Epidemiological Characterization of Isolates of Salmonella enterica and Shiga Toxin-Producing Escherichia coli from Backyard Production System Animals in the Valparaíso and Metropolitana Regions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Size Calculation
2.2. Sample Collection and Microbiological Analysis
2.3. Determination of S. enterica and/or STEC Positivity Rate
2.4. Determination of Risk Factors for S. enterica and/or STEC Positivity
2.5. Determination of Antimicrobial Resistance in S. enterica and STEC Isolates
3. Results
3.1. S. enterica and STEC Positivity Rate in BPS from Valparaíso and Metropolitana Regions
3.2. Risk Factor Analysis for S. enterica, STEC, and S. enterica/STEC in BPS from Valparaíso and Metropolitana Regions
3.3. Antimicrobial Resistance Profiles of S. enterica and STEC Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Engering, A.; Hogerwerf, L.; Slingenbergh, J. Pathogen–host–environment interplay and disease emergence. Emerg. Microbes Infect. 2013, 2, e5. [Google Scholar] [CrossRef] [PubMed]
- Graziani, C.; Losasso, C.; Luzzi, I.; Ricci, A.; Scavia, G.; Pasquali, P. Chapter 5—Salmonella. In Foodborne Diseases, 3rd ed.; Dodd, C.E.R., Aldsworth, T., Stein, R.A., Cliver, D.O., Riemann, H.P., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 133–169. [Google Scholar] [CrossRef]
- Smith, J.L.; Fratamico, P.M. Chapter 7—Escherichia coli as a Pathogen∗. In Foodborne Diseases, 3rd ed.; Dodd, C.E.R., Aldsworth, T., Stein, R.A., Cliver, D.O., Riemann, H.P., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 189–208. [Google Scholar] [CrossRef]
- Zhang, H.; Yamamoto, E.; Murphy, J.; Carrillo, C.; Locas, A. Shiga Toxin–Producing Escherichia coli (STEC) and STEC-Associated Virulence Genes in Raw Ground Pork in Canada. J. Food Prot. 2021, 84, 1956–1964. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.C.; Retamal, P.; Rojas-Aedo, J.F.; Fernández, J.; Fernández, A.; Lapierre, L. Multidrug-Resistant Outbreak-Associated Salmonella Strains in Irrigation Water from the Metropolitan Region, Chile. Zoonoses Public Health 2017, 64, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Plowright, R.K.; Parrish, C.R.; McCallum, H.; Hudson, P.J.; Ko, A.I.; Graham, A.L.; Lloyd-Smith, J.O. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 2017, 15, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.L.; Fratamico, P.M. Emerging and Re-Emerging Foodborne Pathogens. Foodborne Pathog. Dis. 2018, 15, 737–757. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17, e05926. [Google Scholar] [CrossRef] [Green Version]
- CDC. Outbreak of Salmonella Infections Linked to Backyard Poultry. 2020. Available online: https://www.cdc.gov/salmonella/backyardpoultry-05-20/index.html (accessed on 15 April 2023).
