Productive Performance, Physiological Variables, and Carcass Quality of Finishing Pigs Supplemented with Ferulic Acid and Grape Pomace under Heat Stress Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Grape Pomace Meal and Nutritional Components
2.2. Antioxidant Capacity, Phenolic Compounds Content and Chemical Characterization of GPM
Obtaining Extracts and Measurement of Phenolic Content in GPM
2.3. Animal Feeding Trial
2.3.1. Animals and Treatments
2.3.2. Productive Performance
2.4. Environmental Conditions and Physiological Variables
2.5. Slaughter and Carcass Traits
2.6. Blood Metabolites
2.7. Statistical Analysis
3. Results
3.1. Quantification and Identification of Phenolic Compounds and Capacity Antioxidant of GPM
3.2. Environmental Conditions and Physiological Variables
3.3. Productive Performance of Pigs and Carcass Quality
3.4. Relative Organ Weight of Finishing Pigs
3.5. Hormonal Levels, Hematological and Biochemical Parameters of Finishing Pigs
4. Discussion
4.1. Physiological Variables
4.2. Productive Performance and Carcass Traits
4.3. Relative Organ Weights of Finishing Pigs
4.4. Hematological and Biochemical Variables and Hormone Levels
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mayorga, E.J.; Kvidera, S.K.; Horst, E.A.; Al-Qaisi, M.; McCarthy, C.S.; Abeyta, M.A.; Lei, S.; Elsasser, T.H.; Kahl, S.; Kiros, T.G.; et al. Effects of Dietary Live Yeast Supplementation on Growth Performance and Biomarkers of Metabolism and Inflammation in Heat-Stressed and Nutrient-Restricted Pigs. Transl. Anim. Sci. 2021, 5, txab072. [Google Scholar] [CrossRef] [PubMed]
- Mayorga, E.J.; Renaudeau, D.; Ramirez, B.C.; Ross, J.W.; Baumgard, L.H. Heat Stress Adaptations in Pigs. Anim. Front. 2019, 9, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Santos Araújo, T.; Prezotto, C.F.; Lucci, J.R.; Nunes, M.B.; Peconick, A.P.; Vicente De Sousa, R. Metabolic Changes in Swine Caused by β-Adrenergic Receptors Agonists: A Ractopamine Review. Rev. Eletrônica De Pesqui. Anim. 2014, 02, 62–77. [Google Scholar]
- Niño, A.M.M.; Granja, R.H.M.M.; Wanschel, A.C.B.A.; Salerno, A.G. The Challenges of Ractopamine Use in Meat Production for Export to European Union and Russia. Food Control 2017, 72, 289–292. [Google Scholar] [CrossRef]
- Mohammadi Gheisar, M.; Kim, I.H. Phytobiotics in Poultry and Swine Nutrition–a Review. Ital. J. Anim. Sci. 2018, 17, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela-Grijalva, N.; Jiménez-Estrada, I.; Mariscal-tovar, S.; López-García, K.; Pinelli-Saavedra, A.; Peña-Ramos, E.A.; Muhlia-Almazán, A.; Zamorano-García, L.; Valenzuela-Melendres, M.; González-Ríos, H. Effects of Ferulic Acid Supplementation on Growth Performance, Carcass Traits and Histochemical Characteristics. Animals 2021, 11, 2455. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Y.; Jia, G.; Zhao, H.; Liu, G.; Huang, Z. Ferulic Acid Regulates Muscle Fiber Type Formation through the Sirt1/AMPK Signaling Pathway. Food Funct. 2019, 10, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Lia, Y.J.; Lia, L.Y.; Li, J.L.; Zhang, L.; Gao, F.; Zhou, G.H. Effects of Dietary Supplementation with Ferulic Acid or Vitamin E Individually or in Combination on Meat Quality and Antioxidant Capacity of Finishing Pigs. Asian-Australas J. Anim. Sci. 2015, 28, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Chikazawa, M.; Sato, R. Identification of a Novel Function of Resveratrol and Genistein as a Regulator of β 2 -Adrenergic Receptor Expression in Skeletal Muscle Cells and Characterization of Promoter Elements Required for Promoter Activation. Mol. Nutr. Food Res. 2018, 62, 1800530. [Google Scholar] [CrossRef] [PubMed]
- Kafantaris, I.; Stagos, D.; Kotsampasi, B.; Hatzis, A.; Kypriotakis, A.; Gerasopoulos, K.; Makri, S.; Goutzourelas, N.; Mitsagga, C.; Giavasis, I.; et al. Grape Pomace Improves Performance, Antioxidant Status, Fecal Microbiota and Meat Quality of Piglets. Animal 2018, 12, 246–255. [Google Scholar] [CrossRef] [Green Version]
- Sonam, K.S.; Guleria, S. Synergistic Antioxidant Activity of Natural Products. Ann. Pharmacol. Pharm. 2017, 2, 1086. [Google Scholar]
- Taranu, I.; Habeanu, M.; Gras, M.A.; Pistol, G.C.; Lefter, N.; Palade, M.; Ropota, M.; Sanda Chedea, V.; Marin, D.E. Assessment of the Effect of Grape Seed Cake Inclusion in the Diet of Healthy Fattening-Finishing Pigs. J. Anim. Physiol. Anim. Nutr. 2017, 102, e30–e42. [Google Scholar] [CrossRef]
- Mahfuz, S.; Shang, Q.; Piao, X. Phenolic Compounds as Natural Feed Additives in Poultry and Swine Diets: A Review. J. Anim. Sci. Biotechnol. 2021, 12, 48. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, FL, USA, 2000.
