’s Veterinary Hematology, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; Chapter 22. [Google Scholar]
- Esmaeilnejad, B.; Tavassoli, M.; Asri-Rezaei, S.; Dalir-Naghadeh, B.; Malekinejad, H.; Jalilzadeh-Amin, G.; Arjmand, J.; Golabi, M.; Hajipour, N. Evaluation of Antioxidant Status, Oxidative Stress and Serum Trace Mineral Levels Associated with Babesia Ovis Parasitemia in Sheep. Vet. Parasitol. 2014, 205, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Agar, N.S.; Board, P.G. Red Blood Cells of Domestic Mammals; Elsevier: New York, NY, USA, 1983; 67p. [Google Scholar]
- Kurata, M.; Suzuki, M.A.N. Antioxidant Systems and Erythrocyte Life—Span in Mammals. Comp. Biochem. Physiol. B 1993, 106, 477–487. [Google Scholar] [CrossRef]
- López-Revuelta, A.; Sánchez-Gallego, J.I.; Hernández-Hernández, A.; Sánchez-Yagüe, J.; Llanillo, M. Increase in Vulnerability to Oxidative Damage in Cholesterol-Modified Erythrocytes Exposed to t-BuOOH. Biochim. Biophys. Acta—Mol. Cell Biol. Lipids 2005, 1734, 74–85. [Google Scholar] [CrossRef]
- Peña, F.J. Molecular Biology of Spermatozoa. Int. J. Mol. Sci. 2020, 21, 3060. [Google Scholar] [CrossRef]
- Finkelstein, M.; Etkovitz, N.; Breitbart, H. Ca2+ Signaling in Mammalian Spermatozoa. Mol. Cell Endocrinol. 2020, 516, 110953. [Google Scholar] [CrossRef]
- Blount, J.D.; Vitikainen, E.I.K.; Stott, I.; Cant, M.A. Oxidative Shielding and the Cost of Reproduction. Biol. Rev. 2016, 91, 483–497. [Google Scholar] [CrossRef]
- Ortega Ferrusola, C.; González Fernández, L.; Morrell, J.M.; Salazar Sandoval, C.; Macías García, B.; Rodríguez-Martinez, H.; Tapia, J.A.; Peña, F.J. Lipid Peroxidation, Assessed with BODIPY-C 11, Increases after Cryopreservation of Stallion Spermatozoa, Is Stallion-Dependent and Is Related to Apoptotic-like Changes. Reproduction 2009, 138, 55–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennetts, L.E.; Aitken, R.J. A Comparative Study of Oxidative DNA Damage in Mammalian Spermatozoa. Mol. Reprod. Dev. 2005, 71, 77–87. [Google Scholar] [CrossRef]
- Macías García, B.; González Fernández, L.; Ortega Ferrusola, C.; Salazar-Sandoval, C.; Morillo Rodríguez, A.; Rodríguez Martinez, H.; Tapia, J.A.; Morcuende, D.; Peña, F.J. Membrane Lipids of the Stallion Spermatozoon in Relation to Sperm Quality and Susceptibility to Lipid Peroxidation. Reprod. Domest. Anim. 2011, 46, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Pintus, E.; Ros-Santaella, J.L. Impact of Oxidative Stress on Male Reproduction in Domestic and Wild Animals. Antioxidants 2021, 10, 1154. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, J.F.H.M.; Gadella, B.M. In Situ Detection and Localization of Lipid Peroxidation in Individual Bovine Sperm Cells. Free Radic. Biol. Med. 2003, 35, 1382–1391. [Google Scholar] [CrossRef]
- Ahluwalia, B.; Holman, R.T. Fatty Acid Composition of Lipids of Bull, Boar, Rabbit and Human Semen. J. Reprod. Fertil. 1969, 18, 431–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichi, M.; Goovaerts, I.G.F.; Cortada, C.N.M.; Barnabe, V.H.; De Clercq, J.B.P.; Bols, P.E.J. Roles of Lipid Peroxidation and Cytoplasmic Droplets on in vitro Fertilization Capacity of Sperm Collected from Bovine Epididymides Stored at 4 and 34 °C. Theriogenology 2007, 67, 334–340. [Google Scholar] [CrossRef]