- Wibisono, F.M.; Wibisono, F.J.; Effendi, M.H.; Plumeriastuti, H.; Hidayatullah, A.R.; Hartadi, E.B.; Sofiana, E.D. A review of salmonellosis on poultry farms: Public health importance. Syst. Rev. Pharm. 2020, 11, 481–486. [Google Scholar]
- Scaife, H.R.; Cowan, D.; Finney, J.; Kinghorn-Perry, S.F.; Crook, B. Wild rabbits (Oryctolagus cuniculus) as potential carriers of verocytotoxin-producing Escherichia coli. Vet. Rec. 2006, 159, 175–178. [Google Scholar] [CrossRef]
- Ferens, W.A.; Hovde, C.J. Escherichia coli O157:H7: Animal Reservoir and Sources of Human Infection. Foodborne Pathog. Dis. 2010, 8, 465–487. [Google Scholar] [CrossRef] [Green Version]
- Persad Anil, K.; LeJeune Jefrey, T. Animal Reservoirs of Shiga Toxin-Producing Escherichia coli. Microbiol. Spectr. 2014, 2, 2.4.23. [Google Scholar] [CrossRef]
- Bryan, A.; Youngster, I.; McAdam, A.J. Shiga Toxin Producing Escherichia coli. Clin. Lab. Med. 2015, 35, 247–272. [Google Scholar] [CrossRef]
- Barreto, M.; Castillo-Ruiz, M.; Retamal, P. Salmonella enterica: Una revisión de la trilogía agente, hospedero y ambiente, y su trascendencia en Chile. Rev. Chil. Infectología 2016, 33, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Alegria-Moran, R.; Rivera, D.; Toledo, V.; Moreno-Switt, A.I.; Hamilton-West, C. First detection and characterization of Salmonella spp. in poultry and swine raised in backyard production systems in central Chile. Epidemiol. Infect. 2017, 145, 3180–3190. [Google Scholar] [CrossRef] [Green Version]
- Dias, D.; Caetano, T.; Torres, R.T.; Fonseca, C.; Mendo, S. Shiga toxin-producing Escherichia coli in wild ungulates. Sci. Total Environ. 2019, 651, 203–209. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Liu, F.; Cheng, Y.; Su, J. Characterization of Salmonella enterica Isolates from Diseased Poultry in Northern China between 2014 and 2018. Pathogens 2020, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Hale, C.R.; Scallan, E.; Cronquist, A.B.; Dunn, J.; Smith, K.; Robinson, T.; Lathrop, S.; Tobin-D’Angelo, M.; Clogher, P. Estimates of Enteric Illness Attributable to Contact With Animals and Their Environments in the United States. Clin. Infect. Dis. 2012, 54, S472–S479. [Google Scholar] [CrossRef] [Green Version]
- Majowicz, S.E.; Scallan, E.; Jones-Bitton, A.; Sargeant, J.M.; Stapleton, J.; Angulo, F.J.; Yeung, D.H.; Kirk, M.D. Global Incidence of Human Shiga Toxin–Producing Escherichia coli Infections and Deaths: A Systematic Review and Knowledge Synthesis. Foodborne Pathog. Dis. 2014, 11, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Crump John, A.; Sjölund-Karlsson, M.; Gordon Melita, A.; Parry Christopher, M. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin. Microbiol. Rev. 2015, 28, 901–937. [Google Scholar] [CrossRef] [Green Version]
- Eng, S.-K.; Pusparajah, P.; Ab Mutalib, N.-S.; Ser, H.-L.; Chan, K.-G.; Lee, L.-H. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 2015, 8, 284–293. [Google Scholar] [CrossRef] [Green Version]
- ISP. Boletín de Vigilancia de Laboratorio de E. coli Productora de Toxina Shiga. Chile, 2010—2016; Gobierno de Chile: Santiago, Chile, 2017; Volume 7. [Google Scholar]
- Saeedi, P.; Yazdanparast, M.; Behzadi, E.; Salmanian, A.H.; Mousavi, S.L.; Nazarian, S.; Amani, J. A review on strategies for decreasing E. coli O157:H7 risk in animals. Microb. Pathog. 2017, 103, 186–195. [Google Scholar] [CrossRef]