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Martín-Hernández, C.S.; Martínez-Téllez, M.Á.; de la Rocha, R.V.; Sañudo-Barajas, A.J.A.; Quintana-Obregón, E.A. Characterization of Cabernet, Grenache, and Syrah Grape Marc Powders Produced in Northwestern Mexico. Emir. J. Food Agric. 2021, 33, 846–851. [Google Scholar]
- Park, Y.K.; Ikegaki, M.; Abreu, J.A.d.S.; Alcici, N.M.F. Estudo Da Preparação Dos Extratos de Própolis e Suas Aplicações. Food Sci. Technol. 1998, 18, 313–318. [Google Scholar] [CrossRef]
- Bernardi, T.; Bortolini, O.; Massi, A.; Sacchetti, G.; Tacchini, M.; De Risi, C. Exploring the Synergy between HPTLC and HPLC-DAD for the Investigation of Wine-Making by-Products. Molecules 2019, 24, 3216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NOM-051-ZOO-1995; Norma Oficial Mexicana. Trato humanitario en la movilización de animales. Secretaría de Agricultura y Desarrollo Rural: Mexico City, Mexico, 1995.
- NOM-033-ZOO-1995; Norma Oficial Mexicana. Sacrificio humanitario de los animales domésticos y silvestres. Secretaría de Agricultura y Desarrollo Rural: Mexico City, Mexico, 1995.
- NRC. Nutrient Requirements of Swine, 10th ed.; National Academy Press: Washington, DC, USA, 1998. [Google Scholar]
- Cao, M.; Zong, C.; Zhuang, Y.; Teng, G.; Zhou, S.; Yang, T. Modeling of Heat Stress in Sows Part 2: Comparison of Various Thermal Comfort Indices. Animals 2021, 11, 1498. [Google Scholar] [CrossRef]
- NPPC. Pork Quality Standards; National Pork Producers Council: Des Moines, IA, USA, 1999. [Google Scholar]
- Wang, W.; Wen, C.; Guo, Q.; Li, J.; He, S.; Yin, Y. Dietary Supplementation With Chlorogenic Acid Derived From Lonicera Macranthoides Hand-Mazz Improves Meat Quality and Muscle Fiber Characteristics of Finishing Pigs via Enhancement of Antioxidant Capacity. Front. Physiol. 2021, 12, 650084. [Google Scholar] [CrossRef]
- da Fonseca de Oliveira, A.C.; Vanelli, K.; Sotomaior, C.S.; Weber, S.H.; Costa, L.B. Impacts on Performance of Growing-Finishing Pigs under Heat Stress Conditions: A Meta-Analysis. Vet. Res. Commun. 2019, 43, 37–43. [Google Scholar] [CrossRef]
- Soerensen, D.D.; Pedersen, L.J. Infrared Skin Temperature Measurements for Monitoring Health in Pigs: A Review. Acta Vet. Scand. 2015, 57, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavelli, V.; Gallotti, F.; Pedrali, D. Application of Compounds from Grape Processing By-Products: Formulation of Dietary Fiber and Encapsulated Bioactive Compounds; Galanakis, C.M., Ed.; Academic Press: Gaithesburg, MD, USA, 2021. [Google Scholar]
- Gambacorta, G.; Antonacci, D.; Pati, S.; la Gatta, M.; Faccia, M.; Coletta, A.; la Notte, E. Influence of Winemaking Technologies on Phenolic Composition of Italian Red Wines. Eur. Food Res. Technol. 2011, 233, 1057–1066. [Google Scholar] [CrossRef]
- Zhijing, Y.; Harrison, R.; Cheng, V.I.; Bekhit, A.E.A. Wine Making By-Products. In Valorization of Wine Making by-Products; Bordiga, M., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 73–116. [Google Scholar]
