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Simple Summary: From an economic point of view, timely information about the flock state is crucial
for poultry farmers. When a flock is infected with a disease, if quick and necessary measures are not
taken, the disease will spread and affect the whole flock. Artificial intelligence is one of the popular
methods in precision livestock farming and is effective in various fields such as weight measurement,
feed intake estimation, and disease diagnosis. So far, chicken disease has been diagnosed using sound
signal processing and video recordings. This study attempted to develop a new and rapid method of
poultry disease diagnosis based on thermography for data collection and artificial intelligence for
data analytics. With the proposed method, Avian Influenza and Newcastle Disease can be detected
within 24 h after virus infection.

Abstract: Non-invasive measures have a critical role in precision livestock and poultry farming
as they can reduce animal stress and provide continuous monitoring. Animal activity can reflect
physical and mental states as well as health conditions. If any problems are detected, an early
warning will be provided for necessary actions. The objective of this study was to identify avian
diseases by using thermal-image processing and machine learning. Four groups of 14-day-old Ross
308 Broilers (20 birds per group) were used. Two groups were infected with one of the following
diseases: Newcastle Disease (ND) and Avian Influenza (AI), and the other two were considered
control groups. Thermal images were captured every 8 h and processed with MATLAB. After de-
noising and removing the background, 23 statistical features were extracted, and the best features
were selected using the improved distance evaluation method. Support vector machine (SVM) and
artificial neural networks (ANN) were developed as classifiers. Results indicated that the former
classifier outperformed the latter for disease classification. The Dempster–Shafer evidence theory
was used as the data fusion stage if neither ANN nor SVM detected the diseases with acceptable
accuracy. The final SVM-based framework achieved 97.2% and 100% accuracy for classifying AI and
ND, respectively, within 24 h after virus infection. The proposed method is an innovative procedure
for the timely identification of avian diseases to support early intervention.

Keywords: avian disease; poultry; precision livestock farming; machine learning; thermography

1. Introduction

A modern broiler house accommodates tens of thousands of animals, and the number
is more for layer houses. The high rearing stocking density is favorable for economic profits
but increases the risks of bacterial/virus transmission and causing diseases [1]. For instance,
the USDA Animal and Plant Health Inspection Service reported that by 18 May 2023, a

Animals 2023, 13, 2348. https://doi.org/10.3390/ani13142348 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani13142348
https://doi.org/10.3390/ani13142348
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0002-2536-3305
https://orcid.org/0000-0001-7624-8051
https://doi.org/10.3390/ani13142348
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani13142348?type=check_update&version=1


Animals 2023, 13, 2348 2 of 16

total of 325 commercial flocks, 511 backyard flocks, and 58.79 million birds were affected by
the highly pathogenic Avian Influenza (HPAI) outbreak [2]. The outbreak severely struck
the low-profit-margin poultry industry and led to economic loss for producers. Optimal
strategies that help ameliorate the threat of emerging diseases in the poultry industry must
include rapid and accurate health assessment, so producers can intervene timely to prevent
severe outbreaks.

Manual observation methods are not suitable for this task, as most caretakers are
not qualified to diagnose health problems, and they need to identify the issue if there is
a potential challenge occurring and then call veterinarians for sampling and diagnosing.
Furthermore, clinical signs such as diarrhea and nasal discharge, and other complication
symptoms can appear in multiple diseases (e.g., Newcastle Disease “ND”, AI, and fowl
cholera) [3], making it difficult to pinpoint from visual observation and provide corre-
sponding treatment. Common methods to assess bird health consist of on-site sampling
and subsequent disease diagnosis at a laboratory, which can take several days to receive
a diagnosis and requires skilled laboratory operators and veterinarians [4]. Delayed dis-
ease diagnosis may lead to the disease progressing to the point where the symptoms are
widespread and pronounced [5].

Alternative solutions are to use precision livestock and poultry techniques, as they
could provide timely and accurate disease diagnosis results [6]. Automated monitoring
systems have brought benefits to farm production management and improvement in an-
imal health and welfare [7–9]. Among the wide range of techniques, sound recognition
and computer vision systems are popular tools to investigate animal health and welfare
status and identify animal behavior and internal situation; they are non-invasive for data
collection, ensuring continuous animal monitoring without disturbing [10–14]. Animals
use vocalization to express conditions such as warning, alarm, nesting, threat, distress,
fear, food, privacy, dominance, and time calls [15,16]. Despite being a useful tool, sound
recognition requires microphones placed close to animals to collect accurate audio signals
for processing. Close placement of the microphones could result in dust accumulation and
damage pecked by birds [17,18]. Instead, computer vision systems are typically installed
far from animals, resulting in less dust and dirt accumulation and damage to the equip-
ment. Previous studies have investigated computer vision techniques for disease diagnosis.
Minna et al. (2018) identified the sick yellow feather chicken based on head features (e.g.,
eye and comb) in captured images with the support vector machine (SVM) classifier. The
final accuracy of classifying healthy and sick birds was 92.5% [19]. Zhuang et al. (2018)
developed an early warning algorithm to detect H5N2 AI for broilers based on their out-
lines and skeleton information gained from images. They also applied an SVM classifier
and obtained 99.46% accuracy for disease recognition [20]. Okinda et al. (2019) designed a
machine vision system to detect and predict healthy and sick birds infected with Newcastle
Disease Virus. The SVM classifier improved with the Radial Basis Function, achieved 97%
accuracy for the disease prediction [21]. Akmomolafe and Medeiros (2021) showed that
Avian Influenza and Newcastle Disease Virus can be detected using a convolutional neural
network classifier with classification accuracy ranging from 95% to 98% [22]. The above-
mentioned studies utilized features of spatial variations on single images and temporal
changes in bird mobility across multiple frames. Another set of computer vision-based dis-
ease recognition is based on feces image which can reflect important features for digestive
diseases. Wang et al., (2019) classified normal and abnormal birds based on shape, color,
water content, and shape and water in the dropping images. They developed deep learning
object detection algorithms (R-CNN and YOLO-V3) for the classification and gained the
best mean average precision of 93.3% [23].