- Lee, H.; Yoon, Y. Etiological Agents Implicated in Foodborne Illness World Wide. Food Sci. Anim. Resour. 2021, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.; Voisier, A.; Berríos, I.; Pitto, N.; Durán Agüero, S. Knowledge and application in hygienic practices in food preparation and self-report of food poisoning in Chilean homes. Rev. Chil. Infectología 2018, 35, 483–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISP. Boletín de Vigilancia de Laboratorio Salmonella spp. 2014–2018; Gobierno de Chile: Santiago, Chile, 2019; Volume 9. [Google Scholar]
- Conan, A.; Goutard, F.L.; Sorn, S.; Vong, S. Biosecurity measures for backyard poultry in developing countries: A systematic review. BMC Vet. Res. 2012, 8, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, J.T.; de Bruyn, J.; Bagnol, B.; Grieve, H.; Li, M.; Pym, R.; Alders, R.G. Small-scale poultry and food security in resource-poor settings: A review. Glob. Food Secur. 2017, 15, 43–52. [Google Scholar] [CrossRef]
- Di Pillo, F.; Anríquez, G.; Alarcón, P.; Jimenez-Bluhm, P.; Galdames, P.; Nieto, V.; Schultz-Cherry, S.; Hamilton-West, C. Backyard poultry production in Chile: Animal health management and contribution to food access in an upper middle-income country. Prev. Vet. Med. 2019, 164, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Pavez-Muñoz, E.; González, C.; Fernández-Sanhueza, B.; Sánchez, F.; Escobar, B.; Ramos, R.; Fuenzalida, V.; Galarce, N.; Arriagada, G.; Neira, V.; et al. Antimicrobial Usage Factors and Resistance Profiles of Shiga Toxin-Producing Escherichia coli in Backyard Production Systems from Central Chile. Front. Vet. Sci. 2021, 7, 595149. [Google Scholar] [CrossRef]
- Fleming, D.A.; Abler, D.G.; Goetz, S.J. Agricultural trade and poverty in Chile: A spatial analysis of product tradability. Agric. Econ. 2010, 41, 545–553. [Google Scholar] [CrossRef]
- Hamilton-West, C.; Rojas, H.; Pinto, J.; Orozco, J.; Hervé-Claude, L.P.; Urcelay, S. Characterization of backyard poultry production systems and disease risk in the central zone of Chile. Res. Vet. Sci. 2012, 93, 121–124. [Google Scholar] [CrossRef]
- Correia-Gomes, C.; Henry, M.K.; Auty, H.K.; Gunn, G.J. Exploring the role of small-scale livestock keepers for national biosecurity—The pig case. Prev. Vet. Med. 2017, 145, 7–15. [Google Scholar] [CrossRef]
- Cantas, L.; Suer, K. Review: The Important Bacterial Zoonoses in “One Health” Concept. Front. Public Health 2014, 2, 144. [Google Scholar] [CrossRef] [Green Version]
- Correia-Gomes, C.; Sparks, N. Exploring the attitudes of backyard poultry keepers to health and biosecurity. Prev. Vet. Med. 2020, 174, 104812. [Google Scholar] [CrossRef]
- Pavez-Muñoz, E.; Fernández-Sanhueza, B.; Urzúa-Encina, C.; Galarce, N.; Alegría-Morán, R. Risk Factors for Positivity to Shiga Toxin-Producing Escherichia coli and Salmonella enterica in Backyard Production Systems Animals from Metropolitana Region, Chile: A Threat to Public Health? Int. J. Environ. Res. Public Health 2021, 18, 10730. [Google Scholar] [CrossRef]
- Fica, C.A.; Alexandre, S.M.; Prat, M.S.; Fernández, R.A.; Fernández, O.J.; Heitmann, G.I. Changes in epidemiological patterns of salmonellosis in Chile. Since Salmonella typhi to Salmonella enteritidis. Rev. Chil. Infectología 2001, 18, 85–93. [Google Scholar] [CrossRef]
- Galarce, N.; Escobar, B.; Sánchez, F.; Paredes-Osses, E.; Alegría-Morán, R.; Borie, C. Virulence Genes, Shiga Toxin Subtypes, Serogroups, and Clonal Relationship of Shiga Toxin-Producing Escherichia Coli Strains Isolated from Livestock and Companion Animals. Animals 2019, 9, 733. [Google Scholar] [CrossRef] [Green Version]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6, 6.2.10. [Google Scholar] [CrossRef] [Green Version]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 1153. [Google Scholar] [CrossRef]