- Vlaicu, P.A.; Panaite, T.D.; Turcu, R.P. Enriching Laying Hens Eggs by Feeding Diets with Different Fatty Acid Composition and Antioxidants. Sci. Rep. 2021, 11, 20707. [Google Scholar] [CrossRef] [PubMed]
- Nicolás-López, P.; Macías-Cruz, U.; Avendaño-Reyes, L.; Valadez-García, K.M.; Mellado, M.; Meza-Herrera, C.A.; Díaz-Molina, R.; Castañeda, V.J.; Vicente-Pérez, R.; Luna-Palomera, C. Ferulic Acid Supplementation for 40 Days in Hair Ewe Lambs Experiencing Seasonal Heat Stress: Short-Term Effects on Physiological Responses, Growth, Metabolism, and Hematological Profile. Environ. Sci. Pollut. Res. 2022, 30, 11562–11571. [Google Scholar] [CrossRef]
- Le, H.H.; Shakeri, M.; Suleria, H.A.R.; Zhao, W.; McQuade, R.M.; Phillips, D.J.; Vidacs, E.; Furness, J.B.; Dunshea, F.R.; Artuso-Ponte, V.; et al. Betaine and Isoquinoline Alkaloids Protect against Heat Stress and Colonic Permeability in Growing Pigs. Antioxidants 2020, 9, 1024. [Google Scholar] [CrossRef]
- Meng, Q.; Li, J.; Wang, C.; Shan, A. Biological Function of Resveratrol and Its Application in Animal Production: A Review. J. Anim. Sci. Biotechnol. 2023, 14, 25. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, L.; Zhao, X.; Chen, X.; Wang, L.; Geng, Z. Effect of Dietary Resveratrol Supplementation on Meat Quality, Muscle Antioxidative Capacity and Mitochondrial Biogenesis of Broilers. J. Sci. Food Agric. 2018, 98, 1216–1221. [Google Scholar] [CrossRef]
- Huynh, T.T.T.; Aarnink, A.J.A.; Verstegen, M.W.A.; Gerrits, W.J.J.; Heetkamp, M.J.W.; Kemp, B.; Canh, T.T. Effects of Increasing Temperatures on Physiological Changes in Pigs at Different Relative Humidities. J. Anim. Sci. 2005, 83, 1385–1396. [Google Scholar] [CrossRef]
- Valadez-García, K.M.; Avendaño-Reyes, L.; Díaz-Molina, R.; Mellado, M.; Meza-Herrera, C.A.; Correa-Calderón, A.; Macías-Cruz, U. Free Ferulic Acid Supplementation of Heat-Stressed Hair Ewe Lambs: Oxidative Status, Feedlot Performance, Carcass Traits and Meat Quality. Meat. Sci. 2021, 173, 108395. [Google Scholar] [CrossRef]
- Horvath, C.; Wolfrum, C. Feeding Brown Fat: Dietary Phytochemicals Targeting Non-Shivering Thermogenesis to Control Body Weight. In Proceedings of the Nutrition Society; Cambridge University Press: Cambridge, UK, 2020; Volume 79, pp. 338–356. [Google Scholar]
- Bogolyubov, N.V.; Chabaev, M.G.; Fomichev, Y.P.; Tsis, E.Y.; Semenova, A.A.; Nekrasov, R.V. Ways to Reduce Adverse Effects of Stress in Pigs Using Nutritional Factors. Ukr. J. Ecol. 2019, 9, 239–245. [Google Scholar] [CrossRef]
- Zou, Y.; Xiang, Q.; Wang, J.; Wei, H.; Peng, J. Effects of Oregano Essential Oil or Quercetin Supplementation on Body Weight Loss, Carcass Characteristics, Meat Quality and Antioxidant Status in Finishing Pigs under Transport Stress. Livest. Sci. 2016, 192, 33–38. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Stanisavljević, N.S.; Kostić, A.; Soković Bajić, S.; Kojić, M.O.; Gašić, U.M.; Barać, M.B.; Stanojević, S.P.; Lj Tešić, Ž.; Pešić, M.B. Phenolic Compounds and Biopotential of Grape Pomace Extracts from Prokupac Red Grape Variety. LWT 2021, 138, 110739. [Google Scholar] [CrossRef]
