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Simple Summary: Assessing suitable habitats for species has great potential to guide the manage-
ment and conservation of threatened species, especially rare species that are poorly studied and
remote from human populations. Vormela peregusna, a mustelid mammal endemic to Eurasia, was
assessed as vulnerable by the International Union for Conservation of Nature in 2015 due to its low
population size and increasing human threats. We used the ensemble model to assess the distribution
of suitable areas for V. peregusna under current and future climate change conditions to contribute to
the better protection of endangered animals.

Abstract: Habitat loss and human threats are putting the marbled polecat (Vormela peregusna) on the
brink of extinction. Numerous recent studies have found that climate change will further deteriorate
the living environment of endangered species, leading to their eventual extinction. In this study, we
used the results of infrared camera surveys in China and worldwide distribution data to construct an
ensemble model consisting of 10 commonly used ecological niche models to specify potential suitable
habitat areas for V. peregusna under current conditions with similar environments to the sighting
record sites. Changes in the suitable habitat for V. peregusna under future climate change scenarios
were simulated using mid-century (2050s) and the end of the century (2090s) climate scenarios
provided by the Coupled Model Intercomparison Project Phase 6 (CMIP6). We evaluated the accuracy
of the model to obtain the environmental probability values (cutoff) of the V. peregusna distribution,
the current distribution of suitable habitats, and future changes in moderately and highly suitable
habitat areas. The results showed that the general linear model (GLM) was the best single model for
predicting suitable habitats for V. peregusna, and the kappa coefficient, area under the curve (AUC),
and true skill statistic (TSS) of the ensemble model all exceeded 0.9, reflecting greater accuracy and
stability than single models. Under the current conditions, the area of suitable habitat for V. peregusna
reached 3935.92 × 104 km2, suggesting a wide distribution range. In the future, climate change
is predicted to severely affect the distribution of V. peregusna and substantially reduce the area of
suitable habitats for the species, with 11.91 to 33.55% of moderately and highly suitable habitat areas
no longer suitable for the survival of V. peregusna. This shift poses an extremely serious challenge
to the conservation of this species. We suggest that attention be given to this problem in Europe,
especially the countries surrounding the Black Sea, Asia, China, and Mongolia, and that measures be
taken, such as regular monitoring and designating protected areas for the conservation of vulnerable
animals.
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1. Introduction

Determining how to protect endangered species is one of the main problems faced
in conservation biology [1,2]. The most recent evaluation showed that over 42,100 species
are at risk of extinction to varying degrees, a number that amounts to 28% of all species
assessed [3]. Habitat loss and fragmentation are among the most important issues currently
observed. Understanding habitat suitability and the factors that influence species habitats
is the basis for the protection of threatened species [4,5]. In general, the risk of warming
due to climate change will exacerbate the loss of species habitat [6]. Additionally, the loss
of fauna may be imminent if scientifically sound conservation measures are not developed,
especially for animals that are already scarce.

Habitat analysis is an important prerequisite for conservation planning and managerial
decision making [7] and is urgently needed to enhance the conservation of endangered
species. Species distribution models (SDMs) use environmental variables associated with
species distribution sites to predict the ecological needs and potential distribution of species
and are widely used in invasion biology, conservation biology, global change biology, and
risk of disease transmission [8]. Similar to other ecological models, ecological niche models
have uncertainty in their predictions, which are closely related to species distribution sites,
environmental variables, and model algorithms and parameters, among which the species
distribution sites and model algorithms have the greatest effects [9]. There are more than
30 SDMs available [10], each with different advantages; however, it is difficult to choose
the optimal assessment model for species that have rarely been studied [11]. Biomod2 is an
ensemble model based on a variety of single models [12] and provides better prediction
accuracy and spatial sensitivity to small sample sets than do single models, which are prone
to overfitting and uncertainty [13–15].

Vormela peregusna is the only small mammal in the genus Vormela of the order Car-
nivora of the class Mammalia [16]. V. peregusna is valuable for ecosystem stability and
medical research. On the one hand, it is a major predator of desert rodents [17] and can
effectively protect desert vegetation from rodent damage; on the other hand, V. peregusna is
associated with many tick-borne pathogens [18], and research on this species has helped
constrain the transmission mechanisms of zoonotic diseases. Unfortunately, despite the
value of this species, the risk to the survival of V. peregusna is very concerning. As early as
2008, V. peregusna was included on the Red List of Threatened Species by the International
Union for Conservation of Nature (IUCN), and a subsequent reassessment found that the
V. peregusna population declined by 30% in a decade [19], reaching a classification of vul-
nerable. Although China, Bulgaria [20], and other countries have classified V. peregusna as
a protected species, thus far, no countries have established targeted conservation measures
to save V. peregusna from extinction.