- Cornejo, J.; Pokrant, E.; Figueroa, F.; Riquelme, R.; Galdames, P.; Di Pillo, F.; Jimenez-Bluhm, P.; Hamilton-West, C. Assessing Antibiotic Residues in Poultry Eggs from Backyard Production Systems in Chile, First Approach to a Non-Addressed Issue in Farm Animals. Animals 2020, 10, 1056. [Google Scholar] [CrossRef]
- Rivera, D.; Allel, K.; Dueñas, F.; Tardone, R.; Soza, P.; Hamilton-West, C.; Moreno-Switt, A.I. Screening the Presence of Non-Typhoidal Salmonella in Different Animal Systems and the Assessment of Antimicrobial Resistance. Animals 2021, 11, 1532. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística. Censo Agropecuario 2021; Gobierno de Chile: Santiago, Chile, 2023. [Google Scholar]
- Dohoo, R.; Martin, W.; Stryhn, H. Methods in Epidemiologic Research, 1st ed.; VER Inc.: Charlottetown, PE, Canada, 2012; p. 890. [Google Scholar]
- Instituto Nacional de Estadística. National Agricultural Census; Instituto Nacional de Estadística: Santiago, Chile, 2007. [Google Scholar]
- Galarce, N.; Sánchez, F.; Fuenzalida, V.; Ramos, R.; Escobar, B.; Lapierre, L.; Paredes-Osses, E.; Arriagada, G.; Alegría-Morán, R.; Lincopán, N.; et al. Phenotypic and Genotypic Antimicrobial Resistance in Non-O157 Shiga Toxin-Producing Escherichia coli Isolated From Cattle and Swine in Chile. Front. Vet. Sci. 2020, 7, 367. [Google Scholar] [CrossRef]
- Marier, E.A.; Snow, L.C.; Floyd, T.; McLaren, I.M.; Bianchini, J.; Cook, A.J.C.; Davies, R.H. Abattoir based survey of Salmonella in finishing pigs in the United Kingdom 2006–2007. Prev. Vet. Med. 2014, 117, 542–553. [Google Scholar] [CrossRef]
- Malorny, B.; Hoorfar, J.; Bunge, C.; Helmuth, R. Multicenter Validation of the Analytical Accuracy of Salmonella PCR: Towards an International Standard. Appl. Environ. Microbiol. 2003, 69, 290–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranieri, M.L.; Shi, C.; Moreno Switt, A.I.; den Bakker, H.C.; Wiedmann, M. Comparison of Typing Methods with a New Procedure Based on Sequence Characterization for Salmonella Serovar Prediction. J. Clin. Microbiol. 2013, 51, 1786–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cebula, T.A.; Payne, W.L.; Feng, P. Simultaneous identification of strains of Escherichia coli serotype O157:H7 and their Shiga-like toxin type by mismatch amplification mutation assay-multiplex PCR. J. Clin. Microbiol. 1995, 33, 248–250. [Google Scholar] [CrossRef] [PubMed]
- Thrusfield, M.; Christley, R. Veterinary Epidemiology, 4th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2018; p. 896. [Google Scholar]
- QGIS-Development-Team. QGIS Geographic Information System, Open Source Geospatial Foundation Project. 2023.
- Hosmer, D.W.; Lemeshow, S.; Rodney, S. Applied Logistic Regression, 3rd ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Hosmer, T.; Le Cessie, S.; Lemeshow, S. A comparison of goodness-of-fit tests for the logistic regression model. Stat. Med. 1997, 16, 965–980. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2023. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models; 2021. Available online: http://CRAN.R-project.org/package=nlme (accessed on 15 April 2023).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Wickham, H. ggplot2. WIREs Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Lele, S.; Keim, J.; Solymos, P. ResourceSelection: Resource Selection (Probability) Functions for Use-Availability. Data 2019. Available online: https://github.com/psolymos/ResourceSelection (accessed on 15 April 2023).
- Twenty-Fifth Informational Suppl. M100-S25; Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standars Institute (CLSI): Wayne, PA, USA, 2015.
