Non-Invasive Biomarkers in Saliva and Eye Infrared Thermography to Assess the Stress Response of Calves during Transport
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Samples Collection
2.2. Cortisol Measurement
2.3. Measurement of the Oxidative Stress Markers
2.3.1. Thiobarbituric Acid Reactive Substance (TBARS)
2.3.2. 2′-7′-Dichlorofluorescein Diacetate Staining
2.3.3. Protein Carbonyls
2.3.4. Advanced Oxidation Protein Products (AOPP)
2.4. Eye IRT Data Process
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Purwins, N.; Schulze-Ehlers, B. Improving Market Success of Animal Welfare Programs through Key Stakeholder Involvement: Heading towards Responsible Innovation? Int. Food Agribus. Manag. Rev. 2018, 21, 543–558. [Google Scholar] [CrossRef]
- Schwartzkopf-Genswein, K.S.; Faucitano, L.; Dadgar, S.; Shand, P.; González, L.A.; Crowe, T.G. Road Transport of Cattle, Swine and Poultry in North America and Its Impact on Animal Welfare, Carcass and Meat Quality: A Review. Meat Sci. 2012, 92, 227–243. [Google Scholar] [CrossRef]
- Speer, N.C.; Slack, G.; Troyer, E. Economic Factors Associated with Livestock Transportation. J. Anim. Sci. 2001, 79, E166. [Google Scholar] [CrossRef] [Green Version]
- Grandin, T.; Oldfield, J.E.; Boyd, L.J. Review: Reducing Handling Stress Improves Both Productivity and Welfare. Prof. Anim. Sci. 1998, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Deters, E.L.; Hansen, S.L. Invited Review: Linking Road Transportation with Oxidative Stress in Cattle and Other Species. Appl. Anim. Sci. 2020, 36, 183–200. [Google Scholar] [CrossRef]
- Swanson, J.C.; Morrow-Tesch, J. Cattle Transport: Historical, Research, and Future Perspectives. J. Anim. Sci. 2001, 79, E102. [Google Scholar] [CrossRef] [Green Version]
- Vogel, K.D.; Romans, E.F.I.; Obiols, P.L.; Velarde, A. Stress Physiology of Animals during Transport. In Livestock Handling and Transport; Grandin, T., Ed.; CABI: Wallingford, UK, 2019; pp. 30–57. ISBN 978-1-78639-915-1. [Google Scholar]
- Dzviti, M.; Mapfumo, L.; Muchenje, V. Relationship between Saliva and Blood Cortisol in Handled Cows. Asian-Australas. J. Anim. Sci. 2019, 32, 734–741. [Google Scholar] [CrossRef]
- Andanson, S.; Boissy, A.; Veissier, I. Conditions for Assessing Cortisol in Sheep: The Total Form in Blood v. the Free Form in Saliva. Animal 2020, 14, 1916–1922. [Google Scholar] [CrossRef]
- Schwinn, A.-C.; Knight, C.H.; Bruckmaier, R.M.; Gross, J.J. Suitability of Saliva Cortisol as a Biomarker for Hypothalamic–Pituitary–Adrenal Axis Activation Assessment, Effects of Feeding Actions, and Immunostimulatory Challenges in Dairy Cows1. J. Anim. Sci. 2016, 94, 2357–2365. [Google Scholar] [CrossRef]
- Hernandez, C.E.; Thierfelder, T.; Svennersten-Sjaunja, K.; Berg, C.; Orihuela, A.; Lidfors, L. Time Lag between Peak Concentrations of Plasma and Salivary Cortisol Following a Stressful Procedure in Dairy Cattle. Acta Vet. Scand. 2014, 56, 61. [Google Scholar] [CrossRef] [Green Version]
- Mavangira, V.; Sordillo, L.M. Role of Lipid Mediators in the Regulation of Oxidative Stress and Inflammatory Responses in Dairy Cattle. Res. Vet. Sci. 2018, 116, 4–14. [Google Scholar] [CrossRef]