We hypothesize that there is a direct relationship between the species distribution of
V. peregusna and its food sources, and since there are no efficient methods to monitor V.
peregusna populations at a broad scale, currently, most records come from opportunistic
sightings [21]. Observations from southern Europe show that V. peregusna prefers to appear
in farmland–grassland interlaced areas with good vegetation conditions [22]. However, this
situation is completely different in Asia and the Middle East, with records of occurrences
in countries such as Iraq, China, and Mongolia coming from sparsely vegetated hilly and
desert areas [23,24]. Another strong piece of evidence is that, in infrared camera monitoring
of V. peregusna’s main food Rhombomys opimus, it was found that the activity rhythm of
V. peregusna was positively correlated with that of R. opimus [25]. When the activity of R.
opimus increased or decreased with seasonal changes, the activity pattern of V. peregusna
also changed accordingly. Although the effect of food on the survival of V. peregusna has
not yet been clearly determined, it will be of great help to protect V. peregusna if protected
areas can be delineated by considering the suitable range and occurrence of rodents.

Habitat loss is the main reason for the endangerment of V. peregusna. In Europe, the
conversion of much grassland to cropland has reduced the suitable habitat for V. peregusna,
while in Asia, land desertification is the main threat to V. peregusna [26]. Several past studies
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have found that climate change will have a dramatic impact on the stability of desert and
grassland ecosystems [27,28]. Studies from Central Asian grasslands have shown that
changes in precipitation are the main factor causing changes in grassland vegetation [29],
and studies on the survival of desert fauna have also shown a significant decline in desert
bird populations over the past century due to temperature and precipitation [30]. It is also
important to address whether the habitat of V. peregusna, as a desert and grassland habitat
species, will be affected by climate change.

In this study, we collected monitoring data obtained with infrared cameras in the desert
areas of northwest China and reports of V. peregusna distribution worldwide to improve
the accuracy of model-based distribution predictions. Ten single models were established
based on Biomod2, and the ability of different models to predict suitable habitat areas for
V. peregusna was compared. An ensemble model was used to predict the distribution of V.
peregusna and changes in suitable habitat areas in current and future situations. Specifically,
our aims were to (a) provide new strategies for conducting suitable habitat studies of
species with small populations, (b) enhance the conservation of vulnerable animals, and (c)
recommend conservation priority areas for effective conservation in the future.

2. Materials and Methods
2.1. Occurrence Data

In previous studies, we used infrared cameras to monitor rodent pests in desert areas
of China, and 12 V. peregusna distribution points were identified [25]. Additionally, a total
of 491 distribution points was obtained by searching the database of the Global Biodiversity
Information Facility (http://www.gbif.org, accessed on 18 October 2022) and research
articles related to the distribution of V. peregusna [31–34]. Due to the duplication of many
point co-ordinates, we removed redundant data to reduce the error caused by the clustering
effect so that only one distribution point was retained in each grid (100 km2). Ultimately,
101 valid points were obtained (Figure 1), and the latitude and longitude co-ordinates of
each point are shown in Table S1.
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Figure 1. Distribution of records of V. peregusna.

2.2. Selection and Processing of Environmental Variables

We used 31 environmental variables for modeling, and these environmental variables
were shown to be directly related to R. opimus distribution in our earlier modeling [35]:

http://www.gbif.org
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19 bioclimatic factors, 9 soil factors, and 3 topographic factors. The climate data were
downloaded from the WorldClim database (http://worldclim.org, accessed on 19 October
2022), and the future climate scenarios were downloaded from the BCC-CSM (Beijing
Climate Center, China Meteorological Administration, Beijing, China). These scenarios
included those with low (SSP126), moderate (SSP245), and high (SSP585) emissions of
greenhouse gases [36]. The soil and topographic factor data were obtained from the
Harmonized World Soil Database (HWSD) of the Food and Agriculture Organization of
the United Nations (http://www.fao.org/faostat/en/#data, accessed on 19 October 2022),
with the spatial resolution of each factor set to 10 arc min [37].