- Tanhaei Vash, N.; Nadri, P.; Karimi, A. Synergistic Effects of Myo-Inositol and Melatonin on Cryopreservation of Goat Spermatozoa. Reprod. Domest. Anim. 2022, 57, 876–885. [Google Scholar] [CrossRef]
- Perez-Patiño, C.; Barranco, I.; Li, J.; Padilla, L.; Martinez, E.A.; Rodriguez-Martinez, H.; Roca, J.; Parrilla, I. Cryopreservation Differentially Alters the Proteome of Epididymal and Ejaculated Pig Spermatozoa. Int. J. Mol. Sci. 2019, 20, 1791. [Google Scholar] [CrossRef] [Green Version]
- O’Flaherty, C.; Matsushita-Fournier, D. Reactive Oxygen Species and Protein Modifications in Spermatozoa. Biol. Reprod. 2017, 97, 577–585. [Google Scholar] [CrossRef]
- Serpa, P.B.S.; Woolcock, A.; Taylor, S.D.; Pires dos Santos, A. Validation of a Flow Cytometric Assay to Detect Intraerythrocytic Reactive Oxygen Species in Horses. Vet. Clin. Pathol. 2021, 50, 20–27. [Google Scholar] [CrossRef]
- Falchi, L.; Galleri, G.; Dore, G.M.; Zedda, M.T.; Pau, S.; Bogliolo, L.; Ariu, F.; Pinna, A.; Nieddu, S.; Innocenzi, P.; et al. Effect of Exposure to CeO2 Nanoparticles on Ram Spermatozoa during Storage at 4 °C for 96 Hours. Reprod. Biol. Endocrinol. 2018, 16, 19. [Google Scholar] [CrossRef] [Green Version]
- Merati, Z.; Farshad, A.; Farzinpour, A.; Rostamzadeh, J.; Sharafi, M. Anti-Apoptotic Effects of Minocycline on Ram Epididymal Spermatozoa Exposed to Oxidative Stress. Theriogenology 2018, 114, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Reiten, M.R.; Malachin, G.; Kommisrud, E.; Østby, G.C.; Waterhouse, K.E.; Krogenæs, A.K.; Kusnierczyk, A.; Bjørås, M.; Jalland, C.M.O.; Nekså, L.H.; et al. Stress Resilience of Spermatozoa and Blood Mononuclear Cells without Prion Protein. Front. Mol. Biosci. 2018, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Escobar, E.; Lopes, S.; Malavolta, C.; Ramalho, J.B.; Missio, D.; Pinto, H.F.; Soares, M.B.; Leivas, F.G.; dos Brum, D.S.; Cibin, F.W.S. Effect of γ-Oryzanol on Testicular Degeneration Induced by Scrotal Insulation in Rams. Theriogenology 2019, 128, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Gimeno-Martos, S.; Casao, A.; Yeste, M.; Cebrián-Pérez, J.A.; Muiño-Blanco, T.; Pérez-Pé, R. Melatonin Reduces CAMP-Stimulated Capacitation of Ram Spermatozoa. Reprod. Fertil. Dev. 2019, 31, 420–431. [Google Scholar]
- Liu, T.; Han, Y.; Zhou, T.; Zhang, R.; Chen, H.; Chen, S.; Zhao, H. Mechanisms of ROS-Induced Mitochondria-Dependent Apoptosis Underlying Liquid Storage of Goat Spermatozoa. Aging 2019, 11, 7880–7898. [Google Scholar] [CrossRef]
- Lv, C.; Larbi, A.; Wu, G.; Hong, Q.; Quan, G. Improving the Quality of Cryopreserved Goat Semen with a Commercial Bull Extender Supplemented with Resveratrol. Anim. Reprod. Sci. 2019, 208, 106127. [Google Scholar] [CrossRef]
- Zarepourfard, H.; Riasi, A.; Frouzanfar, M.; Hajian, M.; Nasr Esfahani, M.H. Pomegranate Seed in Diet, Affects Sperm Parameters of Cloned Goats Following Freezing-Thawing. Theriogenology 2019, 125, 203–209. [Google Scholar] [CrossRef]
- Kumar, A.; Yadav, B.; Swain, D.K.; Anand, M.; Madan, A.K.; Yadav, R.K.S.; Kushawaha, B.; Yadav, S. Dynamics of HSPA1A and Redox Status in the Spermatozoa and Fluid from Different Segments of Goat Epididymis. Cell Stress. Chaperones. 2020, 25, 509–517. [Google Scholar] [CrossRef]