- Jiang, D.; Peterson, D.G. Role of Hydroxycinnamic Acids in Food Flavor: A Brief Overview. Phytochem. Rev. 2010, 9, 187–193. [Google Scholar] [CrossRef]
- Solà-Orio, D.; Roura, E.; Torrallardona, D. Feed Preference in Pigs: Effect of Selected Protein, Fat, and Fiber Sources at Different Inclusion Rates. J. Anim. Sci. 2011, 89, 3219–3227. [Google Scholar] [CrossRef]
- Skroza, D.; Šimat, V.; Vrdoljak, L.; Jolić, N.; Skelin, A.; Čagalj, M.; Frleta, R.; Generalić Mekinić, I. Investigation of Antioxidant Synergisms and Antagonisms among Phenolic Acids in the Model Matrices Using FRAP and ORAC Methods. Antioxidants 2022, 11, 1784. [Google Scholar] [CrossRef]
- Moset, V.; Piquer, O.; Cervera, C.; Fernández, C.J.; Hernández, P.; Cerisuelo, A. Ensiled Citrus Pulp as a By-Product Feedstuff for Finishing Pigs: Nutritional Value and Effects on Intestinal Microflora and Carcass Quality. Span. J. Agric. Res. 2015, 13, e0607. [Google Scholar] [CrossRef]
- Biondi, L.; Luciano, G.; Cutello, D.; Natalello, A.; Mattioli, S.; Priolo, A.; Lanza, M.; Morbidini, L.; Gallo, A.; Valenti, B. Meat Quality from Pigs Fed Tomato Processing Waste. Meat Sci. 2020, 159, 107940. [Google Scholar] [CrossRef]
- Shi, B.; He, W.; Su, G.; Xu, X.; Shan, A. The Effect of Increasing Neutral Detergent Fiber Level through Different Fiber Feed Ingredients throughout the Gestation of Sows. Animals 2021, 11, 415. [Google Scholar] [CrossRef]
- Herrera, R.H.; Castillo, M.L.A.; Torres, A.J.A. Methods to Accelerate Muscle Development, Decrease Fat Deposits, and Enhance Feeding Efficiency in Pigs. U.S. Patent Application 20110046224A1, 24 February 2011. [Google Scholar]
- Cai, W.; Casey, D.S.; Dekkers, J.C.M. Selection Response and Genetic Parameters for Residual Feed Intake in Yorkshire Swine. J. Anim. Sci. 2008, 86, 287–298. [Google Scholar] [CrossRef]
- Gilbert, H.; Billon, Y.; Brossard, L.; Faure, J.; Gatellier, P.; Gondret, F.; Labussière, E.; Lebret, B.; Lefaucheur, L.; Le Floch, N.; et al. Review: Divergent Selection for Residual Feed Intake in the Growing Pig. Animal 2017, 11, 1427–1439. [Google Scholar] [CrossRef] [Green Version]
- Zebua, C.K.N.; Muladno, M.; Siagian, P.H. Comparative Performance of Landrace, Yorkshire and Duroc Breeds of Swine. J. Indones. Trop. Anim. Agric. 2017, 42, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Avalos, L.G.; Lemus-Flores, C.; Bugarín-Prado, J.O.; Grageola-Núñez, F.; Ayala-Valdovinos, M.A.; Duifhuis-Rivera, T.; Moo-Huchin, V.M.; Dzib-Cauich, D. Efecto de Dietas Con Harina de Aguacate Sobre Lípidos En Músculo, Antioxidantes y Expresión de Genes En Cerdos Finalizados. Rev. Bio Cienc. 2020, 7, e968. [Google Scholar] [CrossRef]
- Chen, X.; Liang, D.; Huang, Z.; Jia, G.; Zhao, H.; Liu, G. Quercetin Regulates Skeletal Muscle Fiber Type Switching: Via Adiponectin Signaling. Food Funct. 2021, 12, 2693–2702. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Cheng, X.; Cui, Y.; Xia, Q.; Yan, X.; Zhang, M.; Lan, G.; Liu, J.; Shan, T.; Huang, Y. Resveratrol Regulates Skeletal Muscle Fibers Switching through the AdipoR1-AMPK-PGC-1α Pathway. Food Funct. 2019, 10, 3334–3343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Li, Y.; Xiao, Y.; Peng, Y.; He, J.; Chen, C.; Xiao, D.; Yin, Y.; Li, F. Mulberry Leaf Powder Regulates Antioxidative Capacity and Lipid Metabolism in Finishing Pigs. Anim. Nutr. 2021, 7, 421–429. [Google Scholar] [CrossRef]
