Analysis of Genetic Diversity and Population Structure of Tarim and Junggar Bactrian Camels Based on Simplified GBS Genome Sequencing
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Population Genetic Structure Analysis
2.3. Population Genetic Diversity Analysis
3. Results and Analysis
3.1. Sequencing Data Output and Quality Control
3.2. SNP Detection and Quality Control
3.3. Analysis of Population Genetic Structure and Genetic Relationship
3.3.1. Population Phylogenetic Tree Analysis
3.3.2. Principal Component Analysis
3.3.3. Analysis of Genetic Distance between Individuals
3.4. Analysis of Genetic Diversity
3.4.1. Statistical Analysis of Heterozygosity in Genomic Loci
3.4.2. ROH Statistics and Analysis
3.4.3. Analysis of Inbreeding Coefficient Based on ROH
3.5. Population Selection Signal Analysis
3.5.1. Nucleotide Polymorphism (π) Analysis
3.5.2. Analysis of Population Differentiation Index (FST)
3.5.3. Selection of Signal Gene Enrichment and Annotation
3.6. Cluster Analysis and Family Construction
4. Discussion
4.1. Population Genetic Structure Analysis
4.2. Population Genetic Diversity Analysis
4.3. Selective Signal Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niu, C.E.; Du, T.Q.; Xi, B.; Guo, T.F.; Li, W.H. Investigation on Alxa Bactrian camel breed resources. J. Anim. Husb. Vet. Med. 2007, 6, 44–46. [Google Scholar]
- Tibary, A.; El, A.K. Dromedary camel: A model of heat resistant livestock animal. Theriogenology 2020, 154, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Sarentuya, S.F.L.L. Investigation on conservation of Bactrian camel germplasm resources in China. China Herbiv. Sci. 2015, 35, 62–65+78. [Google Scholar]
- Ying, C.B. Study on feeding and breeding techniques of camels in captivity. China Anim. Health 2022, 24, 79–80. [Google Scholar]
- Chen, J.; Deng, X.F.; Qiao, C.H.; Ablizi, R.X.; Li, Y.F.; Yang, F. Breed source and development and utilization of Bactrian camel in Xinjiang. Heilongjiang Anim. Propag. 2021, 29, 47–49+54. [Google Scholar]
- Gao, X.G.; Bao, X.B.; Gao, M.L. Genetic characteristics of Eriocheir sinensis based on GBS. Anhui Agric. Sci. 2017, 45, 80–82. [Google Scholar]
- Feng, Z. Construction of Beijing Duck GBS Platform and Genome-Wide Association Analysis of Some Economic Traits; China Agricultural University: Beijing, China, 2018; p. 98. [Google Scholar]
- Jirimutu; Wang, Z.; Ding, G.; Chen, G.; Sun, Y.; Sun, Z.; Zhang, H.; Wang, L.; Hasi, S.; Zhang, Y.; et al. Genome sequences of wild and domestic bactrian camels. Nat. Commun. 2012, 3, 1202. [Google Scholar]
- Burger, P.A.; Palmieri, N. Estimating the population mutation rate from a de novo assembled Bactrian camel genome and cross-species comparison with dromedary ESTs. J. Hered. 2014, 105, 839–846. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Guang, X.; Al-Fageeh, M.B.; Cao, J.; Pan, S.; Zhou, H.; Zhang, L.; Abutarboush, M.H.; Xing, Y.; Xie, Z.; et al. Camelid genomes reveal evolution and adaptation to desert environments. Nat. Commun. 2014, 5, 5188. [Google Scholar] [CrossRef] [Green Version]
- Mingliang, Y.H.J.H. Advances in molecular genetics of origin and evolution of Bactrian camels. J. Domest. Anim. Ecol. 2017, 38, 5–9. [Google Scholar]
