Impact of Surgical Lights on the Performance of Fluorescence-Guided Surgery Systems: A Pilot Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- -
- Dark room conditions, i.e., with no artificial or natural light sources;
- -
- Room light conditions, i.e., with the room lights turned on, but the surgical lights turned off;
- -
- Surgical light type LED (Simeon Highline Sim, LED 7000, Simeon Medical GmbH & Co. KG, Tuttlingen, Germany), i.e., with the room lights and surgical lights with LED bulbs turned on;
- -
- Surgical light type halogen (MACH M3 Decknmodell, Dr. Mach GmbH & Co. KG, Grafing, Germany), i.e., with the room lights and surgical lights with halogen bulbs turned on.
3. Results
3.1. Limit of Detection (LOD)
3.2. Impact of Lighting Condition on Signal-to-Background Ratio (SBR)
4. Discussion
- (1)
- The surgeon needs to understand whether the purchased system can only image the licensed ICG, or if targeted imaging is also generally feasible with other NIR fluorophores.
- (2)
- The surgeon needs to understand whether special prerequisites (such as specific surgical lighting) must be considered when setting up an operating room (OR) where open NIR imaging is planned.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Orosco, R.K.; Tsien, R.Y.; Nguyen, Q.T. Fluorescence Imaging in Surgery. IEEE Rev. Biomed. Eng. 2013, 6, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Iida, G.; Asano, K.; Seki, M.; Ishigaki, K.; Teshima, K.; Yoshida, O.; Edamura, K.; Kagawa, Y. Intraoperative identification of canine hepatocellular carcinoma with indocyanine green fluorescent imaging. J. Small Anim. Pract. 2013, 54, 594–600. [Google Scholar] [CrossRef]
- Favril, S.; Abma, E.; Blasi, F.; Stock, E.; Devriendt, N.; Vanderperren, K.; de Rooster, H. Clinical use of organic near-infrared fluorescent contrast agents in image-guided oncologic procedures and its potential in veterinary oncology. Veter. Rec. 2018, 183, 354. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.; Predina, J.; Mison, M.; Runge, J.; Bradley, C.; Stefanovski, D.; Singhal, S.; Holt, D. Intraoperative near-infrared imaging can identify canine mammary tumors, a spontaneously occurring, large animal model of human breast cancer. PLoS ONE 2020, 15, e0234791. [Google Scholar] [CrossRef]
- Holt, D.; Parthasarathy, A.B.; Okusanya, O.T.; Keating, J.; Venegas, O.; Deshpande, C.; Karakousis, G.C.; Madajewski, B.; Durham, A.; Nie, S.; et al. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds. J. Biomed. Opt. 2015, 20, 076002. [Google Scholar] [CrossRef] [PubMed]
- Keereweer, S.; Van Driel, P.B.A.A.; Snoeks, T.J.A.; Kerrebijn, J.D.F.; de Jong, R.J.B.; Vahrmeijer, A.L.; Sterenborg, H.J.C.M.; Löwik, C.W.G.M. Optical Image-Guided Cancer Surgery: Challenges and Limitations. Clin. Cancer Res. 2013, 19, 3745. [Google Scholar] [CrossRef] [Green Version]
- Lauwerends, L.J.; van Driel, P.B.A.A.; de Jong, R.J.B.; Hardillo, J.A.U.; Koljenovic, S.; Puppels, G.; Mezzanotte, L.; Löwik, C.W.G.M.; Rosenthal, E.L.; Vahrmeijer, A.L.; et al. Real-time fluorescence imaging in intraoperative decision making for cancer surgery. Lancet Oncol. 2021, 22, e186–e195. [Google Scholar] [CrossRef]
- Xu, D.; Li, L.; Chu, C.; Zhang, X.; Liu, G. Advances and perspectives in near-infrared fluorescent organic probes for surgical oncology. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1635. [Google Scholar] [CrossRef]
- Jeremiasse, B.; van den Bosch, C.H.; Wijnen, M.W.H.A.; van Scheltinga, C.T.; Fiocco, M.F.; van der Steeg, A.F.W. Systematic review and meta-analysis concerning near-infrared imaging with fluorescent agents to identify the sentinel lymph node in oncology patients. Eur. J. Surg. Oncol. 2020, 46, 2011–2022. [Google Scholar] [CrossRef]
- Beer, P.; Rohrer-Bley, C.; Nolff, M.C. Near-infrared fluorescent image-guided lymph node dissection compared with locoregional lymphadenectomies in dogs with mast cell tumours. J. Small Anim. Pract. 2022, 63, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Beer, P.; Chiti, L.E.; Nolff, M.C. The Role of Sentinel Node Mapping and Lymphadenectomies in Veterinary Surgical Oncology. Lymphatics 2023, 1, 2–18. [Google Scholar] [CrossRef]