- Barszcz, M.; Taciak, M.; Tuśnio, A.; Skomiał, J. Effects of Dietary Level of Tannic Acid and Protein on Internal Organ Weights and Biochemical Blood Parameters of Rats. PLoS ONE 2018, 13, e0190769. [Google Scholar] [CrossRef] [Green Version]
- Dávila-Ramírez, J.L.; Munguía-Acosta, L.L.; Morales-Coronado, J.G.; García-Salinas, A.D.; González-Ríos, H.; Celaya-Michel, H.; Sosa-Castañeda, J.; Sánchez-Villalba, E.; Anaya-Islas, J.; Barrera-Silva, M.A. Addition of a Mixture of Plant Extracts to Diets for a Percentage of Live Weight, Quality and Sensorial Analysis of Meat. Animals 2020, 10, 1229. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Aalhus, J.L.; Jones, S.D.M.; Schaefer, A.L.; Tong, A.K.W.; Robertson, W.M.; Murray, A.C.; Merrill, J.K. The Effect of Ractopamine on Performance, Carcass Composition and Meat Quality of Finishing Pigs. Can. J. Anim. Sci. 1990, 70, 934–952. [Google Scholar] [CrossRef]
- Bergstrom, J.R.; Skaar, G.R.; Houser, T.A.; Tokach, M.D.; Dritz, S.S.; Nelssen, J.L.; Goodband, R.D.; DeRouchey, J.M. Effects of Dietary Astaxanthin and Ractopamine HCl on the Growth and Carcass Characteristics of Finishing Pigs and the Color Shelf-Life of Longissimus Chops from Barrows and Gilts. Kans. Agric. Exp. Stn. Res. Rep. 2011, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Njoku, P.; Adeyemi, A.; Sogunle, A.; Aina, B. Growth Performance, Carcass Yield and Organ Weight of Growing Pigs Fed Different Levels of Feed. Slovak J. Anim. Sci. 2015, 48, 16–22. [Google Scholar]
- De Lange, C.F.M.M.Z.S.A. Optimum Dietary Levels for Grower Finisher Short Distances to Slaughter. In Proceedings of the Centralia Swinw Research Update, Ontario, TO, Canada, 29 January 2003; pp. 25–27. [Google Scholar]
- Heras-Molina, A.; Pesantez-Pacheco, J.L.; Astiz, S.; Garcia-Contreras, C.; Vazquez-Gomez, M.; Encinas, T.; Óvilo, C.; Isabel, B.; Gonzalez-Bulnes, A. Maternal Supplementation with Polyphenols and Omega-3 Fatty Acids during Pregnancy: Effects on Growth, Metabolism, and Body Composition of the Offspring. Animals 2020, 10, 1946. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.M.; Singh, S.; Ganguly, I.; Ganguly, A.; Nachiappan, R.K.; Chopra, A.; Narula, H.K. Evaluation of Indian Sheep Breeds of Arid Zone under Heat Stress Condition. Small Rumin. Res. 2016, 141, 113–117. [Google Scholar] [CrossRef]
- Habibu, B.; Dzenda, T.; Ayo, J.O.; Yaqub, L.S.; Kawu, M.U. Haematological Changes and Plasma Fluid Dynamics in Livestock during Thermal Stress, and Response to Mitigative Measures. Livest. Sci. 2018, 214, 189–201. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.H.; Yang, L.; Chen, X.Y.; Jiang, R.S.; Jin, S.H.; Geng, Z.Y. Resveratrol Alleviates Heat Stress-Induced Impairment of Intestinal Morphology, Microflora, and Barrier Integrity in Broilers. Poult Sci. 2017, 96, 4325–4332. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Sun, C.; Li, F.; Xie, Y.; Liang, T.; Yang, Y.; Shi, B.; Ma, Q.; Shi, Z.; Chai, S.; et al. Effect of Gardenia Pomace Supplementation on Growth Performance, Blood Metabolites, Immune and Antioxidant Indices, and Meat Quality in Xiangcun Pigs. Animals 2022, 12, 2280. [Google Scholar] [CrossRef]