- Ming, L.; Siren, D.; Hasi, S.; Jambl, T.; Ji, R. Review of genetic diversity in Bactrian camel (Camelus bactrianus). Anim. Front. 2022, 12, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Ming, L.; Si, R.; Yi, L.; He, J.; Ji, R. A Genome-Wide Association Study Identifies Quantitative Trait Loci Affecting Hematological Traits in Camelus bactrianus. Animals 2020, 10, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohler-Rollefson, I. Camel biodiversity-and how to conserve it. Anim. Front. 2022, 12, 17–19. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Anderson, R.; Fernandez, C.T.; Yuan, Y.; Golicz, A.A.; Edwards, D.; Bayer, P.E. Method for Genome-Wide Association Study: A Soybean Example. Methods Mol. Biol. 2020, 2107, 147–158. [Google Scholar]
- Futas, J.; Oppelt, J.; Jelinek, A.; Elbers, J.P.; Wijacki, J.; Knoll, A.; Burger, P.A.; Horin, P. Natural Killer Cell Receptor Genes in Camels: Another Mammalian Model. Front. Genet. 2019, 10, 620. [Google Scholar] [CrossRef]
- Sved, J.A. Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor. Popul. Biol. 1971, 2, 125–141. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Ji, R.; Cui, P.; Ding, F.; Geng, J.; Gao, H.; Zhang, H.; Yu, J.; Hu, S.; Meng, H. Monophyletic origin of domestic bactrian camel (Camelus bactrianus) and its evolutionary relationship with the extant wild camel (Camelus bactrianus ferus). Anim. Genet. 2009, 40, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Mohandesan, E.; Fitak, R.R.; Corander, J.; Yadamsuren, A.; Chuluunbat, B.; Abdelhadi, O.; Raziq, A.; Nagy, P.; Stalder, G.; Walzer, C.; et al. Mitogenome Sequencing in the Genus Camelus Reveals Evidence for Purifying Selection and Long-term Divergence between Wild and Domestic Bactrian Camels. Sci. Rep. 2017, 7, 9970. [Google Scholar] [CrossRef] [Green Version]
- Jianlin, H.; Jiexia, Q.; Zhenming, M.; Yaping, Z.; Wen, W. Rapid communication: Three unique restriction fragment length polymorphisms of EcoRI, PvuII, and ScaI digested mitochondrial DNA of Bactrian camels (Camelus bactrianus ferus) in China. J. Anim. Sci. 1999, 77, 2315–2316. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Ren, Z.J.; Wang, L. Molecular Phylogeny of Domestic Bactrian Camels Based on Cytb Gene. J. Northwest A F Univ. Nat. Sci. Ed. 2009, 37, 17–21. [Google Scholar]
- Bahbahani, H.; Musa, H.H.; Wragg, D.; Shuiep, E.S.; Almathen, F.; Hanotte, O. Genome Diversity and Signatures of Selection for Production and Performance Traits in Dromedary Camels. Front. Genet. 2019, 10, 893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piro, M. Aspects of Molecular Genetics in Dromedary Camel. Front. Genet. 2021, 12, 723181. [Google Scholar] [CrossRef]
- Yakubu, A.; Okpeku, M.; Shoyombo, A.J.; Onasanya, G.O.; Dahloum, L.; Çelik, S.; Oladepo, A. Exploiting morphobiometric and genomic variability of African indigenous camel populations—A review. Front. Genet. 2022, 13, 1021685. [Google Scholar] [CrossRef]
- Huiling, C. Y-Chromosome SNP, STR, CNV and Paternal Origin in China Domestic Bactrian Camels; Northwest University of Agriculture and Forestry: Xianyang, China, 2016; p. 72. [Google Scholar]
- Chengdong, Z. Molecular Characterization and Phylogenetic Analysis of the Paternal and Maternal Origins of Camels in China; Northwest University of Science and Technology of Agriculture and Forestry: Xianyang, China, 2014; p. 66. [Google Scholar]