- Rubio, C.P.; Contreras-Aguilar, M.D.; Quiles, A.; López-Arjona, M.; Cerón, J.J.; Martínez-Subiela, S.; Hevia, M.L.; Escribano, D.; Tecles, F. Biomarkers of Oxidative Stress in Saliva of Sheep: Analytical Performance and Changes after an Experimentally Induced Stress. Res. Vet. Sci. 2019, 123, 71–76. [Google Scholar] [CrossRef]
- Contreras-Aguilar, M.D.; Monkeviciene, I.; Ceron, J.J.; Silinskas, I.; Vallejo-Mateo, P.J.; Tecles, F.; Martinez-Subiela, S.; Tvarijonaviciute, A.; Zelvyte, R. Biochemical Changes in Saliva of Cows with Inflammation: A Pilot Study. Res. Vet. Sci. 2019, 124, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Rubio, C.P.; Escribano, D.; Mainau, E.; Cerón, J.J.; Navarro, E.; Manteca, X. Changes in Salivary Biomarkers of Oxidative Status in Calves at Weaning and Grouping. BMC Vet. Res. 2021, 17, 373. [Google Scholar] [CrossRef]
- Contreras-Aguilar, M.D.; Escribano, D.; Martínez-Miró, S.; López-Arjona, M.; Rubio, C.P.; Martínez-Subiela, S.; Cerón, J.J.; Tecles, F. Application of a Score for Evaluation of Pain, Distress and Discomfort in Pigs with Lameness and Prolapses: Correlation with Saliva Biomarkers and Severity of the Disease. Res. Vet. Sci. 2019, 126, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ogdahl, W.; Hulsman Hanna, L.L.; Dahlen, C.R.; Riley, D.G.; Wagner, S.A.; Berg, E.P.; Sun, X. Evaluation of Beef Cattle Temperament by Eye Temperature Using Infrared Thermography Technology. Comput. Electron. Agric. 2021, 188, 106321. [Google Scholar] [CrossRef]
- McManus, C.; Tanure, C.B.; Peripolli, V.; Seixas, L.; Fischer, V.; Gabbi, A.M.; Menegassi, S.R.O.; Stumpf, M.T.; Kolling, G.J.; Dias, E.; et al. Infrared Thermography in Animal Production: An Overview. Comput. Electron. Agric. 2016, 123, 10–16. [Google Scholar] [CrossRef]
- Venâncio, C. Relationship between Rectal and Infrared Thermography Maximum Eye Temperature of Arouquesa Breed. In Proceedings of the 71st Annual Meeting of the European Federation of Animal Science, Porto, Portugal, 1–4 December 2020. [Google Scholar]
- Stewart, M.; Webster, J.R.; Verkerk, G.A.; Schaefer, A.L.; Colyn, J.J.; Stafford, K.J. Non-Invasive Measurement of Stress in Dairy Cows Using Infrared Thermography. Physiol. Behav. 2007, 92, 520–525. [Google Scholar] [CrossRef]
- Schaefer, A.; Genho, D.; Clisdell, R.; von Gaza, H.; DesRoches, G.; Hiemer, L.; Pelech, G.; Grumpelt, B.; Patterson, R. 497 The Automated and Real Time Use of Infrared Thermography in the Detection and Correction of DFD and Fevers in Cattle. J. Anim. Sci. 2018, 96, 275. [Google Scholar] [CrossRef]
- Cuthbertson, H.; Tarr, G.; Loudon, K.; Lomax, S.; White, P.; McGreevy, P.; Polkinghorne, R.; González, L.A. Using Infrared Thermography on Farm of Origin to Predict Meat Quality and Physiological Response in Cattle (Bos taurus) Exposed to Transport and Marketing. Meat Sci. 2020, 169, 108173. [Google Scholar] [CrossRef]