- Lumsden, J.H.; Mcmillan, I.; Friendship, R.M.; Lumsden, J.H.; Mcmillan, I.; Wilson, M.R. Hematology and Biochemistry Reference Values for Ontario Swine. Can. J. Comp. Med. 2014, 48, 390–393. [Google Scholar]
- Zhou, T.X.; Zhang, Z.F.; Kim, I.H. Effects of Dietary Coptis Chinensis Herb Extract on Growth Performance, Nutrient Digestibility, Blood Characteristics and Meat Quality in Growing-Finishing Pigs. Asian-Australas J. Anim. Sci. 2013, 26, 108–115. [Google Scholar] [CrossRef]
- Yan, L.; Meng, Q.W.; Kim, I.H. Effect of an Herb Extract Mixture on Growth Performance, Nutrient Digestibility, Blood Characteristics, and Fecal Microbial Shedding in Weanling Pigs. Livest. Sci. 2012, 145, 189–195. [Google Scholar] [CrossRef]
- Hasan, S.; Hossain, M.M.; Alam, J.; Bhuiyan, M.E.R. Beneficial Effects of Probiotic on Growth Perfirmance and Hemato-Biochemical Parameters in Broilers during Heat Stress. Int. J. Innov. Appl. Stud. 2015, 10, 244–249. [Google Scholar]
- Nicolás-López, P.; Macías-Cruz, U.; Mellado, M.; Correa-Calderón, A.; Meza-Herrera, C.A.; Avendaño-Reyes, L. Growth Performance and Changes in Physiological, Metabolic and Hematological Parameters Due to Outdoor Heat Stress in Hair Breed Male Lambs Finished in Feedlot. Int. J. Biometeorol. 2021, 65, 1451–1459. [Google Scholar] [CrossRef]
- Tsang, C.; Hodgson, L.; Bussu, A.; Farhat, G.; Al-Dujaili, E. Effect of Polyphenol-Rich Dark Chocolate on Salivary Cortisol and Mood in Adults. Antioxidants 2019, 8, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohana Devi, S.; Park, J.W.; Kim, I.H. Effect of Plant Extracts on Growth Performance and Insulin-like Growth Factor 1 Secretion in Growing Pigs. Rev. Bras. De Zootec. 2015, 44, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.M.; Wei, Y.; Wang, Z.S.; Wu, D.; Zhou, A.G.; Liu, G.L. Effects of Herbal Extract Supplementation on Growth Performance, and Insulin-like Growth Factor (IGF)-I System in Finishing Pigs. J. Anim. Feed Sci. 2008, 17, 538–547. [Google Scholar] [CrossRef] [Green Version]
Ingredients | Treatments 1 | |||
---|---|---|---|---|
Control | FA | GPM | MIX | |
Wheat grain, % | 76.2 | 76.2 | 73.7 | 73.7 |
Soybean meal, % | 17.0 | 17.0 | 17.0 | 17.0 |
Vegetable oil, % | 4.4 | 4.4 | 4.4 | 4.4 |
Premix 2, % | 2.4 | 2.4 | 2.4 | 2.4 |
GPM, % | 0.0 | 0.0 | 2.5 | 2.5 |
FA, mg/kg | -- | 25 | -- | 25 |
Proximate Composition | ||||
Crude protein, % | 14.0 | 14.0 | 13.9 | 13.9 |
Moisture, % | 11.9 | 11.9 | 11.9 | 11.9 |
Fat, % | 7.0 | 7.0 | 7.0 | 7.0 |
Fiber crude, % | 2.0 | 2.0 | 2.1 | 2.1 |
Ash, % | 7.0 | 7.0 | 7.0 | 7.0 |
NFE 3, % | 58.1 | 58.1 | 58.1 | 58.1 |
ME 4, Mcal/kg | 3.35 | 3.35 | 3.34 | 3.34 |
Variable | Value |
---|---|
Total phenols compounds, mg GAE/g | 20.81 |
Flavonoids, mg/CE/g | 11.30 |
Hydrolysable Tannins, mg GAE/g | 3.34 |
Condensed Tannins, mg/CE/g | 0.8 |