- Hernot, S.; Van Manen, L.; Debie, P.; Sven, J.; Mieog, D.; Lucas Vahrmeijer, A. Review Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol. 2019, 20, e354–e367. [Google Scholar] [CrossRef] [PubMed]
- Favril, S.; Abma, E.; Stock, E.; Devriendt, N.; Van Goethem, B.; Blasi, F.; Brioschi, C.; Polis, I.; De Cock, H.; Miragoli, L.; et al. Fluorescence-guided surgery using indocyanine green in dogs with superficial solid tumours. Veter. Rec. 2020, 187, 273. [Google Scholar] [CrossRef] [PubMed]
- Holt, D.; Singhal, S.; Selmic, L.E. Near-infrared imaging and optical coherence tomography for intraoperative visualization of tumors. Veter. Surg. 2019, 49, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Dsouza, A.V.; Lin, H.; Henderson, E.R.; Samkoe, K.S.; Pogue, B.W. Review of fluorescence guided surgery systems: Identification of key performance capabilities beyond indocyanine green imaging. J. Biomed. Opt. 2016, 21, 080901. [Google Scholar] [CrossRef]
- Schouw, H.M.; Huisman, L.A.; Janssen, Y.F.; Slart, R.H.J.A.; Borra, R.J.H.; Willemsen, A.T.M.; Brouwers, A.H.; van Dijl, J.M.; Dierckx, R.A.; van Dam, G.M.; et al. Targeted optical fluorescence imaging: A meta-narrative review and future perspectives. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4272–4292. [Google Scholar] [CrossRef]
- Jiang, J.X.; Keating, J.J.; De Jesus, E.M.; Judy, R.P.; Madajewski, B.; Venegas, O.; Okusanya, O.T.; Singhal, S. Optimization of the enhanced permeability and retention effect for near-infrared imaging of solid tumors with indocyanine green. Am. J. Nucl. Med. Mol. Imaging 2015, 5, 390–400. [Google Scholar]
- Holt, D.; Okusanya, O.; Judy, R.; Venegas, O.; Jiang, J.; DeJesus, E.; Eruslanov, E.; Quatromoni, J.; Bhojnagarwala, P.; Deshpande, C.; et al. Intraoperative Near-Infrared Imaging Can Distinguish Cancer from Normal Tissue but Not Inflammation. PLoS ONE 2014, 9, e103342. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, A.J.; Wu, M.; LaRochelle, E.P.M.; Gorpas, D.; Ntziachristos, V.; Pfefer, T.J.; Pogue, B.W. Indocyanine green matching phantom for fluorescence-guided surgery imaging system characterization and performance assessment. J. Biomed. Opt. 2020, 25, 056003-15. [Google Scholar] [CrossRef]
- Zhu, B.; Rasmussen, J.C.; Sevick-Muraca, E.M. A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: To see or not to see? Med. Phys. 2014, 41, 022105. [Google Scholar] [CrossRef] [Green Version]
- Zhu, N.; Mondal, S.; Gao, S.; Achilefu, S.; Gruev, V.; Liang, R. Engineering light-emitting diode surgical light for near-infrared fluorescence image-guided surgical systems. J. Biomed. Opt. 2014, 19, 076018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiti, L.E.; Husi, B.; Park, B.; Beer, P.; D’Orchymont, F.; Holland, J.P.; Nolff, M.C. Performance of two clinical fluorescence imaging systems with different targeted and non-targeted near-infrared fluorophores: A cadaveric explorative study. Front. Veter. Sci. 2023, 10, 1091842. [Google Scholar] [CrossRef] [PubMed]
- Widen, J.C.; Tholen, M.; Yim, J.J.; Bogyo, M. Methods for analysis of near-infrared (NIR) quenched-fluorescent contrast agents in mouse models of cancer. In Methods Enzymol; Academic Press Inc.: Cambridge, MA, USA, 2020; Volume 639, pp. 141–166. [Google Scholar] [CrossRef]
- Tummers, W.S.; Warram, J.M.; van den Berg, N.S.; Miller, S.E.; Swijnenburg, R.-J.; Vahrmeijer, A.L.; Rosenthal, E.L. Recommendations for reporting on emerging optical imaging agents to promote clinical approval. Theranostics 2018, 8, 5336–5347. [Google Scholar] [CrossRef] [PubMed]
- Emile, S.H.; Khan, S.M.; Wexner, S.D. Impact of change in the surgical plan based on indocyanine green fluorescence angiography on the rates of colorectal anastomotic leak: A systematic review and meta-analysis. Surg. Endosc. 2022, 36, 2245–2257. [Google Scholar] [CrossRef]