- Sacarrão-Birrento, L.; Gomes, M.J.; Silva, S.R.; Silva, J.A.; Moreira, D.; Vieira, R.; Ferreira, L.M.; Pereira, P.; de Almeida, A.M.; Almeida, J.C.; et al. Growth Performance, Carcass and Meat Traits of Autochthonous Arouquesa Weaners Raised on Traditional and Improved Feeding Systems. Animals 2022, 12, 2501. [Google Scholar] [CrossRef]
- Zhou, M.; Aarnink, A.J.A.; Huynh, T.T.T.; van Dixhoorn, I.D.E.; Groot Koerkamp, P.W.G. Effects of Increasing Air Temperature on Physiological and Productive Responses of Dairy Cows at Different Relative Humidity and Air Velocity Levels. J. Dairy Sci. 2022, 105, 1701–1716. [Google Scholar] [CrossRef]
- Zeugswetter, F.K.; Neffe, F.; Schwendenwein, I.; Tichy, A.; Möstl, E. Configuration of Antibodies for Assay of Urinary Cortisol in Dogs Influences Analytic Specificity. Domest. Anim. Endocrinol. 2013, 45, 98–104. [Google Scholar] [CrossRef]
- Wallin, B.; Rosengren, B.; Shertzer, H.G.; Camejo, G. Lipoprotein Oxidation and Measurement of Thiobarbituric Acid Reacting Substances Formation in a Single Microtiter Plate: Its Use for Evaluation of Antioxidants. Anal. Biochem. 1993, 208, 10–15. [Google Scholar] [CrossRef]
- Deng, J.; Yu, L.; Liu, C.; Yu, K.; Shi, X.; Yeung, L.W.Y.; Lam, P.K.S.; Wu, R.S.S.; Zhou, B. Hexabromocyclododecane-Induced Developmental Toxicity and Apoptosis in Zebrafish Embryos. Aquat. Toxicol. 2009, 93, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, C.S.; Oliveira, R.; Bento, F.; Geraldo, D.; Rodrigues, J.V.; Marcos, J.C. Simplified 2,4-Dinitrophenylhydrazine Spectrophotometric Assay for Quantification of Carbonyls in Oxidized Proteins. Anal. Biochem. 2014, 458, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Jaddoa, M.A.; Al-Jumaily, A.; Gonzalez, L.; Cuthbertson, H. Automatic Eyes Localization in Thermal Images for Temperature Measurement in Cattle. In Proceedings of the 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), IEEE, Nanjing, China, 24–26 November 2017; pp. 1–6. [Google Scholar]
- Engen, N.K.V.; Coetzee, J.F. Effects of Transportation on Cattle Health and Production: A Review. Anim. Health Res. Rev. 2018, 19, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.J.; Veira, D.; Church, J.S.; Schaefer, A.L. Dexamethasone Reduces Transport-Induced Weight Losses in Beef Calves. Can. J. Anim. Sci. 2009, 89, 335–339. [Google Scholar] [CrossRef]
- Damtew, A.; Erega, Y.; Ebrahim, H.; Tsegaye, S.; Msigie, D. The Effect of Long Distance Transportation Stress on Cattle: A Review. Biomed. J. Sci. Tech. Res. 2018, 3, 3304–3308. [Google Scholar] [CrossRef] [Green Version]
- Wernicki, A.; Urban-Chmiel, R.; Kankofer, M.; Mikucki, P.; Puchalski, A.; Tokarzewski, S. Evaluation of Plasma Cortisol and TBARS Levels in Calves after Short—Term Transportation. Rev. Med. Vet. 2006, 157, 30–34. [Google Scholar]
- Ferreira, C.S.; Vasconcellos, R.S.; Pedreira, R.S.; Silva, F.L.; Sá, F.C.; Kroll, F.S.A.; Maria, A.P.J.; Venturini, K.S.; Carciofi, A.C. Alterations to Oxidative Stress Markers in Dogs after a Short-Term Stress during Transport. J. Nutr. Sci. 2014, 3, e27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urban-Chmiel, R.; Kankofer, M.; Wernicki, A.; Albera, E.; Puchalski, A. The Influence of Different Doses of α-Tocopherol and Ascorbic Acid on Selected Oxidative Stress Parameters in in Vitro Culture of Leukocytes Isolated from Transported Calves. Livest. Sci. 2009, 124, 89–92. [Google Scholar] [CrossRef]