Anthocyanins, mg/CE/g | 1.08 |
FRAP, µM TE/g | 104.7 |
TEAC, µM TE/g | 139.4 |
DPPH, µM TE/g | 114.8 |
Treatments | p-Values | ||||||||
---|---|---|---|---|---|---|---|---|---|
FA, mg | GPM, % | FA | GPM | FA × GPM | |||||
0 | 25 | 0 | 2.5 | SEM | |||||
AM | RT, °C | 38.65 | 38.7 | 38.69 | 38.66 | 0.004 | 0.521 | 0.611 | 0.931 |
RR, bpm | 51.9 | 50.59 | 53.26 | 49.23 | 2.30 | 0.694 | 0.232 | 0.963 | |
PM | RT, °C | 39.39 | 39.46 | 39.4 | 39.45 | 0.005 | 0.361 | 0.551 | 0.162 |
RR, bpm | 82.55 | 82.21 | 83.23 | 81.51 | 3.57 | 0.673 | 0.496 | 0.622 |
Variable | Treatments | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
FA | 0 | 25 mg | FA | GPM | FA × GPM | ||||
GPM | 0 | 2.5% | 0 | 2.5% | SEM | ||||
IBW, kg | 79.37 | 80.86 | 81.06 | 79.62 | 2.92 | 0.931 | 0.991 | 0.624 | |
FBW, kg | 116.03 | 119.09 | 116.28 | 116.62 | 1.38 | 0.432 | 0.331 | 0.231 | |
ADG, kg | 1.15 | 1.27 | 1.17 | 1.16 | 0.04 | 0.273 | 0.224 | 0.144 | |
FI, kg DM/d | 2.74 a | 2.99 b | 2.86 ab | 2.76 a | 0.08 | 0.461 | 0.344 | 0.038 | |
FC, kg DM | 2.39 | 2.38 | 2.40 | 2.39 | 0.07 | 0.552 | 0.617 | 0.692 |
Variables | Treatments | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
FA | 0 | 25 mg | FA | GPM | FA × GPM | ||||
GPM | 0 | 2.5% | 0 | 2.5% | SEM | ||||
HCW, kg | 87 | 86.06 | 87.11 | 88.59 | 0.75 | 0.088 * | 0.728 | 0.123 | |
CCW, kg | 85.85 | 84.68 | 86.17 | 87.25 | 0.74 | 0.063 * | 0.956 | 0.152 | |
HCW yields, % | 82.41 | 81.21 | 82.62 | 83.61 | 0.53 | 0.022 | 0.851 | 0.056* | |
CCW yields, % | 81.56 | 80.39 | 82.1 | 82.72 | 0.58 | 0.020 | 0.652 | 0.144 | |
pH24 | 5.52 | 5.51 | 5.5 | 5.5 | 0.04 | 0.741 | 0.913 | 0.841 | |
Backfat thickness, mm | 10.41 | 10.07 | 11.07 | 10.17 | 1.53 | 0.801 | 0.692 | 0.851 | |
Marbling score | 2.75 | 2.44 | 3.017 | 2.35 | 0.23 | 0.723 | 0.049 | 0.472 | |
Loin area, cm2 | 57.23 | 59.77 | 59.49 | 61.4 | 1.25 | 0.13 | 0.095 * | 0.822 |
Relative Weight Organ | Treatments | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
FA | 0 | 25 mg | FA | GPM | FA × GPM | ||||
GPM | 0 | 2.5% | 0 | 2.5% | SEM | ||||
Liver, % | 1.59 ab | 1.69 a | 1.60 ab | 1.50 b | 0.04 | 0.078 * | 0.982 | 0.040 | |
Spleen, % | 0.17 | 0.18 | 0.18 | 0.17 | 0.01 | 0.867 | 0.831 | 0.279 | |
Heart, % | 0.36 | 0.36 | 0.35 | 0.36 | 0.02 | 0.744 | 0.803 | 0.983 | |
Lung, % | 1.02 | 0.99 | 0.97 | 0.87 | 0.05 | 0.106 | 0.225 | 0.537 | |
Stomach, % | 0.52 | 0.57 | 0.52 | 0.50 | 0.02 | 0.138 | 0.657 | 0.138 | |
Kidney, % | 0.34 | 0.34 | 0.37 | 0.33 | 0.01 | 0.458 | 0.233 | 0.212 |
Variables | Treatments | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
FA | 0 | 25 mg | SEM | FA | GPM | FA × GPM | |||
GPM | 0 | 2.5% | 0 | 2.5% | |||||
Hematological parameters | |||||||||
Red blood cells (1012/µL) | 5.16 | 5.22 | 4.92 | 5.44 | 0.14 | 0.931 | 0.062 * | 0.137 | |
Hemoglobin, g/dL | 15.24 | 15.40 | 14.54 | 15.91 | 0.40 | 0.810 | 0.082 * | 0.169 | |
Hematocrit, % | 45.08 | 45.51 | 42.91 | 46.98 | 1.19 | 0.770 | 0.081 * | 0.158 | |
MCV, fL | 87.1 ab | 87.09 ab | 87.28 a | 86.33 b | 0.19 | 0.170 | 0.031 | 0.050 | |
MCH, pg | 29.55 | 28.34 | 29.47 | 29.56 | 0.61 | 0.533 | 0.268 | 0.469 | |