- Anzalone, D.A.; Palazzese, L.; Czernik, M.; Sabatucci, A.; Valbonetti, L.; Capra, E.; Loi, P. Controlled Spermatozoa-Oocyte Interaction Improves Embryo Quality in Sheep. Sci. Reports 2021, 11, 22629. [Google Scholar] [CrossRef]
- Del Olmo, E.; García-Álvarez, O.; Maroto-Morales, A.; Ramón, M.; Iniesta-Cuerda, M.; Martinez-Pastor, F.; Montoro, V.; Soler, A.J.; Garde, J.J.; Fernández-Santos, M.R. Oestrous Sheep Serum Balances ROS Levels to Supply in Vitro Capacitation of Ram Spermatozoa. Reprod. Domest. Anim. 2016, 51, 743–750. [Google Scholar] [CrossRef]
- Vašíček, J.; Baláži, A.; Svoradová, A.; Vozaf, J.; Dujíčková, L.; Makarevich, A.V.; Bauer, M.; Chrenek, P. Comprehensive Flow-Cytometric Quality Assessment of Ram Sperm Intended for Gene Banking Using Standard and Novel Fertility Biomarkers. Int. J. Mol. Sci. 2022, 23, 5920. [Google Scholar] [CrossRef]
- Zarei, F.; Daghigh-Kia, H.; Masoudi, R. Supplementation of Ram’s Semen Extender with Mito-TEMPO II: Quality Evaluation and Flow Cytometry Study of Post-Thawed Spermatozoa. Andrologia 2022, 54, e14299. [Google Scholar] [CrossRef]
- O’Brien, E.; García-Casado, P.; Castaño, C.; Toledano-Díaz, A.; Bóveda, P.; Santiago-Moreno, J. Sperm Response to in vitro Stress Conditions in Wild and Domestic Species Measured by Functional Variables and ROS Production. Front. Vet. Sci. 2021, 8, 650946. [Google Scholar] [CrossRef]
- Miguel-Jiménez, S.; Pina-Beltrán, B.; Gimeno-Martos, S.; Carvajal-Serna, M.; Casao, A.; Pérez-Pe, R. NADPH Oxidase 5 and Melatonin: Involvement in Ram Sperm Capacitation. Front. Cell Dev. Biol. 2021, 9, 655794. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kang, Y.; Zhang, L.; Niu, H.; Sun, X.; Li, Y. Coenzyme Q10 Improves the Quality of Sheep Sperm Stored at Room Temperature by Mitigating Oxidative Stress. Anim. Sci. J. 2022, 93, e13708. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhao, G.; Song, Y.; Haire, A.; Yang, A.; Zhao, X.; Wusiman, A. Presence of Leptin and Its Receptor in the Ram Reproductive System and in vitro Effect of Leptin on Sperm Quality. PeerJ 2022, 10, e13982. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Larbi, A.; Lv, C.; Ali, S.; Wu, G.; Quan, G. Fertility Results after Exocervical Insemination Using Goat Semen Cryopreserved with Extenders Based on Egg Yolk, Skim Milk, or Soybean Lecithin. Reprod. Domest. Anim. 2022, 58, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Longobardi, V.; Zullo, G.; Cotticelli, A.; Salzano, A.; Albero, G.; Navas, L.; Rufrano, D.; Claps, S.; Neglia, G. Crocin Improves the Quality of Cryopreserved Goat Semen in Different Breeds. Animals 2020, 10, 1101. [Google Scholar] [CrossRef]
- Monteiro, M.M.; de Mello Seal, D.C.; de Souza, J.H.; Trevisan, M.; Arruda, L.C.P.; Silva, S.V.; Guerra, M.M.P. Effect of Antifreeze Protein Type III on Frozen/Thawed of Spermatozoa Recover from Goat Epididymis. Res. Vet. Sci. 2023, 154, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Esmaeilkhanian, S.; Asadzadeh, N.; Masoudi, R. Flow Cytometry Study of Post-Thawed Buck Spermatozoa: Mito-TEMPO Improves Cryopreservation Performance by Controlling Apoptosis Rate, DNA Fragmentation and ROS Production. Cryobiology 2023, 110, 108–110. [Google Scholar] [CrossRef] [PubMed]