- Piccione, G.; Casella, S.; Giannetto, C.; Bazzano, M.; Giudice, E.; Fazio, F. Oxidative Stress Associated with Road Transportation in Ewes. Small Rumin. Res. 2013, 112, 235–238. [Google Scholar] [CrossRef]
- Majlesi, A.; Yasini, S.P.; Azimpour, S.; Mottaghian, P. Evaluation of Oxidative and Antioxidant Status in Dairy Calves before and after Weaning. Bulg. J. Vet. Med. 2021, 24, 184–190. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Celi, P. Oxidative Stress in Ruminants. Stud. Vet. Med. 2011, 5, 191–231. [Google Scholar] [CrossRef]
- Estévez, M. Protein Carbonyls in Meat Systems: A Review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Marco-Ramell, A.; Arroyo, L.; Saco, Y.; García-Heredia, A.; Camps, J.; Fina, M.; Piedrafita, J.; Bassols, A. Proteomic Analysis Reveals Oxidative Stress Response as the Main Adaptative Physiological Mechanism in Cows under Different Production Systems. J. Proteom. 2012, 75, 4399–4411. [Google Scholar] [CrossRef]
- Gabai, G.; De Luca, E.; Miotto, G.; Zin, G.; Stefani, A.; Da Dalt, L.; Barberio, A.; Celi, P. Relationship between Protein Oxidation Biomarkers and Uterine Health in Dairy Cows during the Postpartum Period. Antioxidants 2019, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Herzberg, D.; Strobel, P.; Chihuailaf, R.; Ramirez-Reveco, A.; Müller, H.; Werner, M.; Bustamante, H. Spinal Reactive Oxygen Species and Oxidative Damage Mediate Chronic Pain in Lame Dairy Cows. Animals 2019, 9, 693. [Google Scholar] [CrossRef] [Green Version]
- Herasymets, I.; Fira, L.; Medvid, I. The Study of Oxidative Stress Indicators in Rats with a Simulated Acute Hepatitis and Correction with a Thick Extract from Reishi Mushrooms. Sci. Biol. Sci. 2021, 3, 4–9. [Google Scholar] [CrossRef]
- Xie, J.; Tang, L.; Lu, L.; Zhang, L.; Xi, L.; Liu, H.-C.; Odle, J.; Luo, X. Differential Expression of Heat Shock Transcription Factors and Heat Shock Proteins after Acute and Chronic Heat Stress in Laying Chickens (Gallus gallus). PLoS ONE 2014, 9, e102204. [Google Scholar] [CrossRef] [Green Version]
- Mota-Rojas, D.; Pereira, A.M.F.; Wang, D.; Martínez-Burnes, J.; Ghezzi, M.; Hernández-Avalos, I.; Lendez, P.; Mora-Medina, P.; Casas, A.; Olmos-Hernández, A.; et al. Clinical Applications and Factors Involved in Validating Thermal Windows Used in Infrared Thermography in Cattle and River Buffalo to Assess Health and Productivity. Animals 2021, 11, 2247. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M. Non-Invasive Measurement of Stress and Pain in Cattle Using Infrared Thermography: A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Animal Science at Massey University, Palmerston North, New Zealand. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2008. [Google Scholar]
- Levine, J.A.; Pavlidis, I.; Cooper, M. The Face of Fear. Lancet 2001, 357, 1757. [Google Scholar] [CrossRef]
