Possibility to Estimate Same Day Energy Status of Dairy Cows during First Half of Lactation by Non-Invasive Markers with Emphasis to Milk Fatty Acids
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Collection
2.3. Calculation of the Energy Balance of the Dairy Cows
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Wankhade, P.R.; Manimaran, A.; Kumaresan, A.; Jeyakumar, S.; Ramesha, K.P.; Sejian, V.; Rajendran, D.; Varghese, M.R. Metabolic and immunological changes in transition dairy cows: A review. Vet. World 2017, 10, 1367–1377. [Google Scholar] [CrossRef] [PubMed]
- De Vries, M.J.; Veerkamp, R.F. Energy balance of dairy cattle in relation to milk production variables and fertility. J. Dairy Sci. 2000, 83, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Coffey, M.P.; Emmans, G.C.; Brotherstone, S. Genetic evaluation of dairy bulls for energy balance traits using random regression. Anim. Sci. 2001, 73, 29–40. [Google Scholar] [CrossRef]
- Heuer, C.; Schukken, Y.H.; Dobbelaar, P. Postpartum body condition score and results from the first test day milk as predictors of disease, fertility, yield, and culling in commercial dairy herds. J. Dairy Sci. 1999, 82, 295–304. [Google Scholar] [CrossRef]
- Toni, F.; Vincenti, L.; Grigoletto, L.; Ricci, A.; Schukken, Y.H. Early lactation ratio of fat and protein percentage in milk is associated with health, milk production, and survival. J. Dairy Sci. 2011, 94, 1772–1783. [Google Scholar] [CrossRef]
- Herdt, T.H. Ruminant adaptation to negative energy balance: Influences on the etiology of ketosis and fatty liver. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Samarütel, J.; Waldmann, A.; Ling, K.; Jaakson, H.; Kaart, T.; Leesmäe, A.; Kärt, O. Relationships between luteal activity, fertility, blood metabolites and body condition score in multiparous Estonian Holstein dairy cows under different management. J. Dairy Res. 2008, 75, 485–490. [Google Scholar] [CrossRef]
- Chilliard, Y.; Ferlay, A.; Mansbridge, R.M.; Doreau, M. Ruminant milk fat plasticity: Nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann. Zootech. 2000, 49, 181–205. [Google Scholar] [CrossRef] [Green Version]
- Rukkwamsuk, T.; Geelen, M.J.H.; Kruip, T.A.M.; Wensing, T. Interrelation of fatty acid composition in adipose tissue, serum, and liver of dairy cows during the development of fatty liver postpartum. J. Dairy Sci. 2000, 83, 52–59. [Google Scholar] [CrossRef]
- Clarke, S.D. Regulation of fatty acid synthase gene expression: An approach for reducing fat accumulation. J. Anim. Sci. 1993, 71, 1957–1965. [Google Scholar] [CrossRef]
- Gross, J.; van Dorland, H.A.R.; Bruckmaier, M.; Schwarz, F.J. Milk fatty acid profile related to energy balance in dairy cows. J. Dairy Res. 2011, 78, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Churakov, M.; Karlsson, J.; Edvardsson Rasmussen, A.; Holtenius, K. Milk fatty acids as indicators of negative energy balance of dairy cows in early lactation. Animal 2021, 15, 100253. [Google Scholar] [CrossRef]
- Jorjong, S.; van Knegsel, A.T.M.; Verwaeren, J.; Val Lahoz, M.; Bruckmaier, R.M.; De Baets, B.; Kemp, B.; Fievez, V. Milk fatty acids as possible biomarkers to early diagnose elevated concentrations of blood plasma nonesterified fatty acids in dairy cows. J. Dairy Sci. 2014, 97, 7054–7064. [Google Scholar] [CrossRef] [Green Version]