Although these studies show great potential for combing computer vision systems
and machine learning for poultry disease recognition, few focused on the combination
of thermography and machine learning. Animals, if infected with diseases, may exhibit
irregular body temperature, which could be captured by thermography [24,25]. Therefore,
the aim of this study was to identify avian diseases using thermography image processing
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and machine learning. The ND and AI were used as examples to evaluate system efficacy
and accuracy as they are popular and fatal diseases in the poultry industry.

2. Materials and Methods
2.1. Experiment Setup

The experiments were carried out at Tarbiat Modares University, Tehran, Iran. The ND
virus’s molecular-and-pathological characterization was carried out at RAZI Institute, Karaj,
Iran. The ND Virulence type was velogenic strains, and ND tropism was viscerotropism.
The AI virus type was H9N2. Twenty 14-day-old Ross 308 broilers were raised in 20 exper-
imental pens (1.20 m long × 0.80 m wide for each), and four groups of birds were used,
with each kept in a separate room. Two groups of birds were infected with ND and AI,
respectively, by eye drops (0.1 cc for each eye). Figure 1a shows the operations of virus
infection for a chicken. The rest two were considered control groups. Each group of birds
was kept in separate pens in a room meshed with stainless steel wire, allowing all birds to
see each other (Figure 1b). Separating birds into independent can help better understand
the disease infection progress, as group-housed birds can be cross-contaminated.

Animals 2023, 13, x FOR PEER REVIEW 3 of 17 
 

irregular body temperature, which could be captured by thermography [24,25]. Therefore, 
the aim of this study was to identify avian diseases using thermography image processing 
and machine learning. The ND and AI were used as examples to evaluate system efficacy 
and accuracy as they are popular and fatal diseases in the poultry industry. 

2. Materials and Methods 
2.1. Experiment Setup 

The experiments were carried out at Tarbiat Modares University, Tehran, Iran. The 
ND virus’s molecular-and-pathological characterization was carried out at RAZI Institute, 
Karaj, Iran. The ND Virulence type was velogenic strains, and ND tropism was viscerotro-
pism. The AI virus type was H9N2. Twenty 14-day-old Ross 308 broilers were raised in 20 
experimental pens (1.20 m long × 0.80 m wide for each), and four groups of birds were 
used, with each kept in a separate room. Two groups of birds were infected with ND and 
AI, respectively, by eye drops (0.1 cc for each eye). Figure 1a shows the operations of virus 
infection for a chicken. The rest two were considered control groups. Each group of birds 
was kept in separate pens in a room meshed with stainless steel wire, allowing all birds 
to see each other (Figure 1b). Separating birds into independent can help better under-
stand the disease infection progress, as group-housed birds can be cross-contaminated. 

 
Figure 1. Photos of the experiment: (a) Eye drop operation for virus infection; and (b) pen scenarios. 

The virus infection was verified based on clinical signs, RT-PCR test, and virus isola-
tion from infected tissues. The RT-PCR test was conducted using protocol 2, which was 
described in [26]. Birds needed feed and water intake during the first 8 h after the lights 
were turned on, and bird infection was conducted after that to avoid bird stress. A total of 
seven sections were planned. Section 1 indicates the 8th hour after disease infection, Sec-
tion 2 indicates the 16th hour after disease infection, …, and Section 7 indicates the 56th 
hour after disease infection. 

Thermal images were captured using a FLIR a65 thermal camera with a resolution of 
640 × 512 pixels. The camera has good performance within the ambient temperature of 
−25 to 135 °C (Figure 2a). The captured images were loaded into FLIR Tools software ver-
sion 4.1 to remove background (Figure 2b), and then the preprocessed images were further 
enhanced in MATLAB 2020 (Math works Ins., Natic, MA, USA). No existing packages 
were used in the following sections, and all steps were coded with the listed formulas. 
The total number of chickens was 80 (40 birds for ND and control samples and 40 birds 
for AI and control samples), and 240 thermal images were collected from each section 
(three images were taken from each bird). The experiment was performed within three 
consecutive days after virus infection. The emissivity of thermography and distance 

Figure 1. Photos of the experiment: (a) Eye drop operation for virus infection; and (b) pen scenarios.

The virus infection was verified based on clinical signs, RT-PCR test, and virus isola-
tion from infected tissues. The RT-PCR test was conducted using protocol 2, which was
described in [26]. Birds needed feed and water intake during the first 8 h after the lights
were turned on, and bird infection was conducted after that to avoid bird stress. A total
of seven sections were planned. Section 1 indicates the 8th hour after disease infection,
Section 2 indicates the 16th hour after disease infection, . . . , and Section 7 indicates the
56th hour after disease infection.

Thermal images were captured using a FLIR a65 thermal camera with a resolution of
640 × 512 pixels. The camera has good performance within the ambient temperature of
−25 to 135 ◦C (Figure 2a). The captured images were loaded into FLIR Tools software
version 4.1 to remove background (Figure 2b), and then the preprocessed images were
further enhanced in MATLAB 2020 (Math works Ins., Natic, MA, USA). No existing
packages were used in the following sections, and all steps were coded with the listed
formulas. The total number of chickens was 80 (40 birds for ND and control samples
and 40 birds for AI and control samples), and 240 thermal images were collected from
each section (three images were taken from each bird). The experiment was performed
within three consecutive days after virus infection. The emissivity of thermography and
distance between the camera and birds were 0.95 and 50 cm, respectively. The close-distance
data collection can be achieved by movable robotic systems once available. As ambient
temperature and relative humidity could influence the accuracy of thermography, they
were measured for each image using a digital temperature humidity meter (Figure 3).
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The proposed algorithm framework to identify avian diseases (ND and AI) based
on thermal images and machine learning is shown in Figure 4. The thermal images of
chickens were captured by FLIR camera and preprocessed in FLIR software and Matlab 2020
software. The preprocessing steps included de-noising, background removal, and image
enhancement (erosion and dilation) using Image Region Analyzer and Image Segmenter
toolbox. In the data mining step, 23 statistical features were extracted from each image, and
the best features were selected. The best features were considered as inputs of the machine
learning classifier (SVM and ANN). The outputs of the classifiers were improved by the
Dempster–Shafer (D-S) evidence theory, after which the diseases were detected.