- Kenny, F.J.; Tarrant, P.V. The Physiological and Behavioural Responses of Crossbred Friesian Steers to Short-Haul Transport by Road. Livest. Prod. Sci. 1987, 17, 63–75. [Google Scholar] [CrossRef]
- Capik, S.F.; White, B.J.; Larson, R.L.; Van Engen, N.; Cernicchiaro, N.; Engelken, T.J.; Lakritz, J.; Ballou, M.A.; Hulbert, L.E.; Vann, R.C.; et al. Effect of Oral Administration of Meloxicam Prior to Transport on Inflammatory Mediators and Leukoctye Function of Cattle at Feedlot Arrival. Am. J. Vet. Res. 2017, 78, 1426–1436. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, A.L.; Jones, S.D.M.; Tong, A.K.W.; Vincent, B.C. The Effects of Fasting and Transportation on Beef Cattle. 1. Acid-Base-Electrolyte Balance and Infrared Heat Loss of Beef Cattle. Livest. Prod. Sci. 1988, 20, 15–24. [Google Scholar] [CrossRef]
- Knízková, I.; Kunc, P. Applications of Infrared Thermography in Animal Production. Anadolu J. Agric. Sci. 2007, 22, 329–336. [Google Scholar]
- Peng, D.; Chen, S.; Li, G.; Chen, J.; Wang, J.; Gu, X. Infrared Thermography Measured Body Surface Temperature and Its Relationship with Rectal Temperature in Dairy Cows under Different Temperature-Humidity Indexes. Int. J. Biometeorol. 2019, 63, 327–336. [Google Scholar] [CrossRef]
- Yan, G.; Shi, Z.; Li, H. Critical Temperature-Humidity Index Thresholds Based on Surface Temperature for Lactating Dairy Cows in a Temperate Climate. Agriculture 2021, 11, 970. [Google Scholar] [CrossRef]
- Pascual-Alonso, M.; Miranda-de la Lama, G.C.; Aguayo-Ulloa, L.; Villarroel, M.; Mitchell, M.; María, G.A. Thermophysiological, Haematological, Biochemical and Behavioural Stress Responses of Sheep Transported on Road. J. Anim. Physiol. Anim. Nutr. 2017, 101, 541–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valera, M.; Bartolomé, E.; Sánchez, M.J.; Molina, A.; Cook, N.; Schaefer, A. Changes in Eye Temperature and Stress Assessment in Horses During Show Jumping Competitions. J. Equine Vet. Sci. 2012, 32, 827–830. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, M.C.; Félix, L.; Cardoso, R.; Monteiro, S.M.; Silva, S.; Venâncio, C. Non-Invasive Biomarkers in Saliva and Eye Infrared Thermography to Assess the Stress Response of Calves during Transport. Animals 2023, 13, 2311. https://doi.org/10.3390/ani13142311
Lei MC, Félix L, Cardoso R, Monteiro SM, Silva S, Venâncio C. Non-Invasive Biomarkers in Saliva and Eye Infrared Thermography to Assess the Stress Response of Calves during Transport. Animals. 2023; 13(14):2311. https://doi.org/10.3390/ani13142311
Chicago/Turabian StyleLei, Mariana Caipira, Luís Félix, Ricardo Cardoso, Sandra Mariza Monteiro, Severiano Silva, and Carlos Venâncio. 2023. "Non-Invasive Biomarkers in Saliva and Eye Infrared Thermography to Assess the Stress Response of Calves during Transport" Animals 13, no. 14: 2311. https://doi.org/10.3390/ani13142311
APA StyleLei, M. C., Félix, L., Cardoso, R., Monteiro, S. M., Silva, S., & Venâncio, C. (2023). Non-Invasive Biomarkers in Saliva and Eye Infrared Thermography to Assess the Stress Response of Calves during Transport. Animals, 13(14), 2311. https://doi.org/10.3390/ani13142311