- Jorjong, S.; van Knegsel, A.T.M.; Verwaeren, J.; Bruckmaier, R.M.; De Baets, B.; Kemp, B.; Fievez, V. Milk fatty acids as possible biomarkers to diagnose hyperketonemia in early lactation. J. Dairy Sci. 2015, 98, 5211–5221. [Google Scholar] [CrossRef] [Green Version]
- Oll, Ü.; Tölp, S. Feeding Requirements for Livestock with Feed Tables; Vabariiklik Söötmisalase Uurimistöökoordineerimise Komisjon: Tartu, Estonia, 1995; 186p. [Google Scholar]
- Tuori, M.; Kaustell, K.; Valaja, J.; Aimonen, E.; Saarisalo, E.; Huhtanen, P. Rehutaulukot ja Ruokintasuositukset; University of Helsinki, Department of Animal Science; Plant Production Inspection Center, Department of Agricultural Chemistry; Agricultural Research Center, Institute of Livestock Production Research: Helsinki, Finland, 1996. (In Finnish) [Google Scholar]
- Kärt, O.; Karis, V.; Ots, M. Mäletsejaliste Proteiintoitumine ja Metaboliseeruval Proteiinil Põhinev Söötade Hindamise Süsteem; Eesti Põllumajandusülikooli Loomakasvatusinstituut: Tartu, Estonia, 2002. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Horwitz, W., Latimer, G.W., Eds.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Edmonson, A.; Lean, I.; Weaver, L.; Farver, T.; Webster, G. A body condition scoring chart for Holstein dairy cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Ariko, T.; Kass, M.; Henno, M.; Fievez, V.; Kärt, O.; Kaart, T.; Ots, M. The effect of replacing barley with glycerol in the diet of dairy cows on rumen parameters and milk fatty acid profile. Anim. Feed Sci. Technol. 2015, 209, 69–78. [Google Scholar] [CrossRef]
- Thorup, V.M.; Edwards, D.; Friggens, N.C. On-farm estimation of energy balance in dairy cows using only frequent body weight measurements and body condition score. J. Dairy Sci. 2012, 95, 1784–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borcard, D.; Legendre, P.; Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 1992, 73, 1045–1055. [Google Scholar] [CrossRef] [Green Version]
- Samarütel, J.; Ling, K.; Jaakosn, H.; Kaart, T.; Kärt, O. Effect of body condition score at parturition on the production performance, fertility and culling in primiparous Estonian Holstein cows. Vet. Zootech. 2006, 36, 68–74. Available online: https://vetzoo.lsmuni.lt/2006-36-en (accessed on 13 June 2023).
- Ling, K.; Waldmann, A.; Samarütel, J.; Jaakson, H.; Kaart, T.; Leesmäe, A. Field trial on the relationship of blood metabolites and body condition score with the recurrence of luteal activity in Estonian Holstein cows. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2007, 54, 337–341. [Google Scholar] [CrossRef]
- Pires, J.A.A.; Delavaud, C.; Faulconnier, Y.; Pomiès, D.; Chilliard, Y. Effects of body condition score at calving on indicators of fat and protein mobilization of periparturient Holstein-Friesian cows. J. Dairy Sci. 2013, 96, 6423–6439. [Google Scholar] [CrossRef]
- Mäntysaari, P.; Mäntysaari, E.A.; Kokkonen, T.; Mehtiö, T.; Kajava, S.; Grelet, C.; Lidauer, P.; Lidauer, M.H. Body and milk traits as indicators of dairy cow energy status in early lactation. J. Dairy Sci. 2019, 102, 7904–7916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmquist, D.L.; Beaulieu, A.D.; Barbano, D.M. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef] [PubMed]