- Nazari, P.; Farshad, A.; Hosseini, Y. Protective Effects of Trehalose and Pentoxifylline on Goat Sperm Exposed to Chilling-Freezing Process. Biopreserv. Biobank. 2022, 20, 540–550. [Google Scholar] [CrossRef]
- Lv, C.; Larbi, A.; Memon, S.; Liang, J.; Fu, X.; Wu, G.; Quan, G. The Effects of Antifreeze Protein III Supplementation on the Cryosurvival of Goat Spermatozoa During Cryopreservation. Biopreserv. Biobank. 2021, 19, 298–305. [Google Scholar] [CrossRef]
- Sun, L.; Fan, W.; Wu, C.; Zhang, S.; Dai, J.; Zhang, D. Effect of Substituting Different Concentrations of Soybean Lecithin and Egg Yolk in Tris-Based Extender on Goat Semen Cryopreservation. Cryobiology 2020, 92, 146–150. [Google Scholar] [CrossRef]
- Mehdipour, M.; Daghigh-Kia, H.; Najafi, A.; Mehdipour, Z.; Mohammadi, H. Protective Effect of Rosiglitazone on Microscopic and Oxidative Stress Parameters of Ram Sperm after Freeze-Thawing. Sci. Rep. 2022, 12, 13981. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Wei, L.; Li, D.; Zhang, Y.; Wang, G.; Zhang, L.; Cao, P.; Li, G. Study on Cryopreservation of Guanzhong Dairy Goat Semen with Bovine Semen Seminal Plasma. Theriogenology 2022, 189, 113–117. [Google Scholar] [CrossRef]
- Zhang, W.; Min, L.; Li, Y.; Lang, Y.; Hoque, S.A.M.; Adetunji, A.O.; Zhu, Z. Beneficial Effect of Proline Supplementation on Goat Spermatozoa Quality during Cryopreservation. Anim. J. 2022, 12, 2626. [Google Scholar] [CrossRef]
- Mousaie, A. Dietary Supranutritional Supplementation of Selenium-Enriched Yeast Improves Feed Efficiency and Blood Antioxidant Status of Growing Lambs Reared under Warm Environmental Condition. Trop. Anim. Health Prod. 2021, 53, 138. [Google Scholar] [CrossRef]
- Tao, D.; Wang, Y.; Liu, J.; Chen, R.; Qi, M.; Xu, S. Mechanism of CuSO4 Cytotoxicity in Goat Erythrocytes after High-Level in vitro Exposure to Isotonic Media. Ecotoxicol. Environ. Saf. 2021, 208, 111730. [Google Scholar] [CrossRef]
- Sousa, R.S.; Sousa, C.S.; Oliveira, F.L.C.; Firmino, P.R.; Sousa, I.K.F.; Paula, V.V.; Caruso, N.M.; Ortolani, E.L.; Minervino, A.H.H.; Barrêto-Júnior, R.A. Impact of Acute Blood Loss on Clinical, Hematological, Biochemical, and Oxidative Stress Variables in Sheep. Vet. Sci. 2022, 9, 229. [Google Scholar] [CrossRef]
- Seifalinasab, A.; Mousaie, A.; Doomary, H. Dietary High Chromium-Methionine Supplementation in Summer-Exposed Finishing Lambs: Impacts on Feed Intake, Growth Performance, and Blood Cells, Antioxidants, and Minerals. Biol. Trace Elem. Res. 2022, 200, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Zadeh Hashem, E.; Eslami, M. Kinetin Improves Motility, Viability and Antioxidative Parameters of Ram Semen during Storage at Refrigerator Temperature. Cell Tissue Bank. 2018, 19, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Feng, T.; Dai, G.; Wang, Y.; Zhu, H.; Hu, J. Lycopene and Alpha-Lipoic Acid Improve Semen Antioxidant Enzymes Activity and Cashmere Goat Sperm Function after Cryopreservation. Cryobiology 2018, 84, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Sun, Y.; Zhao, J.; Dong, W.; Yang, G. Effect of Zinc Supplementation on Semen Quality, Sperm