The interactions between environmental factors can lead to collinearity issues during
modeling and subsequent overfitting [38]. First, variance inflation factor (VIF) analysis was
used to select the most important environmental variables. Second, R was used to conduct a
Pearson correlation analysis, reduce the complexity of the model, and improve its prediction
accuracy. Factors with a correlation less than 0.8 were preliminarily selected, and, from
those, factors with a VIF less than 10 were retained. Then, based on the Pearson correlation
test results, factors with a correlation coefficient less than 0.8 were retained, and factors
with correlation coefficients greater than 0.8 were omitted. A total of 18 environmental
variables were selected (Table 1).

Table 1. Environmental variables with their contributions and suitable value ranges.

Code Environmental Variable Variable Importance

bio16 Precipitation in wettest quarter 23.34
t_caco3 Topsoil calcium carbonate content 14.46
bio18 Precipitation in warmest quarter 13.94
t_teb Topsoil teb. 12.36
bio3 Isothermality 10.65
elev Elevation 7.27

t_cec_clay Topsoil CEC (CLAY) 4.77
bio19 Precipitation in coldest quarter 4.26
bio17 Precipitation in driest quarter 2.18
bio15 Precipitation seasonality 2.04

t_caco4 Topsoil gypsum content 1.00
slope Slope 0.99
bio5 Max. temperature 0.66
t_ece Topsoil salinity (Elco) 0.56

t_gravel Topsoil gravel content 0.43
t_oc Topsoil organic carbon 0.41

t_esp Topsoil sodicity (ESP) 0.37
t-sand Topsoil sand fraction 0.30

2.3. Model Construction

To reduce the modeling bias caused by the uncertainty inherent in models, we first
performed fitting with 10 single methods included in Biomod2: a generalized additive
model (GAM), a generalized boosted regression model (GBM), a general linear model
(GLM), a random forest (RF), the multivariate adaptive regression splines (MARS) method,
classification tree analysis (CTA), an artificial neural network (ANN), the surface range
envelope (SRE) method, flexible discriminant analysis (FDA), and the maximum entropy
(Maxent) method. Before constructing the model, it was necessary to process the species
distribution data. Biomod2 provides several methods to generate nonexistence (pseudoab-
sence) points from background research data [39]. The “random” command was used
to randomly generate 1200 pseudoabsence data points for model simulation. Then, the
“biomod_tuning” command was used to optimize the model parameters and select 70% of
the sample data for training. The remaining 30% of the sample data were used to verify the
performance of the model [40]. The resulting single models were evaluated using 3 metrics:
the true skill statistic (TSS), AUC, and kappa coefficient [41].

http://worldclim.org
http://www.fao.org/faostat/en/#data


Animals 2023, 13, 2341 5 of 11

Single models with accuracies that met the selected standard were integrated into
an ensemble model using a weighted average approach [42]. First, the results of the
single models used in the construction of the ensemble model were normalized so that the
predictions of single SDMs were in the range of [0, 1]. This process was repeated 10 times
to avoid random errors associated with the use of a single model. Then, the weights for
model combination were determined based on the AUC and TSS values of each model,
and the single models used to construct the ensemble model were determined with fixed
cutoffs of TSS > 0.7 and AUC > 0.8. The higher the average AUC and TSS values were
after multiple runs, the greater the weight assigned to the corresponding single model was
when it was incorporated into the ensemble model.

2.4. Changes in the Spatial Pattern of the Suitable Distribution Ranges of Species

The 0/1 probability value cutoff of “suitable” or “unsuitable” was obtained by running
the model. The spatial units with values below the cutoff were considered unsuitable
habitats, and the spatial units with values above the cutoff were divided into 3 equal parts,
corresponding to minimally, moderately, and highly suitable habitats [43]. Two time nodes,
namely, the middle of this century and the end of this century, were selected to analyze the
future suitable area changes of V. peregusna, and the average values from 2040–2060 (2050s)
and 2080–2100 (2090s) were calculated [44]. Based on the “binary_meth” operation in
Biomod2, we obtained the results of the suitable/unsuitable (0/1) simulation and used the
“biomod_rangesize” function to calculate the changes in the spatial pattern of the suitable
areas of R. opimus under future climate change scenarios [45]. Finally, the results, in matrix
format, were loaded into ArcGIS v10.4.1 for visual representation.

3. Results
3.1. Model Accuracy

Among the 10 models evaluated, only the GAM failed to run successfully due to the
difficulty in obtaining parameter values; the other 9 models were all run successfully, and a
total of 90 sets of results were obtained. The different models were compared (Figure S1),
and the GBM displayed the highest accuracy and the best stability for the three evaluation
metrics, suggesting that it was the best choice for assessing suitable habitats for V. peregusna
using a single model. Although higher scores were obtained for the FDA and RF models,
they each yielded one data anomaly in the calculation process. Moreover, low scores were
obtained for the other models, which failed to reach acceptable performance levels. From
the 90 sets of results, we selected a total of 39 eligible models to construct the ensemble
model. The final ensemble model yielded a kappa coefficient of 0.91, a TSS value of 0.94,
and an AUC value of 0.96, indicating excellent results.