- Vlaeminck, B.; Gervais, R.; Rahman, M.M.; Gadeyne, F.; Gorniak, M.; Doreau, M.; Fievez, V. Postruminal synthesis modifies the odd- and branched- chain fatty acid profile from the duodenum to milk. J. Dairy Sci. 2015, 98, 4829–4840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schennink, A.; Heck, J.M.L.; Bovenhuis, H.; Visker, M.H.P.W.; van Valenberg, H.J.F.; van Arendonk, J.A.M. Milk fatty acid unsaturation: Genetic parameters and effects of stearoyl-CoA desaturase (SCD1) and acyl CoA: Diacylglycerol acyltransferase 1 (DGAT1). J. Dairy Sci. 2008, 91, 2135–2143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kay, J.K.; Weber, W.J.; Moore, C.E.; Bauman, D.E.; Hansen, L.B.; Chester- Jones, H.; Crooker, B.A.; Baumgard, L.H. Effects of week of lactation and genetic selection for milk yield on milk fatty acid composition in Holstein cows. J. Dairy Sci. 2005, 88, 3886–3893. [Google Scholar] [CrossRef] [Green Version]
- Van Haelst, Y.N.T.; Beeckman, A.; Van Knegsel, A.T.M.; Fievez, V. Short communication: Elevated concentrations of oleic acid and long-chain fatty acids in milk fat of multiparous subclinical ketotic cows. J. Dairy Sci. 2008, 91, 4683–4686. [Google Scholar] [CrossRef] [Green Version]
- Craninx, M.; Steen, A.; Van Laar, H.; Van Nespen, T.; Martin-Tereso, J.; De Baets, B.; Fievez, V. Effect of lactation stage on the odd- and branched-chain milk fatty acids of dairy cattle under grazing and indoor conditions. J. Dairy Sci. 2008, 91, 2662–2677. [Google Scholar] [CrossRef] [Green Version]
- Dórea, J.R.R.; French, E.A.; Armentano, L.E. Use of milk fatty acids to estimate plasma nonesterified fatty acid concentrations as an indicator of animal energy balance. J. Dairy Sci. 2017, 100, 6164–6176. [Google Scholar] [CrossRef]
- Khiaosa-ard, R.; Kleefisch, M.T.; Zebeli, Q.; Klevenhusen, F. Milk fatty acid composition reflects metabolic adaptation of early lactation cows fed hay rich in water-soluble carbohydrates with or without concentrates. Anim. Feed Sci. Technol. 2020, 264, 114470. [Google Scholar] [CrossRef]
- Henno, M.; Ling, K.; Kaart, T.; Ariko, T.; Karis, P.; Jaakson, H.; Kuusik, S.; Ots, M. Effect of monensin on milk fatty asid profile in dairy cows and on the use of fatty acids for early diagnosis of elevated blood plasma concentrations of nonesterified fatty acids and hyperketonemia. J. Dairy Sci. 2021, 104, 10355–10362. [Google Scholar] [CrossRef] [PubMed]
- Heck, J.M.; van Valenberg, H.J.; Bovenhuis, H.; Dijkstra, J.; van Hooijdonk, T.C. Characterization of milk fatty acids based on genetic and herd parameters. J. Dairy Res. 2011, 79, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorup, V.M.; Chagunda, M.G.G.; Fischer, A.; Weisbjerg, M.R.; Friggens, N.C. Robustness and sensitivity of a blueprint for on-farm estimation of dairy cow energy balance. J. Dairy Sci. 2018, 101, 6002–6018. [Google Scholar] [CrossRef] [PubMed]
Fatty Acid Group | Fatty Acids |
---|---|
C18:0 | C18:0 |
C18:1c9 | C18:1cis9 |
C15:0 | C15:0 |
C18:1c9/C15:0 | C18:1cis9/C15:0 |
C18:1c9/de novo C5–C14 | C18:1cis9/∑ (C5:0, C6:0, C7:0, C8:0, C9:0, C10:0, C10:1cis9, C11:0, C12:0, C12:1cis9, C13:0, C14:0, C14:1cis9) |