Antioxidant Ability, and Seminal and Blood Plasma Mineral Profiles in Cashmere Goats. Biol. Trace Elem. Res. 2020, 196, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Al-Mutary, M.G.; Al-Ghadi, M.Q.; Ammari, A.A.; Al-Himadi, A.R.; Al-Jolimeed, A.H.; Arafah, M.W.; Amran, R.A.; Aleissa, M.S.; Swelum, A.A.A. Effect of Different Concentrations of Resveratrol on the Quality and in Vitro Fertilizing Ability of Ram Semen Stored at 5 °C for up to 168 H. Theriogenology 2020, 152, 139–146. [Google Scholar] [CrossRef]
- Mortazavi, S.H.; Eslami, M.; Farrokhi-Ardabili, F. Comparison of Different Carrier-Compounds and Varying Concentrations of Oleic Acid on Freezing Tolerance of Ram Spermatozoa in Tris-Citric Acid-Egg Yolk Plasma Semen Diluent. Anim. Reprod. Sci. 2020, 219, 106533. [Google Scholar] [CrossRef]
- Žaja, I.; Berta, V.; Valpotić, H.; Samardžija, M.; Milinković-Tur, S.; Vilić, M.; Šuran, J.; Hlede, J.P.; Đuričić, D.; Špoljarić, B.; et al. The Influence of Exogenous Melatonin on Antioxidative Status in Seminal Plasma and Spermatozoa in French Alpine Bucks during the Nonbreeding Season. Domest. Anim. Endocrinol. 2020, 71, 106400. [Google Scholar] [CrossRef]
- Saberivand, A.; Pashapour, S.; Noghani, A.E.; Namvar, Z. Synergistic Effect of Royal Jelly in Combination with Glycerol and Dimethyl Sulfoxide on Cryoprotection of Romanov Ram Sperm. Cryobiology 2022, 104, 87–97. [Google Scholar] [CrossRef]
- Shayestehyekta, M.; Mohammadi, T.; Soltani, L.; PooyanMehr, M. Effect of Different Concentrations of Melatonin on Ram Epididymal Spermatozoa Recovered Post-Mortem under Oxidative Stress Conditions and Storage at 4 °C. Reprod. Domest. Anim. 2022, 57, 1520–1528. [Google Scholar] [CrossRef]
- Li, C.; Ren, C.; Chen, Y.; Wang, M.; Tang, J.; Zhang, Y.; Wang, Q.; Zhang, Z. Changes on Proteomic and Metabolomic Profiling of Cryopreserved Sperm Effected by Melatonin. J. Proteom. 2023, 273, 104791. [Google Scholar] [CrossRef]
- Eruslanov, E.; Kusmartsev, S. Identification of ROS Using Oxidized DCFDA and Flow-Cytometry. Adv. Protoc. Oxidative Stress. 2009, 594, 57–72. [Google Scholar]
- Liu-Smith, F.; Krasieva, T.B.; Liu, J.; Liu, J.; Meyskens, F.L. Measuring Redox Status of Melanoma Cells. Methods Mol. Biol. 2016. Online ahead of print. [Google Scholar] [CrossRef]
- Ameziane-El-Hassani, R.R.; Dupuy, C.C. Detection of Intracellular Reactive Oxygen Species (CM-H2DCFDA). Bio Protoc. 2013, 3, 941–950. [Google Scholar] [CrossRef] [Green Version]
- McBee, M.E.; Chionh, Y.H.; Sharaf, M.L.; Ho, P.; Cai, M.W.L.; Dedon, P.C. Production of Superoxide in Bacteria Is Stress- and Cell State-Dependent: A Gating-Optimized Flow Cytometry Method That Minimizes ROS Measurement Artifacts with Fluorescent Dyes. Front. Microbiol. 2017, 8, 459. [Google Scholar] [CrossRef] [Green Version]
- Davila, M.P.; Muñoz, P.M.; Tapia, J.A.; Ferrusola, C.O.; Da Silva, C.C.B.; Peña, F.J. Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, While the Inhibition of Glycolysis Has Less Impact on Sperm Motility. PLoS ONE 2015, 10, e0138777. [Google Scholar] [CrossRef] [Green Version]
ROS | Specie | Catalyzed Reaction | Production | Refs. |
---|---|---|---|---|
Superoxide Radical | O2−• | NADPH + 2O2 → NADP+ + 2 O2−• + H+ | Oxygen metabolism | [19] |