Deep learning-based techniques, such as convolutional neural networks, can process
thermal images directly without feature extraction but require large number of images to
obtain robust performance, which we did not have in this study. Instead, extracting the
features from thermal images followed by classical machine learning modeling can help us
better understand which features are important to gain accurate performance with small
datasets. The machine learning-based methods were also GPU-free (without graphical
processing units), which could be economically friendly for poultry producers as well.
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2.2. Feature Extraction and Selection

The raw data contained relatively little information for classification and were not
used directly as input for the classifiers. Therefore statistical features were extracted based
on intensity information on thermal images. Table 1 shows the formulas for calculating the
23 statistical features, in which x(n) is the intensity for data points n on a thermal image
(n = 1, 2, . . . , N) [27].

Table 1. Formulas to extract features from chicken thermal images.

The Name of Feature Formula for the Feature The Name of Feature Formula for the Feature

Mean F1 = ∑N
n=1 x(n)

N Geometric mean F13 = N

√
N
∏

n=1
x(n)

Maximum F2 = max|x(n)| Correlation coefficient F14 = F3
F2
× 100

Standard deviation (std) F3 =

√
∑N

n=1(x(n)−F1)
2

N−1
The average deviation from

the mean F15 =
N
∑

n=1

(|x(n)|−F1)
N

Quadratic mean square F4 =

(
∑N

n=1

√
|x(n)|

N

)2
Skewness F16 = ∑N

n=1(x(n)−F1)
3

F3
3

Root mean square F5 =

√
∑N

n=1(x(n))2

N Kurtosis
F17 = ∑N

n=1(x(n)−F1)
3

(N−1)(F3)
4

Third central moment divided
by the std F6 = F18

F3
3

The third central moment F18 = 1
N

N
∑

n=1
(x(n)− F2)

3

Crest factor F7 = F2
F5

The fourth central moment F19 = 1
N

N
∑

n=1
(x(n)− F2)

4

Maximum divided by the
Quadratic mean square F8 = F2

F4
The fifth central moment F20 = 1

N

N
∑

n=1
(x(n)− F2)

5

Root mean square divided by
the mean F9 = F5

F1
The sixth central moment F21 = 1

N

N
∑

n=1
(x(n)− F2)

6

Impulse factor F10 = F2
1
N ∑N

n=1|x(n)|

The fourth central moment
divided by the square of the

variance
F22 = F19

(F11)
2

Variance F11 = ∑N
n=1(x(n)−F1)

2

N−1 The sum of squares F23 =
N
∑

n=1
(x(n))2

Harmonic mean F12 = N
∑N

n=1
1

x(n)



Animals 2023, 13, 2348 6 of 16

The 23 features, if all fed into the classifiers, could increase model complexity. So, the
improved distance evaluation (IDE) procedure has been used for feature dimensionality
reduction. Seven steps shown in Figure 5 should be conducted to execute the IDE. Firstly,
the mean distance and variance must be computed for intra-class and inter-class. Then,
in the fifth step, the reward factor was computed. The best features included the largest
intra-class and the lowest inter-class differences. Based on that, the sixth step was to
calculate the difference scores of intra-class and inter-class, which was normalized in the
seventh step. Finally, the best features were selected based on an arbitrary threshold [28].
The threshold is determined in Section 3.1.
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2.3. Artificial Neural Network

The ANNs are biologically-inspired computer programs designed to simulate the
way in which a human brain processes information. The ANN included an input layer,
a hidden layer, and an output layer (Figure 6). Each layer was connected with neurons,
and the number of neurons in the input layer was determined by the number of the best
features selected by IDE. The number of classes determined the number of neurons in the
output layer, and the number of neurons in the hidden layer was decided by trial and error
during model training. Various ANNs have been applied in classification, regression, and
modeling [29]. The optimal ANN was used to detect avian diseases in this study.
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2.4. Support Vector Machine

The SVM is a robust classifier first introduced by Cortes and Vapnic in 1995, building
the statistical learning theory [30]. The SVM intends to maximize the margin between the
two classes. Separating classes using a hypothetical hyperplane is the main idea. Some
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hyperplanes include the linear, quadratic, and Gaussian Radial Basic Function (RBF) [31].
Figure 7a shows the optimal margin in a linear hyperplane [32], and Figure 7b shows
the RBF hyperplane [33]. The SVM was initially introduced for binary classification (two
classes) and then applied to solve multiclass problems. The RBF was selected for the
hyperplane in the SVM due to its optimal performance [34].
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2.5. Dempster–Shafer Evidence Theory

The D-S evidence theory was first proposed by Dempster and further developed
and refined by Shafer [35]. The D-S has been used in fault diagnosis [36] and disease
diagnosis [27]. This theory investigates aspects connected with uncertainty and lack of
knowledge and is favorable for solving real-life problems [37]. In this study, whenever
ANN and SVM cannot detect the diseases with acceptable accuracy, the D-S will be used in
data fusion stage.

2.6. Classifier Evaluation Metrics

The metrics to evaluate the developed models included Sensitivity, Specificity, Train-
ing, and Testing accuracy for healthy (“acc_healthy”) and unhealthy (“acc_unhealthy”)
birds. True Positive, False Positive, True Negative, and False Negative are defined in
Table 2 based on a confusion matrix and were calculated to determine the evaluation
metrics. The calculation procedures of sensitivity, specificity, and accuracy are presented in
Equations (1)–(6).

True Positive Rate =
TP

TP + FN
(1)

False Positive Rate =
FP

FP + TN
(2)

Sensitivity = True Positive Rate =
TP

TP + FN
(3)

Specificity = 1− False Positive Rate = 1− FP
FP + TN

=
FP + TN− FP

FP + TN
=

TN
FP + TN

(4)

acc_unhealthy =
TP

TP + FP
(5)

acc_healthy =
TN

TN + FN
(6)

Testing or Trainging accuracy =
acc_unhealthy + acc_healthy

2
(7)
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Table 2. Definitions for True Positive (TP), False Positive (FP), True Negative (TN), False Negative
(FN), and actual condition and predicted condition.