3.2. Current Distribution Range

Suitable habitats for V. peregusna were found over almost all of Eurasia, except in a
few tropical areas in Southeast Asia. Based on the current climate scenario, the suitable
habitats for V. peregusna covered 3935.92 × 104 km2, of which moderately suitable habitats
accounted for 2415.17 × 104 km2, followed by low-suitability habitats (867.99 × 104 km2).
Highly suitable habitats accounted for the smallest area (652.76 × 104 km2). The highly
suitable habitats were mainly found in the following regions: (1) the plain area at the border
of China and Mongolia in the east, (2) the plateau area from the Orkhon River to Khangai
Mountain in the west–central part of Mongolia, (3) the area from 40 to 50◦ N from Bulgaria
and Ukraine in the west to the Junger Basin in China and the Siberian Plain in Russia in the
east, and (4) sporadic highly suitable habitats in Spain, Italy, Hungary, Poland, Lithuania,
Latvia, and the far east of Russia (Figure 2).
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3.3. Future Changes in Suitable Habitat Area

Based on the three future climate scenarios, the geographical distributions of moder-
ately and highly suitable habitats for V. peregusna were predicted to decrease to varying
degrees (Figure 3). Although the percentages of the increases and decreases differed in
various scenarios, the decrease in the area of suitable habitats for V. peregusna was much
larger than the corresponding increase in each scenario. The lost suitable habitats were
mainly in Europe, and most areas from northern to southern Europe were predicted to no
longer be suitable for V. peregusna survival, especially in several countries around the Black
Sea, where many V. peregusna have been recorded. Increases and decreases in the area of
suitable habitats were variable in other regions, with decreases occurring in the eastern
part of Saudi Arabia, in the border area between northeastern China and Russia, and on
the Western Siberian Plain. Regions with increases in the area of suitable habitats were
concentrated around the Ural Mountains in Russia, in the central and southern parts of the
Arabian Peninsula, in North China, and in central Xinjiang, China.

The predicted area changes in each scenario indicated that both SSP126 and SSP585 in
the middle of this century will result in extensive losses of moderately and highly suitable
habitats for V. peregusna (Table 2), with the lost area exceeding 900 × 104 km2, accounting
for 30% of the area of existing suitable habitats. In comparison, the case of SSP245 was
relatively optimistic, but the lost area still reached 646 × 104 km2, which was 21.06% less
than that in the current period. At the end of this century, SSP245 is projected to be the
scenario with the most severe decrease in the area of suitable habitats for V. peregusna, and
the species range is predicted to decrease to only two-thirds of the existing distribution
area, with a loss of 35.83% of suitable habitat. SSP126 is the most optimistic scenario for
habitat suitability based on the predicted results. Notably, the percentages of area gain and
loss for V. peregusna habitats are projected to be 5.89% and 11.91%, respectively, with an
overall change of only 11.91%. The change in the area of suitable habitat under SSP585 is
predicted to be stable at the end of this century, and the increases and decreases in suitable
habitat area are expected to be consistent with those at 50◦ S.
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Table 2. Changes in moderately and highly suitable areas for V. peregusna in different climate scenarios
in the future.

Periods Climate
Scenario

Suitable Habitat Area
(×104 km2)

Loss
(×104 km2)

Stable
(×104 km2)

Gain
(×104 km2)

Species Range
Change (%)

Percentage
Loss (%)

Percentage
Gain (%)

Current 3067.93
2050 SSP126 2226.43 978.64 2089.29 137.14 −27.43 31.90 4.47

SSP245 2553.79 646.18 2421.75 132.04 −16.76 21.06 4.30
SSP585 2226.66 926.29 2141.64 85.02 −27.42 30.19 2.77

2090 SSP126 2702.43 546.16 2521.77 180.66 −11.91 17.80 5.89
SSP245 2038.78 1099.21 1968.72 70.06 −33.55 35.83 2.28
SSP585 2213.48 978.59 2089.34 124.14 −27.85 31.90 4.05

4. Discussion

In general, species ecological niches evolve at a much slower rate than climate
change [46], and species respond to rapid climate change by dispersing to new suitable
habitats, adapting, or becoming extinct [47]. Despite the widespread distribution of V.
peregusna in Eurasia, it is alarming that our assessment indicated that a 12 to 34% decrease
in the suitable habitats for V. peregusna may occur in the coming decades, implying that the
survival of V. peregusna may be severely affected by climate change; this trend is largely
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associated with the extremely low number of V. peregusna per unit area of distribution and
the poor migratory capacity of the species [19]. However, the future predictions obtained
with the model in this study are relatively uncertain. Our results only indicate the probabil-
ity of potential occurrence and do not represent real changes in the species distribution or
habitat area [48]. In addition to the environment, the main factors affecting the distribution
of the species include various biological and nonbiological factors, such as competition,
disease, and human disturbances [49].