C18:1c9/de novo C4–C15 | C18:1cis9/∑ (C4:0, C5:0, C6:0, C7:0, C8:0, C9:0, C10:0, C10:1cis9, C11:0, C12:0, C12:1cis9, C13:0, C14:0, C14:1cis9, C15:0, C15:1cis9) |
C18:1c9/de novo C5–C15 | C18:1cis9/∑ (C5:0, C6:0, C7:0, C8:0, C9:0, C10:0, C10:1cis9, C11:0, C12:0, C12:1cis9, C13:0, C14:0, C14:1cis9, C15:0, C15:1cis9) |
C18:1c9/even de novo | C18:1cis9/∑ (C4:0, C6:0, C8:0, C10:0, C10:1cis9, C11:0 C12:0, C12:1cis9, C14:0, C14:1cis9) |
C18:1c9/odd de novo | C18:1cis9/∑ (C5:0, C7:0, C9:0, C13:0, C15:0, C15:1cis9) |
C18/de novo C5–C14 | ∑ (C18:0, C18:1cis9)/∑ (C5:0, C6:0, C7:0, C8:0, C9:0, C10:0, C10:1cis9, C11:0, C12:0, C12:1cis9, C13:0, C14:0, C14:1cis9) |
C18/de novo C4–C15 | ∑ (C18:0, C18:1cis9)/∑ (C4:0, C5:0, C6:0, C7:0, C8:0, C9:0, C10:0, C10:1cis9, C11:0, C12:0, C12:1cis9, C13:0, C14:0, C14:1cis9, C15:0, C15:1cis9) |
C18/de novo C5–C15 | ∑ (C18:0, C18:1cis9)/∑ (C5:0, C6:0, C7:0, C8:0, C9:0, C10:0, C10:1cis9, C11:0, C12:0, C12:1cis9, C13:0, C14:0, C14:1cis9, C15:0, C15:1cis9) |
C18/even de novo | ∑ (C18:0, C18:1cis9)/∑ (C4:0, C6:0, C8:0, C10:0, C10:1cis9, C11:0, C12:0, C12:1cis9, C14:0, C14:1cis9) |
C18/odd de novo | ∑ (C18:0, C18:1cis9)/∑ (C5:0, C7:0, C9:0, C13:0, C15:0, C15:1cis9) |
C18:1c9/C14 | C18:1cis9/∑ (C14:0, C14:1cis9) |
C18/C14 | ∑ (C18:0, C18:1cis9)/∑ (C14:0, C14:1cis9) |
C18:1c9/C12+C14 | C18:1cis9/∑ (C12:0, C12:1cis9, C14:0, C14:1cis9) |
C18/C12+C14 | ∑ (C18:0, C18:1cis9)/∑ (C12:0, C12:1cis9, C14:0, C14:1cis9) |
Sum of C6:0 to C10:0 | ∑ (C6:0, C8:0, C10:0) |
C18/Sum of C6:0 to C10:0 | ∑ (C18:0, C18:1cis9)/∑ (C6:0, C8:0, C10:0) |
C18:1c9/Sum of C6:0 to C10:0 | C18:1cis9/∑ (C6:0, C8:0, C10:0) |
Desaturase index | ∑ (C12:1cis9, C14:1cis9, C15:1cis9; C16:1cis9, C17:1cis9, C18:1cis9)/∑ (C12:0, C12:1cis9, C14:0, C14:1cis9, C15:0, C15:1cis9; C16:0, C16:1cis9, C17:0, C17:1cis9, C18:0, C18:1cis9) |
Desaturase index 18 | C18:1cis9/∑ (C18:0, C18:1cis9) |
Desaturase index 16 | C16:1cis9/∑ (C16:0, C16:1cis9) |
C18:1 day | Daily production of C18:1cis9 |
C18 day | Daily production of ∑ (C18:0, C18:1cis9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ariko, T.; Kaart, T.; Ling, K.; Henno, M.; Jaakson, H.; Ots, M. Possibility to Estimate Same Day Energy Status of Dairy Cows during First Half of Lactation by Non-Invasive Markers with Emphasis to Milk Fatty Acids. Animals 2023, 13, 2370. https://doi.org/10.3390/ani13142370
Ariko T, Kaart T, Ling K, Henno M, Jaakson H, Ots M. Possibility to Estimate Same Day Energy Status of Dairy Cows during First Half of Lactation by Non-Invasive Markers with Emphasis to Milk Fatty Acids. Animals. 2023; 13(14):2370. https://doi.org/10.3390/ani13142370
Chicago/Turabian StyleAriko, Tiia, Tanel Kaart, Katri Ling, Merike Henno, Hanno Jaakson, and Meelis Ots. 2023. "Possibility to Estimate Same Day Energy Status of Dairy Cows during First Half of Lactation by Non-Invasive Markers with Emphasis to Milk Fatty Acids" Animals 13, no. 14: 2370. https://doi.org/10.3390/ani13142370
APA StyleAriko, T., Kaart, T., Ling, K., Henno, M., Jaakson, H., & Ots, M. (2023). Possibility to Estimate Same Day Energy Status of Dairy Cows during First Half of Lactation by Non-Invasive Markers with Emphasis to Milk Fatty Acids. Animals, 13(14), 2370. https://doi.org/10.3390/ani13142370