Actual Condition

Unhealthy Healthy

Predicted condition
Unhealthy TP FP

Healthy FN TN

3. Results
3.1. Data-Mining Results

In this stage, 23 statistical features were extracted from all raw data collected. The AI
infection group and the corresponding control group were defined as Group A; the ND
infection group and the corresponding control group were defined as Group B. Each feature
was scored by IDE, and the best features, which had the most scores, were selected. The
outputs of IDE were used as inputs of the classifiers. Tables 3 and 4 show the feature scores
for Groups A and B, respectively. The best threshold for Group A is 0.7 because there was a
significant difference between 0.7 and other lower threshold limits. A closer-to-one value
indicates better feature quality for classification. So, all features with scores of 0.7 or higher
were favorable for classification for Group A. Therefore, F2 (maximum), F4 (quadratic
mean square), F9 (root mean square divided by the mean), F21 (the sixth central moment),
and F22 (the fourth central moment divided by the square of the variance), which had the
feature score of over 0.7 in all seven sections, were selected to identify the AI disease.

Table 3. Feature scores of Group A (AI infection group + corresponding control group).
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F21 1.000 F22 1.000 F21 1.000 F12 1.000 F12 1.000 F22 1.000 F22 1.000
F2 0.835 F21 0.938 F2 0.882 F22 0.959 F14 0.848 F12 0.979 F12 0.904
F4 0.835 F4 0.925 F4 0.882 F14 0.864 F22 0.838 F2 0.915 F2 0.817

F22 0.764 F2 0.925 F22 0.881 F7 0.774 F7 0.832 F4 0.915 F4 0.817
F9 0.761 F12 0.874 F9 0.755 F8 0.774 F8 0.832 F14 0.910 F14 0.803

F23 0.597 F14 0.830 F12 0.680 F6 0.751 F6 0.804 F21 0.889 F19 0.795
F1 0.497 F9 0.758 F3 0.677 F15 0.751 F20 0.804 F7 0.851 F21 0.761
F3 0.497 F3 0.702 F14 0.646 F20 0.751 F15 0.804 F8 0.851 F7 0.740

F16 0.494 F6 0.584 F23 0.638 F2 0.703 F5 0.753 F6 0.822 F18 0.598
F17 0.491 F15 0.584 F7 0.497 F4 0.703 F2 0.656 F15 0.822 F10 0.597
F12 0.472 F20 0.584 F8 0.497 F21 0.578 F4 0.656 F20 0.822 F6 0.590
F14 0.455 F7 0.562 F16 0.494 F10 0.431 F23 0.654 F5 0.812 F15 0.590
F18 0.385 F8 0.562 F5 0.479 F5 0.489 F10 0.408 F9 0.771 F20 0.590
F19 0.323 F5 0.525 F6 0.477 F9 0.468 F11 0.330 F3 0.756 F13 0.583
F11 0.363 F23 0.576 F20 0.477 F23 0.456 F21 0.521 F11 0.456 F9 0.549
F10 0.343 F11 0.320 F15 0.477 F11 0.381 F3 0.490 F10 0.451 F3 0.467
F7 0.258 F10 0.309 F11 0.308 F3 0.385 F9 0.477 F16 0.443 F8 0.459
F8 0.258 F16 0.439 F10 0.298 F1 0.365 F19 0.304 F13 0.282 F1 0.447
F5 0.242 F17 0.251 F17 0.370 F19 0.203 F18 0.206 F23 0.266 F11 0.590
F6 0.232 F1 0.089 F1 0.363 F18 0.157 F1 0.168 F17 0.236 F5 0.422

F15 0.232 F18 0.081 F18 0.232 F16 0.106 F16 0.166 F19 0.091 F17 0.312
F20 0.232 F13 0.056 F19 0.141 F13 0.058 F17 0.021 F1 0.070 F23 0.032
F13 0.078 F19 0.019 F13 0.120 F17 0.038 F13 0.017 F18 0.024 F16 0.008

Note: The bold font indicates selected features for each section.
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Table 4. Feature score for Group B (ND infection group + corresponding control group).
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F16 1.000 F16 0.987 F16 1.000 F17 1.000 F13 1.000 F16 1.000 F16 1.000
F9 1.000 F9 0.943 F2 0.985 F16 0.976 F2 0.943 F3 0.987 F9 0.939
F3 0.988 F17 0.845 F9 0.965 F2 0.943 F9 0.871 F9 0.947 F3 0.906

F17 0.929 F3 0.813 F3 0.897 F9 0.880 F16 0.869 F17 0.911 F17 0.815
F21 0.858 F5 0.805 F17 0.888 F3 0.878 F3 0.845 F2 0.891 F2 0.809
F4 0.816 F2 0.803 F19 0.812 F19 0.868 F23 0.543 F5 0.699 F1 0.687
F1 0.816 F6 0.683 F18 0.684 F23 0.774 F17 0.427 F8 0.674 F4 0.687
F2 0.810 F15 0.683 F5 0.523 F21 0.757 F12 0.356 F7 0.674 F14 0.655
F5 0.802 F20 0.683 F8 0.513 F4 0.720 F22 0.337 F21 0.643 F5 0.636
F6 0.654 F1 0.662 F7 0.513 F1 0.720 F19 0.335 F6 0.629 F15 0.635

F15 0.654 F4 0.662 F6 0.509 F5 0.696 F18 0.310 F20 0.629 F6 0.635
F20 0.654 F21 0.660 F15 0.509 F8 0.679 F11 0.450 F15 0.629 F20 0.635
F7 0.645 F8 0.652 F20 0.509 F7 0.679 F14 0.232 F19 0.623 F7 0.605
F8 0.645 F7 0.652 F23 0.457 F6 0.643 F21 0.198 F14 0.616 F8 0.605