- Samkoe, K.S.; Bates, B.D.; Tselepidakis, N.; Dsouza, A.V.; Gunn, J.R. Development and evaluation of a connective tissue phantom model for subsurface visualization of cancers requiring wide local excision. J. Biomed. Opt. 2017, 22, 121613. [Google Scholar] [CrossRef] [Green Version]
- Gorpas, D.; Koch, M.; Anastasopoulou, M.; Klemm, U.; Ntziachristos, V. Benchmarking of fluorescence cameras through the use of a composite phantom. J. Biomed. Opt. 2017, 22, 016009. [Google Scholar] [CrossRef]
- Gorpas, D.; Koch, M.; Anastasopoulou, M.; Bozhko, D.; Klemm, U.; Nieberler, M.; Ntziachristos, V. Multi-Parametric Standardization of Fluorescence Imaging Systems Based on a Composite Phantom. IEEE Trans. Biomed. Eng. 2020, 67, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Rasmussen, J.C.; Sevick-Muraca, E.M. Non-invasive fluorescence imaging under ambient light conditions using a modulated ICCD and laser diode. Biomed. Opt. Express. 2014, 5, 562–572. [Google Scholar] [CrossRef] [Green Version]
- Sexton, K.; Davis, S.C.; Iii, D.M.; Valdes, P.A.; Kanick, S.C.; Paulsen, K.D.; Roberts, D.W.; Pogue, B.W. Pulsed-light imaging for fluorescence guided surgery under normal room lighting. Opt. Lett. 2013, 38, 3249–3252. [Google Scholar] [CrossRef] [Green Version]
- Kanniyappan, U.; Wang, B.; Yang, C.; Ghassemi, P.; Litorja, M.; Suresh, N.; Wang, Q.; Chen, Y.; Pfefer, T.J. Performance test methods for near-infrared fluorescence imaging. Med. Phys. 2020, 47, 3389–3401. [Google Scholar] [CrossRef]
Camera System and Lighting Condition | Fluorophore | Limit of Detection (LOD) |
---|---|---|
VisionsenseTM VS3 Iridum—DARK | IRDye-800 | 1 μmol |
ICG | 10 nmol | |
FAP-Cyan | 1 μmol | |
AngiostampTM | 10 nmol | |
VisionsenseTM VS3 Iridum—Room light | IRDye-800 | 10 nmol |
ICG | 0.1 nmol | |
FAP-Cyan | 0.1 μmol | |
AngiostampTM | 10 nmol | |
VisionsenseTM VS3 Iridum—LED light | IRDye-800 | 0.1 μmol |
ICG | 10 nmol | |
FAP-Cyan | 1 μmol | |
AngiostampTM | 0.1 μmol | |
VisionsenseTM VS3 Iridum—halogen light | IRDye-800 | 1 nmol |
ICG | 1 nmol | |
FAP-Cyan | 1 nmol | |
AngiostampTM | 1 nmol | |
IC-FlowTM—DARK | IRDye-800 | 0.1 μmol |
ICG | 10 nano | |
FAP-Cyan | 0.1 μmol | |
AngiostampTM | 0.1 μmol | |
IC-FlowTM—Room light | IRDye-800 | 0.1 μmol |
ICG | 0.1 μmol | |
FAP-Cyan | 0.1 μmol | |
AngiostampTM | 0.1 μmol | |
IC-FlowTM—LED light | IRDye-800 | 1 μmol |
ICG | 0.1 μmol | |
FAP-Cyan | 0.1 μmol | |
AngiostampTM | 1 μmol | |
IC-FlowTM—halogen light | IRDye-800 | 1 μmol |
ICG | 0.1 μmol | |
FAP-Cyan | 0.1 μmol | |
AngiostampTM | 0.1 μmol |
IC Flow | |||
---|---|---|---|
Lighting | Mean SBR | Standard Deviation | Range |
Dark | 5.19 | 6.99 | 0.91–19.8 |
Room Light | 4.88 | 6.52 | 0.9–19.41 |
LED | 1.79 | 1.2 | 0.77–4.48 |
Older halogen | 1.99 | 1.34 | 0.86–4.98 |
VisionsenseTM VS3 Iridium | |||
Lighting | Mean SBR | Standard Deviation | Range |
Dark | 40.69 | 74.19 | 0.85–221.6 |
Room Light | 24.69 | 63.74 | 1–253.85 |
LED | 19.82 | 62.06 | 0.86–253.69 |
Older halogen | 13.67 | 41.05 | 0.7–212.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiti, L.E.; Park, B.; d’Orchymont, F.; Holland, J.P.; Nolff, M.C. Impact of Surgical Lights on the Performance of Fluorescence-Guided Surgery Systems: A Pilot Study. Animals 2023, 13, 2363. https://doi.org/10.3390/ani13142363
Chiti LE, Park B, d’Orchymont F, Holland JP, Nolff MC. Impact of Surgical Lights on the Performance of Fluorescence-Guided Surgery Systems: A Pilot Study. Animals. 2023; 13(14):2363. https://doi.org/10.3390/ani13142363
Chicago/Turabian StyleChiti, Lavinia E., Brian Park, Faustine d’Orchymont, Jason P. Holland, and Mirja C. Nolff. 2023. "Impact of Surgical Lights on the Performance of Fluorescence-Guided Surgery Systems: A Pilot Study" Animals 13, no. 14: 2363. https://doi.org/10.3390/ani13142363
APA StyleChiti, L. E., Park, B., d’Orchymont, F., Holland, J. P., & Nolff, M. C. (2023). Impact of Surgical Lights on the Performance of Fluorescence-Guided Surgery Systems: A Pilot Study. Animals, 13(14), 2363. https://doi.org/10.3390/ani13142363