- Oselu, S.; Ebere, R.; Arimi, J.M. Camels, Camel Milk, and Camel Milk Product Situation in Kenya in Relation to the World. Int. J. Food Sci. 2022, 2022, 1237423. [Google Scholar] [CrossRef]
- Faye, B. The camel, new challenges for a sustainable development. Trop. Anim. Health Prod. 2016, 48, 689–692. [Google Scholar] [CrossRef] [Green Version]
- Legesse, Y.W.; Dunn, C.D.; Mauldin, M.; Garza, N.O.; Rowden, G.R.; Mekasha, Y.; Kurtu, M.Y.; A Mohammed, S.; Whibesilassie, W.D.; Ballou, M.; et al. Morphometric and genetic variation in 8 breeds of Ethiopian camels (Camelus dromedarius). J. Anim. Sci. 2018, 96, 4925–4934. [Google Scholar] [CrossRef] [Green Version]
- Hussen, J.; Schuberth, H.J. Recent Advances in Camel Immunology. Front. Immunol. 2020, 11, 614150. [Google Scholar] [CrossRef]
- Konuspayeva, G.B.; Faye, B.; Bengoumi, M. Mineral status in camel milk: A critical review. Anim. Front. 2022, 12, 52–60. [Google Scholar] [CrossRef]
- Wang, L.; Ren, Z.J.; Cheng, J. Genetic diversity of domestic Bactrian camels from five regions in China. Northwest. J. Agric. 2010, 19, 18–23. [Google Scholar]
- Liu, C.; Chen, H.; Ren, Z.; Yang, X.; Zhang, C. Development of Genomic Resources and Identification of Genetic Diversity and Genetic Structure of the Domestic Bactrian Camel in China by RAD Sequencing. Front. Genet. 2020, 11, 797. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Liu, X.; Liao, L.; Gao, Y.; Shi, Y.; Ni, J.; He, G. Relationship between lipid metabolism and Hedgehog signaling pathway. J. Steroid Biochem. Mol. Biol. 2021, 209, 105825. [Google Scholar] [CrossRef] [PubMed]
- Hayat, R.M.; Manzoor, M.; Hussain, A. Wnt signaling pathway: A comprehensive review. Cell Biol. Int. 2022, 46, 863–877. [Google Scholar] [CrossRef]
- Rim, E.Y.; Clevers, H.; Nusse, R. The Wnt Pathway: From Signaling Mechanisms to Synthetic Modulators. Annu. Rev. Biochem. 2022, 91, 571–598. [Google Scholar] [CrossRef]
- Jeon, M.; Rahman, N.; Kim, Y.S. Wnt/beta-catenin signaling plays a distinct role in methyl gallate-mediated inhibition of adipogenesis. Biochem. Biophys. Res. Commun. 2016, 479, 22–27. [Google Scholar] [CrossRef]
- Sharygin, D.; Koniaris, L.G.; Wells, C.; Zimmers, T.A.; Hamidi, T. Role of CD14 in human disease. Immunology 2023, 169, 260–270. [Google Scholar] [CrossRef]
- Tang, L.; Zeng, Z.; Zhou, Y.; Wang, B.; Zou, P.; Wang, Q.; Ying, J.; Wang, F.; Li, X.; Xu, S.; et al. Bacillus amyloliquefaciens SC06 Induced AKT-FOXO Signaling Pathway-Mediated Autophagy to Alleviate Oxidative Stress in IPEC-J2 Cells. Antioxidants 2021, 10, 1545. [Google Scholar] [CrossRef]
- Chen, D.; Chen, X.; He, C.; Chen, Z.; Chen, Q.; Chen, J.; Bo, H. Sanhuang xiexin decoction synergizes insulin/PI3K-Akt/FoxO signaling pathway to inhibit hepatic glucose production and alleviate T2DM. J. Ethnopharmacol. 2023, 306, 116162. [Google Scholar] [CrossRef]
- Piro, M.; Mabsoute, F.E.; El Khattaby, N.; Laghouaouta, H.; Boujenane, I. Genetic variability of dromedary camel populations based on microsatellite markers. Animal 2020, 14, 2452–2462. [Google Scholar] [CrossRef]
- Anwar, I.; Khan, F.B.; Maqsood, S.; Ayoub, M.A. Camel Milk Targeting Insulin Receptor-Toward Understanding the Antidiabetic Effects of Camel Milk. Front. Nutr. 2021, 8, 819278. [Google Scholar] [CrossRef]