F22 0.636 F14 0.620 F11 0.450 F15 0.643 F7 0.191 F1 0.610 F21 0.583
F19 0.617 F19 0.620 F13 0.393 F20 0.643 F8 0.191 F4 0.610 F22 0.519
F14 0.615 F22 0.618 F14 0.371 F14 0.581 F15 0.169 F23 0.546 F12 0.503
F12 0.572 F12 0.618 F1 0.318 F22 0.560 F20 0.169 F22 0.513 F19 0.462
F23 0.542 F23 0.467 F4 0.318 F12 0.506 F6 0.169 F12 0.480 F11 0.450
F11 0.450 F18 0.461 F12 0.310 F11 0.450 F1 0.156 F11 0.450 F23 0.434
F13 0.309 F11 0.450 F10 0.218 F13 0.270 F10 0.156 F13 0.261 F13 0.375
F10 0.284 F10 0.134 F22 0.214 F10 0.197 F4 0.156 F10 0.243 F18 0.268
F18 0.272 F13 0.095 F21 0.180 F18 0.196 F5 0.146 F18 0.239 F10 0.209

Note: The bold font indicates selected features for each section.

Based on Table 4, the best threshold for Group B was 0.8 because there was a significant
difference between 0.8 and other lower threshold limits. The F2 (maximum), F3 (standard
deviation), F9 (root mean square divided by the mean), F16 (Skewness), and F17 (kurtosis),
which had a feature score of over 0.7 in all seven sections, were selected to identify the
ND disease.

The thresholds (0.7 for Group A and 0.8 for Group B) were selected manually based
on the analysis of the feature scores. For Group A, the difference between the scores for
Section 3 and Section 5 does not look significant (same for Group B, Section 4). But most of
the feature scores fall into the set thresholds. We wanted to keep consistent thresholds for
all groups.

3.2. Classifier Performance

This study included 120 thermal images for each group. Table 5 shows the number of
thermal images and data splitting for the ANN and SVM development. The data splitting
for ANN was 70% for training, 15% for cross-validation, and 15% for testing. The splitting
for SVM was 70% for training and 30% for testing. The classifiers were cross-validated, and
the average performance was reported. The performance was also used to determine the
model parameters, such as Sigma and C for SVM and the number of neurons in the hidden
layer for ANN.
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Table 5. The number of thermal images for each group.

Group Classifier Number of Thermal Images Training Validation Testing

A or B
ANN 120 84 18 18
SVM 120 84 0 36

Note: ANN is artificial neural network; SVM is support vector machine.

3.2.1. ANN Performance

As the outputs of IDE were five features for both groups of AI and ND, the number of
neurons in the input layer was five, the number of neurons in the output layer was two
(because each group had two classes), and the number of neurons in the hidden layer was
determined as eight for AI and seven for ND based on the evaluation metric performance.
Table 6 shows the ANN performance to detect the AI for all the times for data collection
(sections) with the structure of 5 × 8 × 2. The testing accuracy of ANN to detect AI in
Section 1 (the 8th hour after virus infection) was 70.37%, while its validation accuracy was
75.93%. Finally, this accuracy reached 100% in Section 7 (the 56th hour after virus infection).
The acceptable accuracy of 92.59% was obtained in Section 4. The Specificity in Section 3
or later was 100% which means the ANN did not diagnose any True Positives (the real
sickness) as healthy. The Sensitivity in Section 4 was 85.71%, indicating that the classifier
cannot accurately exclude False Negative (wrongly identifying healthy birds as unhealthy).

Table 6. Detection of Avian Influenza using thermal images and ANN.

Disease Classifier The Time for
Data Collection

Validation
Accuracy (%)

Testing
Specificity

Testing
Sensitivity (%)

Training
Accuracy (%)

Testing
Accuracy (%)

Avian
Influenza
(AI or Flu) A

N
N

St
ru

ct
ur

e:
5
×

8
×

2 Section 1 75.93 93.33 41.67 74.60 70.37
Section 2 72.22 71.43 69.23 81.35 70.37
Section 3 92.59 100.00 69.44 84.52 79.63
Section 4 98.15 100.00 85.71 93.65 92.59
Section 5 94.44 100.00 85.71 96.83 92.59
Section 6 98.15 100.00 90.63 94.44 94.44
Section 7 100.00 100.00 100.00 100.00 100.00
Note: The highlighted section indicates the earlier time for successful disease detection.

Table 7 shows the ANN performance to detect the ND for all the times for data
collection (sections) with the structure of 5 × 7 × 2. The test accuracy of ANN to detect
ND was 68.52% in Section 1 and 100% in Section 5. In all sections, the specificity was
higher than sensitivity which means that the main problem of ANN was to misdiagnose
the healthy birds as unhealthy.

Table 7. Detection of Newcastle Disease using thermal images and ANN.

Disease Classifier The Time for
Data Collection

Validation
Accuracy (%)

Testing
Specificity (%)

Testing
Sensitivity (%)

Training
Accuracy (%)

Testing
Accuracy (%)

Newcastle
Disease

(ND) A
N

N
St

ru
ct

ur
e:

5
×

7
×

2 Section 1 68.52 77.78 59.26 74.21 68.52
Section 2 87.04 72.73 75.00 78.57 74.07
Section 3 74.07 86.96 77.42 83.33 81.48
Section 4 62.96 64.29 53.85 69.05 59.26
Section 5 100.00 100.00 100.00 100.00 100.00
Section 6 92.59 85.71 63.16 89.68 77.78
Section 7 92.59 83.33 83.33 87.30 83.33

Note: The highlighted section indicates the earlier time for successful disease detection.
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3.2.2. SVM Performance

The outputs of IDE were used as inputs of SVM. The kernel function of RBF and
the solver of Sequential Minimal Optimization and Sigma (σ) of 1 were selected as key
parameters for SVM (Table 8). The box constraint was 5 for AI prediction and 10 for
ND classification.

Table 8. SVM core parameters for the prediction of Avian Influenza (AI) and Newcastle Disease (ND).