MCHC, g/dL | 33.81 | 33.87 | 33.87 | 33.84 | 0.02 | 0.200 | 0.882 | 0.331 | |
RDW-CV, % | 18.07 | 18.61 | 19.66 | 18.5 | 0.64 | 0.273 | 0.665 | 0.256 | |
Platelets (103/µL) | 218.0 | 220.3 | 163.8 | 224.6 | 25.5 | 0.349 | 0.245 | 0.275 | |
White blood cells (109/µL) | 15.32 | 17.44 | 17.039 | 17.236 | 1.32 | 0.584 | 0.409 | 0.483 | |
Granulocytes, % | 35.39 | 33.45 | 39.51 | 34.33 | 2.77 | 0.384 | 0.259 | 0.577 | |
Lymphocytes, % | 52.13 | 56.03 | 50.34 | 54.40 | 2.53 | 0.512 | 0.184 | 0.975 | |
Medium cells, % | 11.1 | 9.99 | 11.02 | 10.44 | 1.53 | 0.905 | 0.609 | 0.865 | |
Biochemical parameters | |||||||||
Glucose, mg/dL | 66.55 | 69.035 | 69.41 | 76.76 | 5.16 | 0.290 | 0.345 | 0.729 | |
Total proteins, g/dL | 6.475 | 6.493 | 6.524 | 6.347 | 0.22 | 0.839 | 0.733 | 0.674 | |
Albumin, g/dL | 4.163 | 3.457 | 3.147 | 3.416 | 0.30 | 0.221 | 0.264 | 0.268 | |
Globulins, g/dL | 2.436 | 3.008 | 3.064 | 2.867 | 0.30 | 0.440 | 0.550 | 0.220 | |
A: G ratio | 2.3 | 1.276 | 1.243 | 1.166 | 0.51 | 0.281 | 0.312 | 0.379 | |
CK, U/L | 1290.5 | 1695.6 | 1141.6 | 1430.9 | 226.3 | 0.386 | 0.148 | 0.813 | |
Hormonal levels | |||||||||
Cortisol, µg/dL | 2.189 | 1.563 | 2.275 | 1.66 | 0.39 | 0.82 | 0.155 | 0.982 | |
GH, ng/mL | 0.143 | 0.086 | 0.036 | 0.456 | 0.20 | 0.572 | 0.400 | 0.309 | |
IGF-1, ng/mL | 158.37 | 102.02 | 132.05 | 155.73 | 26.61 | 0.634 | 0.551 | 0.164 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ospina-Romero, M.A.; Medrano-Vázquez, L.S.; Pinelli-Saavedra, A.; Sánchez-Villalba, E.; Valenzuela-Melendres, M.; Martínez-Téllez, M.Á.; Barrera-Silva, M.Á.; González-Ríos, H. Productive Performance, Physiological Variables, and Carcass Quality of Finishing Pigs Supplemented with Ferulic Acid and Grape Pomace under Heat Stress Conditions. Animals 2023, 13, 2396. https://doi.org/10.3390/ani13142396
Ospina-Romero MA, Medrano-Vázquez LS, Pinelli-Saavedra A, Sánchez-Villalba E, Valenzuela-Melendres M, Martínez-Téllez MÁ, Barrera-Silva MÁ, González-Ríos H. Productive Performance, Physiological Variables, and Carcass Quality of Finishing Pigs Supplemented with Ferulic Acid and Grape Pomace under Heat Stress Conditions. Animals. 2023; 13(14):2396. https://doi.org/10.3390/ani13142396
Chicago/Turabian StyleOspina-Romero, María A., Leslie S. Medrano-Vázquez, Araceli Pinelli-Saavedra, Esther Sánchez-Villalba, Martín Valenzuela-Melendres, Miguel Ángel Martínez-Téllez, Miguel Ángel Barrera-Silva, and Humberto González-Ríos. 2023. "Productive Performance, Physiological Variables, and Carcass Quality of Finishing Pigs Supplemented with Ferulic Acid and Grape Pomace under Heat Stress Conditions" Animals 13, no. 14: 2396. https://doi.org/10.3390/ani13142396
APA StyleOspina-Romero, M. A., Medrano-Vázquez, L. S., Pinelli-Saavedra, A., Sánchez-Villalba, E., Valenzuela-Melendres, M., Martínez-Téllez, M. Á., Barrera-Silva, M. Á., & González-Ríos, H. (2023). Productive Performance, Physiological Variables, and Carcass Quality of Finishing Pigs Supplemented with Ferulic Acid and Grape Pomace under Heat Stress Conditions. Animals, 13(14), 2396. https://doi.org/10.3390/ani13142396