- Behrouz, S.; Saadat, S.; Memarzia, A.; Sarir, H.; Folkerts, G.; Boskabady, M.H. The Antioxidant, Anti-Inflammatory and Immunomodulatory Effects of Camel Milk. Front. Immunol. 2022, 13, 855342. [Google Scholar] [CrossRef] [PubMed]
- Abdulrahman, A.O.; Ismael, M.A.; Al-Hosaini, K.; Rame, C.; Al-Senaidy, A.M.; Dupont, J.; Ayoub, M.A. Differential Effects of Camel Milk on Insulin Receptor Signaling—Toward Understanding the Insulin-Like Properties of Camel Milk. Front. Endocrinol. 2016, 7, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Dou, Z.; Peng, X.; Wang, H.; Shen, T.; Liu, J.; Li, G.; Gao, Y. Transcriptomics and proteomics analyses of anti-cancer mechanisms of TR35-An active fraction from Xinjiang Bactrian camel milk in esophageal carcinoma cell. Clin. Nutr. 2019, 38, 2349–2359. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Shen, R.; Li, Y.; Sun, Z.; Sun, X.; Li, F.; Li, X.; Cheng, Y.; Zhu, W. Anaerobic Fungi Isolated from Bactrian Camel Rumen Contents Have Strong Lignocellulosic Bioconversion Potential. Front. Microbiol. 2022, 13, 888964. [Google Scholar] [CrossRef]
Population | Age (Year) | Sample Number | Male | Female |
---|---|---|---|---|
Tarim Bactrian camel (TLM) | 2~5 | 60 | 7 | 53 |
Junggar Bactrian camel (ZGE) | 2~5 | 58 | 5 | 53 |
Total | - | 118 | 12 | 106 |
Quality Control Standard | Number of SNPs |
---|---|
Total number of SNPs | 34,367 |
SNP with MAF < 0.01 | 1 |
SNP not in Hardy–Weinberg equilibrium (p < 10−6) | 880 |
SNP with call rate < 0.90 | 10,120 |
SNPs on chromosome X | 668 |
SNPs used after quality control | 21,971 |
Title | Total | ZGE | TLM |
---|---|---|---|
Effective Population Content (Ne) | 46.0 | 45.7 | 46.3 |
Polymorphic Marker Fraction (PN) | 0.732 | 0.714 | 0.750 |
Expected Heterozygosity (HE) | 0.245 | 0.216 | 0.273 |
Observed Heterozygosity (HO) | 0.235 | 0.231 | 0.237 |
Polymorphism Information Content (PIC) | 0.202 | 0.197 | 0.208 |
Effective Allele Number (EN) | 1.307 | 1.304 | 1.311 |
Minimum Allele Frequency (MAF) | 0.173 | 0.168 | 0.175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, W.; Aniwar, L.; ZuliPicar, A.; Tulafu, H.; Zhang, R.; Liu, B.; Wu, W.; Huang, J. Analysis of Genetic Diversity and Population Structure of Tarim and Junggar Bactrian Camels Based on Simplified GBS Genome Sequencing. Animals 2023, 13, 2349. https://doi.org/10.3390/ani13142349
Tao W, Aniwar L, ZuliPicar A, Tulafu H, Zhang R, Liu B, Wu W, Huang J. Analysis of Genetic Diversity and Population Structure of Tarim and Junggar Bactrian Camels Based on Simplified GBS Genome Sequencing. Animals. 2023; 13(14):2349. https://doi.org/10.3390/ani13142349
Chicago/Turabian StyleTao, Weikun, Lazat Aniwar, Azat ZuliPicar, Hanikzi Tulafu, Rongyin Zhang, Bo Liu, Weiwei Wu, and Juncheng Huang. 2023. "Analysis of Genetic Diversity and Population Structure of Tarim and Junggar Bactrian Camels Based on Simplified GBS Genome Sequencing" Animals 13, no. 14: 2349. https://doi.org/10.3390/ani13142349
APA StyleTao, W., Aniwar, L., ZuliPicar, A., Tulafu, H., Zhang, R., Liu, B., Wu, W., & Huang, J. (2023). Analysis of Genetic Diversity and Population Structure of Tarim and Junggar Bactrian Camels Based on Simplified GBS Genome Sequencing. Animals, 13(14), 2349. https://doi.org/10.3390/ani13142349