Group Kernel Function σ Solver Box Constraint (C)
AI Radial Basic

Function
1

Sequential Minimal
Optimization

5
ND 10

Table 9 shows the SVM performance to detect the AI in all sections. The classifier
obtained 97.22% testing accuracy in Section 3 (the 24th hour after virus infection). The
testing accuracy dropped to 77.78% in Section 4 but rebounded to over 94% after Section 5.
In comparison, the ANN achieved 100% testing accuracy in Section 4 for classifying AI.
The performance discrepancy may be due to the lack of classification ability for SVM in
Section 4, where the D-S evidence theory was introduced to improve AI classification
accuracy. The D-S evidence theory is applied in Section 3.3.

Table 9. Detection of Avian Influenza using thermal images and SVM.

Disease Classifier The Time for
Data Collection

Validation
Accuracy (%)

Testing
Specificity (%)

Testing
Sensitivity (%)

Training
Accuracy (%)

Testing
Accuracy (%)

Avian
Influenza
(AI or Flu) SV

M
(s

ig
m

a
=

1
&

C
=

5) Section 1 86.11 83.33 88.89 88.10 86.11
Section 2 86.11 78.26 100.00 88.10 86.11
Section 3 97.22 94.74 100.00 90.48 97.22
Section 4 77.78 72.73 85.71 95.24 77.78
Section 5 97.22 94.74 100.00 94.05 97.22
Section 6 94.44 90.00 100.00 95.24 94.44
Section 7 100.00 100.00 100.00 100.00 100.00

Note: The highlighted section indicates the earlier time for successful disease detection.

Table 10 shows the SVM performance to detect the ND in all sections. In Section 1,
the overall testing accuracy was 80.56%, related to the high sensitivity (100.00%). In
Section 2, the overall testing accuracy even dropped to 78.77%. Similarly, the ANN had low
testing accuracy of 74.07% in identifying ND in Section 2 (Table 7). These all indicated the
difficulties in accurate ND diagnosis within the 16 h of the disease infection. Parts of the
reasons can be found in feature scores calculated by IDE in Tables 3 and 4, where the feature
scores in Section 2 were relatively lower than those in other stages. Therefore, Section 2
was determined as the time point for introducing the D-S evidence theory to improve ND
classification accuracy. The D-S evidence theory is applied in Section 3.3.

In Section 3, the SVM reached 100% testing accuracy. In other sections, the performance
of Specificity and Sensitivity fluctuated. These could be attributed to the natural regulation
of bird body temperature at different hours of the day. The body temperature was the
lowest at 1 am, gradually increased until 8 am, dropped until 12 pm, reached maximum
from 12 pm to 6 pm, and then dropped again until 1 am. The data collection started at 8 am
in Section 1, at 4 pm in Section 2, and at 12 pm in Section 3. In Section 2, both healthy and
unhealthy birds increased their body temperature, causing temperature similarities in the
thermal images and subsequent poor classification performance. Meanwhile, the virus may
not spread fully inside the bird’s body, making the unhealthy birds indistinguishable from
healthy birds.
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Table 10. Detection of Newcastle Disease using thermal images and SVM.

Disease Classifier The Time for
Data Collection

Validation
Accuracy (%)

Testing
Specificity (%)

Testing
Sensitivity (%)

Training
Accuracy (%)

Testing
Accuracy (%)

Newcastle
Disease

(ND) SV
M

(s
ig

m
a

=
1

&
C

=
10

) Section 1 80.56 72.00 100.00 94.05 80.56
Section 2 77.78 85.71 72.73 98.81 77.78
Section 3 100.00 100.00 100.00 100.00 100.00
Section 4 97.22 100.00 94.74 97.62 97.22
Section 5 100.00 100.00 100.00 100.00 100.00
Section 6 91.67 89.47 94.12 96.43 91.67
Section 7 91.67 100.00 85.71 100.00 91.67

Note: The highlighted section indicates the earlier time for successful disease detection.

Since the SVM outperformed the ANN, it was selected for further analysis, and the
confusion matrix for classifying the two diseases in all sections is presented in Figure 8. The
table contains information such as sensitivity, specificity, and overall accuracy of the SVM
in both the training and testing stages. In Section 4, the Sensitivity and Specificity were
reported as 85.71 and 72.73%, respectively, and SVM wrongfully classified 6 Flu out of 18
as healthy and 2 healthy out of 18 as Flu. On the other hand, In Section 2, the Sensitivity
and Specificity were reported as 72.73 and 85.71 percent, respectively, and SVM wrongly
classified 2 ND out of 18 as healthy and 6 healthy out of 18 as ND.

Animals 2023, 13, x FOR PEER REVIEW 13 of 17 
 

 
Figure 8. Confusion matrix of SVM for detecting Avian Influenza (Flu) and NDV (Newcastle Disease 
Virus) in all sections. 

3.3. Data Fusion Results 
As mentioned earlier, whenever ANN and SVM cannot detect the disease with ac-

ceptable accuracy, the D-S was used as the data fusion stage. According to the references 
reviewed in this study, the performance was acceptable when its value was over 80%. The 
set acceptable performance varies among studies. In Section 3.2, the classifiers had prob-
lems detecting AI in Section 4 and ND in Section 2, where the D-S should be introduced. 
Tables 11 and 12 show the results of data fusion to identify AI in Section 4 and ND in 
Section 2 with Dempster–Shafer evidence theory, respectively. 

Table 11. The results of data fusion for identifying Avian Influenza in Section 4 with Dempster–
Shafer evidence theory. 

Section 4 Infection Healthy Testing Sensi-
tivity (%) 

Testing Speci-
ficity (%) 

Testing Accu-
racy (%) 

Bird States 
AI infection 100.00 0.00 

98.15 100.00 99.05 
Health 1.89 98.11 

Table 12. The results of data fusion for identifying Newcastle Disease in Section 2 with Dempster–
Shafer evidence theory. 