In contrast to the results of ecological niche modeling studies for other species [50,51],
the modeling results for V. peregusna in this study did not show a clear pattern of response
to different climatic scenarios, i.e., no shift of suitable habitats to higher latitudes or a
significant decrease in the area of suitable habitats with increasing temperature. Surpris-
ingly, the moderate carbon emission concentration at the end of this century is projected
to result in the largest decrease in the suitable area for V. peregusna. We speculate that the
reason for this result is directly related to the unique living habits of V. peregusna and the
selection of environmental factors retained in the model. V. peregusna is the only mustelid
animal that hibernates [25], and its food sources are predominantly rodents and lizards.
Precipitation and soil factors accounted for more than 80% of the environmental influence
in the modeling process, and temperature parameters, which were most influenced by
changes in climate scenarios, accounted for only 0.66% of the influence in the ensemble
model. Although it did not have a direct impact, climate change still had a substantial
effect on the suitable habitats of V. peregusna, indicating that current wildlife conservation
efforts face serious challenges and that it is necessary to pay increased attention to climate
change to avoid species extinction.

To enhance biodiversity conservation, we recommend the following two measures
to ensure that V. peregusna will not become an endangered species in the future. First, for
regions with low climate impacts, the protection of V. peregusna should be strengthened,
human interference and the use of anticoagulant rodenticides should be reduced, in situ
protection should be enhanced, nature reserves should be established as soon as possible,
and the hunting and trading of wild animals should be closely monitored. Second, for
regions with relatively fragile climates, it is necessary to strengthen captive management,
tentatively adopt ex situ conservation measures, promote domestication and breeding, and
implement overall population resource monitoring.

The IUCN Red List is the most widely used wildlife conservation standard and
reference for prioritizing conservation and ecological research [52], and the accuracy of Red
List assessments has global implications [53]. IUCN assessments primarily consider the
current drivers of species declines, such as population fluctuations and human pressure on
populations and their suitable habitats, without adequately identifying potential future
risks, such as threats posed by climate change [54,55]. Combined with studies of other
listed species [56–58], we suggest that the IUCN consider the threats posed by climate
change in future assessment efforts and incorporate distribution changes resulting from
climate change into the assessment metrics for Red List species.

With the ensemble model, we effectively mitigated overfitting and improved the accu-
racy of predictions, but it is undeniable that the use of models to study species distributions
has certain limitations. First, the results of the model are species distribution predictions,
not the actual distribution of a species [59]. Second, the reproduction and migration of
species are complex and dynamic processes. Natural disasters, human activities, and
intraspecific competition are also important factors that influence species distributions. No
existing prediction model can capture interspecies competition well. In this study, we only
considered environmental factors, and this limitation may have affected the prediction
accuracy to a certain extent. Third, too sparse a sample size can lead to errors in the predic-
tion results of ecological niche models; therefore, further global co-operation is required to
improve the ability to assess and protect wildlife through data sharing.
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5. Conclusions

This study applied the ensemble model to evaluate the spatial distribution of the
potential habitat of the endangered species V. peregusna in Eurasia and the effects of future
climate change on its habitat suitability. The results showed that GBM is the best single
model for predicting suitable habitats for V. peregusna, and the ensemble model showed
higher accuracy and stability than single models. Under current conditions, the area of
suitable habitats for V. peregusna has reached 3935.92 × 104 km2, making it a species with a
wide distribution range. In the future, climate change will severely affect the distribution
and substantially reduce the area of suitable habitats for V. peregusna, thus posing an
extremely serious challenge to the conservation of V. peregusna. These findings are expected
to support the development of practical solutions to prevent the extinction of V. peregusna
populations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani13142341/s1, Supplementary Table S1: Distribution points
of Vormela peregusna; Supplementary Figure S1: Comparison of AUC, kappa coefficient, and TSS
evaluations of 9 models.
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