Hydrogen Peroxide | H2O2 | 2 O2−•+ 2H+ → H2O2 + O2 | - Dismutation of O2−• - Different oxidases - Catabolic reactions | [20,21,22] |
Hydroxyl Radical | •OH | H3O+ + e− → •OH + H2 H2O2 → •OH | - Aconitase reactions - Fenton reaction | [20,23] |
Hydroperoxyl Radical | HOO• | O2− + H2O → HOO• + OH− | The protonated form of O2−• | [20] |
Peroxyl Radicals | ROO• | R• + O2 → ROO• | Polyunsaturated fatty acid metabolism | [24] |
Enzymatic Antioxidant | Function | Catalyzed Reaction | Refs. |
---|---|---|---|
Superoxide Dismutase (SOD) | Detoxification O2−• | 2O2−• + 2H+ → O2 + H2O2 | [26,27,28] |
Catalase (CAT) | Detoxification H2O2 | 2H2O2 → 2H2O + O2 | [28,29] |
Glutathione peroxidase (GPX) | Detoxification H2O2 | 2H2O2 + GSH → 2H2O+ O2 + GSSG | [28] |
Glutathione reductase (GSR) | Restoration of the GSH by reducing the GSSG | GSSG + NADPH → GSH +NADP+ | [28] |
Specie | Method | Lysis | Concentration | Refs. | |
---|---|---|---|---|---|
ERYTHROCYTES | Sheep | Commercial kit for GPX and CAT. (Nanjing Jiancheng Institute of Biotech., China) | By ultrapure water | CAT: 1 ÷ 5.5 U/mg protein GPX: 10 ÷ 65 U/mg protein | [49] |
SPERMATOZOA | Buck | Commercial kits: GSR: Glutathione reductase kit (Randox Lab., UK) GPX: Ransel kit (Randox Lab., UK) CAT: Catalase assay kit (Cayman Chemical Co., MI) | Freeze–thaw in cooled distilled water | GSR: 2000 ÷ 3500 U/g protein GPX: 3200 ÷ 4000 U/g protein CAT: 300 ÷ 750 nmol/min/g protein | [116] |
Goat | Commercial kit for GPX and CAT (Nanjing Jiancheng Bioeng. Institute, China) | by 0.1% Triton X-100 | CAT: 1.8 ÷ 3.10 U/mL GPX: 18 ÷ 33 U/mL | [112] | |
Commercial kit for GPX and CAT (Nanjing Jiancheng Bioeng. Institute, China) | by 0.1% Triton X-100 | GPX: 20 ÷ 80 U/mg protein CAT: 2.5 ÷ 3 U/mg protein | [113] | ||
Commercial kit BC1195 for GPX (Solarbio) | N.S. | GPX: 106.3 ÷ 133.5 U/L | [104] | ||
Ram | Commercial kits A005–1-1 (for GPX) A007–1-1 (for CAT) (Nanjing Jiancheng, China) | Sonication in 0.9% NaCl and 1% Triton X-100 | GPX: 10 ÷ 16 U/mg protein CAT:0.12 ÷ 0.2 U/mgprotein | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasciu, V.; Nieddu, M.; Sotgiu, F.D.; Baralla, E.; Berlinguer, F. An Overview on Assay Methods to Quantify ROS and Enzymatic Antioxidants in Erythrocytes and Spermatozoa of Small Domestic Ruminants. Animals 2023, 13, 2300. https://doi.org/10.3390/ani13142300
Pasciu V, Nieddu M, Sotgiu FD, Baralla E, Berlinguer F. An Overview on Assay Methods to Quantify ROS and Enzymatic Antioxidants in Erythrocytes and Spermatozoa of Small Domestic Ruminants. Animals. 2023; 13(14):2300. https://doi.org/10.3390/ani13142300
Chicago/Turabian StylePasciu, Valeria, Maria Nieddu, Francesca Daniela Sotgiu, Elena Baralla, and Fiammetta Berlinguer. 2023. "An Overview on Assay Methods to Quantify ROS and Enzymatic Antioxidants in Erythrocytes and Spermatozoa of Small Domestic Ruminants" Animals 13, no. 14: 2300. https://doi.org/10.3390/ani13142300
APA StylePasciu, V., Nieddu, M., Sotgiu, F. D., Baralla, E., & Berlinguer, F. (2023). An Overview on Assay Methods to Quantify ROS and Enzymatic Antioxidants in Erythrocytes and Spermatozoa of Small Domestic Ruminants. Animals, 13(14), 2300. https://doi.org/10.3390/ani13142300