Section 2 Infection Healthy Testing Sensi-
tivity (%) 

Testing Speci-
ficity (%) 

Testing Accu-
racy (%) 

Bird States 
ND infection 96.97 3.03 

82.90 96.35 88.48 
Healthy 20.00 80.00 

Based on Table 11, the specificity increased from 72.73% (Table 9) to 100%; and the 
sensitivity increased from 85.71% (Table 9) to 98.15%; the performance of AI classification 
via SVM in Section 4 has been improved with D-S evidence theory. Based on Table 13, the 
Sensitivity increased from 72.73% (Table 10) to 82.90%; the Specificity increased from 
85.71% (Table 10) to 96.35%; and the performance of ND classification via SVM in Section 
2 has been improved with D-S evidence theory. 

Table 13. Summary of the SVM performance to diagnose AI and ND using thermal images. 

84 36 84 36
Section1 Flu Health Section1 Flu Health Section1 NDV Health Section1 NDV Health

Flu 35 7 Flu 16 3 NDV 37 5 NDV 11 7
Health 3 39 Health 2 15 Health 0 42 Health 0 18

Total acc Total acc Total acc Total acc
84 36 84 36

Section2 Flu Health Section2 Flu Health Section2 NDV Health Section2 NDV Health
Flu 35 7 Flu 13 5 NDV 41 1 NDV 16 2

Health 3 39 Health 0 18 Health 0 42 Health 6 12
Total acc Total acc Total acc Total acc

84 36 84 36
Section3 Flu Health Section3 Flu Health Section3 NDV Health Section3 NDV Health

Flu 34 8 Flu 17 1 NDV 42 0 NDV 18 0
Health 0 42 Health 0 18 Health 0 42 Health 0 18

Total acc Total acc Total acc Total acc
84 36 84 36

Section4 Flu Health Section4 Flu Health Section4 NDV Health Section4 NDV Health
Flu 39 3 Flu 12 6 NDV 42 0 NDV 18 0

Health 1 41 Health 2 16 Health 2 40 Health 1 17
Total acc Total acc Total acc Total acc

84 36 84 36
Section5 Flu Health Section5 Flu Health Section5 NDV Health Section5 NDV Health

Flu 37 5 Flu 17 1 NDV 42 0 NDV 18 0
Health 0 42 Health 0 18 Health 0 42 Health 0 18

Total acc Total acc Total acc Total acc
84 36 84 36

Section6 Flu Health Section6 Flu Health Section6 NDV Health Section6 NDV Health
Flu 38 4 Flu 16 2 NDV 41 1 NDV 16 2

Health 0 42 Health 0 18 Health 2 40 Health 1 17
Total acc Total acc Total acc Total acc

84 36 84 36
Section7 Flu Health Section7 Flu Health Section7 NDV Health Section7 NDV Health

Flu 42 0 Flu 18 0 NDV 42 0 NDV 18 0
Health 0 42 Health 0 18 Health 0 42 Health 3 15

Total acc Total acc Total acc Total acc 91.67

Confusion Matrix of NDVConfusion Matrix of Flu
TestingTraining Training Testing

91.67

Sensitivity Specificity

85.71 100

100

Sensitivity Specificity

94.12 89.47

97.22

Sensitivity Specificity

100 100

100

100

Sensitivity Specificity

94.74 100

100 100

100

Sensitivity Specificity

100 72.00

80.56

Sensitivity Specificity

72.73 85.71

77.78

Sensitivity Specificity

100

95.35 97.56

96.43

Sensitivity Specificity

100 100

100

Sensitivity Specificity

95.45 100

97.62

Sensitivity Specificity

100

Sensitivity Specificity

100 89.36

94.05

Sensitivity Specificity

100 97.67

98.81

Sensitivity Specificity

100 100

100

94.44

Sensitivity Specificity

100 100

97.22

Sensitivity Specificity

100 90.00

77.78

Sensitivity Specificity

100 94.74

94.74

97.22

Sensitivity Specificity

85.71 72.73

100 100

100

Sensitivity Specificity

88.89 83.33

86.11

Sensitivity Specificity

100 78.26

86.11

Sensitivity Specificity

100

100 91.30

95.24

Sensitivity Specificity

100 89.36

94.05

Sensitivity Specificity

97.50 93.18

95.24

Sensitivity Specificity

100 84.00

90.48

Sensitivity Specificity

92.11 84.78

88.10

Sensitivity Specificity

Number of Samles Number of Samles

Number of Samles

Number of Samles

Number of Samles

Number of Samles

Number of Samles

Number of Samles

Number of Samles

Number of Samles

Number of Samles

Number of Samles

Number of Samles

Number of Samles

Number of Samles

Number of Samles Number of Samles

Number of Samles Number of Samles
Sensitivity Specificity

Number of Samles Number of Samles

Sensitivity Specificity

92.11 84.78

88.10

Number of Samles Number of Samles

Number of Samles Number of Samles

Number of Samles Number of Samles

Number of Samles

Figure 8. Confusion matrix of SVM for detecting Avian Influenza (Flu) and NDV (Newcastle Disease
Virus) in all sections.

3.3. Data Fusion Results

As mentioned earlier, whenever ANN and SVM cannot detect the disease with ac-
ceptable accuracy, the D-S was used as the data fusion stage. According to the references
reviewed in this study, the performance was acceptable when its value was over 80%. The
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set acceptable performance varies among studies. In Section 3.2, the classifiers had prob-
lems detecting AI in Section 4 and ND in Section 2, where the D-S should be introduced.
Tables 11 and 12 show the results of data fusion to identify AI in Section 4 and ND in
Section 2 with Dempster–Shafer evidence theory, respectively.

Table 11. The results of data fusion for identifying Avian Influenza in Section 4 with Dempster–Shafer
evidence theory.

Section 4 Infection Healthy Testing
Sensitivity (%)

Testing
Specificity (%)

Testing
Accuracy (%)

Bird States
AI infection 100.00 0.00

98.15 100.00 99.05
Health 1.89 98.11

Table 12. The results of data fusion for identifying Newcastle Disease in Section 2 with Dempster–
Shafer evidence theory.

Section 2 Infection Healthy Testing
Sensitivity (%)

Testing
Specificity (%)

Testing
Accuracy (%)

Bird States
ND infection 96.97 3.03

82.90 96.35 88.48
Healthy 20.00 80.00

Based on Table 11, the specificity increased from 72.73% (Table 9) to 100%; and the
sensitivity increased from 85.71% (Table 9) to 98.15%; the performance of AI classification
via SVM in Section 4 has been improved with D-S evidence theory. Based on Table 13,
the Sensitivity increased from 72.73% (Table 10) to 82.90%; the Specificity increased from
85.71% (Table 10) to 96.35%; and the performance of ND classification via SVM in Section 2
has been improved with D-S evidence theory.

Table 13. Summary of the SVM performance to diagnose AI and ND using thermal images.

The Time for
Data Collection

AI (Flu) ND

Sensitivity (%) Specificity (%) Testing
Accuracy (%) Sensitivity (%) Specificity (%) Testing

Accuracy (%)
Section 1 88.89 83.33 86.11 100.00 72.00 80.56
Section 2 100.00 78.26 86.11 82.90 96.35 88.48
Section 3 100.00 94.74 97.22 100.00 100.00 100.00
Section 4 98.15 100.00 99.05 94.74 100.00 97.22
Section 5 100.00 94.74 97.22 100.00 100.00 100.00
Section 6 100.00 90.00 94.44 94.12 89.47 91.67
Section 7 100.00 100.00 100.00 85.71 100.00 91.67

4. Discussion

In general, the SVM outperformed the ANN in identifying chickens infected with AI
with higher sensitivity and testing accuracy. For example, the testing accuracy of AI in
Section 1 was 86.11% for SVM (Table 9) and 70.37% for ANN (Table 6). This indicates that
the SVM may do a better job in alerting producers if birds were infected with AI within the
first 8 h of infection, which helps producers take early intervention and reduce economic
loss. SVM did better when the input was the features extracted from raw data. But that
does not mean SVM outperforms ANN in any classification tasks. Model comparison and
tuning are still required to determine the optimal model for specific tasks.

According to Table 7, the performance of ANN to detect ND reduced after Section 5,
but this problem was solved by SVM, as indicated in Table 10. Furthermore, in Section 4,
the accuracy of the ANN was very low (Table 7), while the SVM obtained over 90% testing
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accuracy in this section (Table 10). The low accuracy of ANN was related to the inability
of this classifier to distinguish ND in Section 4. Other researchers have also confirmed
that the SVM performed better than the ANN in poultry disease classification issues.
Okinda et al. (2019) compared SVM and ANN for classifying Newcastle disease, and the
RBF-SVM, Cubic_SVM, and ANN had 97.8%, 97.1%, and 96.9%, respectively [18]. This topic
has also been confirmed in other fields like mechanical faults diagnosis. Kankar et al. (2011)
compared SVM and ANN for classifying ball bearings; the SVM had 73.97% and the ANN
had 71.23% [38].

Based on Tables 11 and 12, the classification performance of AI and ND in
Sections 4 and 2 was improved by D-S evidence theory. These results agreed with pre-
vious research [39,40]. Banakar et al. (2016) developed an intelligent device for diag-
nosing avian disease based on vocalization and signal processing. In their study, the
accuracy of SVM increased from 83.33% to 91.15% after using the D-S evidence theory [27].
Khazaee et al. (2012) presented data fusion methodology by using ANN and SVM classi-
fiers to distinguish between vibration conditions of planetary gears. They showed that the
accuracy of the classifiers increases by more than 14% when using D-S evidence [41].

A summary of the SVM performance to diagnose AI and ND is shown in Table 13,
which was based on predicting AI in Section 4 and ND in Section 2 with D-S evidence
theory. Based on the proposed method in this study, which was based on thermal images
and machine learning, the AI and ND can be detected within 24 h after virus infection
(Section 3). The SVM may provide an alarm about the presence of the virus even within
the first 8 h (Section 1), but reporting accuracy was below 90%, which may result in False
Positives and False Negatives for producers, further degrading the confidence of producers
in using the product. The best way was to continuously collect the reporting results and
gain more confidence before sending a valid alarm within the first 24 h.

Previous research also investigated avian disease detection via machine learning.
Sadeghi et al. (2015) identified and classified the chickens infected with Clostridium
Perfringens based on vocalization signals and ANN [42]. Banakar et al. (2016) diagnosed
avian diseases using signal processing and SVM, and the system achieved an accuracy of
91.15% in classifying the disease within 48 h after virus infection [27]. Okinda e al. (2019)
used machine vision systems to diagnose avian diseases. They infected the chickens with
ND and classified the disease with a 97% accuracy on the 4th day after virus infection
using RBF-SVM. The parameters of this study were optimized based on the appearance
and physical characteristics of the bird body [21]. Overall, our study can provide earlier
alarms of disease infection with decent accuracy than the previous studies, indicating the
great potential of the combined technique (thermography for data collection and machine
learning for data analytics) in this space.

Our dataset was relatively small, with 1680 images in seven sections (240 thermal
images per section). However, the disease challenge experiments are typically expensive,
and this study serves as the first trial for verifying the possibility of the combined techniques
for disease diagnosis. More data should be collected to consolidate the results. We did
not expect to develop a viable system that can be directly applied in commercial farms.
It is unrealistic to infect birds with avian influenza and Newcastle disease in commercial
farms to collect the data for system development, as that can damage producers’ profits and
create the risks of disease spreading. Therefore, most of the disease challenge experiments
are run cautiously in experimental labs with strict biosecurity control, which could result
in small datasets, separated bird housing, and close-distance data collection. These are all
future directions for system improvement.

5. Conclusions

This study investigated the performance of using thermography and machine learning
to classify Avian Influenza and Newcastle Disease for 14-day-old broilers. After a series of
optimizations (e.g., parameter tuning and model comparison), the Support Vector Machine
with Dempster–Shafer Evidence Theory outperformed the Artificial Neural Networks and
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successfully classified the two diseases within 24 h after virus infection, with 100% sensitiv-
ity, over 94% specificity, and over 97% testing accuracy. It is concluded that thermography
combined with machine learning is a useful tool for timely disease prediction, which can
be properly utilized to set early alarms and reduce producer economic losses.
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