- European Committee on Antimicrobial Susceptibility Testing. Clinical Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 13.0; European Committee on Antimicrobial Susceptibility Testing: Vaxjó, Sweden, 2023. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Himsworth, C.G.; Zabek, E.; Desruisseau, A.; Parmley, E.J.; Reid-Smith, R.; Jardine, C.M.; Tang, P.; Patrick, D.M. Prevalence and characteristics of Escherichia coli and Salmonella spp. in the feces of wild urban Norway and black rats (Rattus norvegicus and Rattus rattus) from an inner-city neighborhood of Vancouver, Canada. J. Wildl. Dis. 2015, 51, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Leotta, G.; Suzuki, K.; Alvarez, F.; Nunez, L.; Silva, M.; Castro, L.; Faccioli, M.; Zarate, N.; Weiler, N.; Alvarez, M. Prevalence of Salmonella spp. in backyard chickens in Paraguay. Int. J. Poult. Sci. 2010, 9, 533–536. [Google Scholar] [CrossRef]
- Rodríguez, F.I.; Pascal, D.C.; Pulido, D.; Osinalde, J.M.; Caffer, M.I.; Bueno, D.J. Prevalence, antimicrobial resistance profile and comparison of selective plating media for the isolation of Salmonella in backyard chickens from Entre Rios, Argentina. Zoonoses Public Health 2018, 65, e95–e101. [Google Scholar] [CrossRef]
- Banerjee, A.; Bardhan, R.; Chowdhury, M.; Joardar, S.N.; Isore, D.P.; Batabyal, K.; Dey, S.; Sar, T.K.; Bandyopadhyay, S.; Dutta, T.K.; et al. Characterization of beta-lactamase and biofilm producing Enterobacteriaceae isolated from organized and backyard farm ducks. Lett. Appl. Microbiol. 2019, 69, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Manning, J.; Gole, V.; Chousalkar, K. Screening for Salmonella in backyard chickens. Prev. Vet. Med. 2015, 120, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Jibril, A.H.; Okeke, I.N.; Dalsgaard, A.; Kudirkiene, E.; Akinlabi, O.C.; Bello, M.B.; Olsen, J.E. Prevalence and risk factors of Salmonella in commercial poultry farms in Nigeria. PLoS ONE 2020, 15, e0238190. [Google Scholar] [CrossRef]
- Salazar, G.A.; Guerrero-López, R.; Lalaleo, L.; Avilés-Esquivel, D.; Vinueza-Burgos, C.; Calero-Cáceres, W. Presence and diversity of Salmonella isolated from layer farms in central Ecuador. F1000Research 2019, 8, 235. [Google Scholar] [CrossRef]
- Trung, N.V.; Carrique-Mas, J.J.; Nghia, N.H.; Tu, L.T.P.; Mai, H.H.; Tuyen, H.T.; Campbell, J.; Nhung, N.T.; Nhung, H.N.; Minh, P.V.; et al. Non-Typhoidal Salmonella Colonization in Chickens and Humans in the Mekong Delta of Vietnam. Zoonoses Public Health 2017, 64, 94–99. [Google Scholar] [CrossRef]
- Salas Soto, R.A. Salmonella spp., Resistencia a Antimicrobianos y Caracterización de Medidas de Bioseguridad en Sistemas Productivos de Traspatio Vecinos a La Reserva Nacional El Yali. Master’s Thesis, Universidad de Chile, Santiago, Chile, 2016. [Google Scholar]
- Marchant, P.; Hidalgo-Hermoso, E.; Espinoza, K.; Retamal, P. Prevalence of Salmonella enterica and Shiga toxin-producing Escherichia coli in zoo animals from Chile. J. Vet. Sci. 2016, 17, 583–586. [Google Scholar] [CrossRef] [Green Version]
- Díaz, L.; Gutierrez, S.; Moreno-Switt, A.I.; Hervé, L.P.; Hamilton-West, C.; Padola, N.L.; Navarrete, P.; Reyes-Jara, A.; Meng, J.; González-Escalona, N.; et al. Diversity of Non-O157 Shiga Toxin-Producing Escherichia coli Isolated from Cattle from Central and Southern Chile. Animals 2021, 11, 2388. [Google Scholar] [CrossRef]
- Vachon, M.S.; Khalid, M.; Tarr, G.A.M.; Hedberg, C.; Brown, J.A. Farm animal contact is associated with progression to Hemolytic uremic syndrome in patients with Shiga toxin-producing Escherichia coli—Indiana, 2012–2018. One Health 2020, 11, 100175. [Google Scholar] [CrossRef]
- Tardone, R.; Rivera, D.; Dueñas, F.; Sallaberry-Pincheira, N.; Hamilton-West, C.; Adell, A.D.; Moreno-Switt, A.I. Salmonella in Raptors and Aquatic Wild Birds in Chile. J. Wildl. Dis. 2020, 56, 707–712. [Google Scholar] [CrossRef]
- Kim, J.-S.; Lee, M.-S.; Kim, J.H. Recent Updates on Outbreaks of Shiga Toxin-Producing Escherichia coli and Its Potential Reservoirs. Front. Cell. Infect. Microbiol. 2020, 10, 273. [Google Scholar] [CrossRef]
- Ballara, M.; Parada, S. El Empleo De Las Mujeres Rurales: Lo Que Dicen Las Cifras; Comisión Economica para América Latina y el Caribe (CEPAL): Santiago, Chile, 2009. [Google Scholar]
- Fundación Promoción y Desarrollo de la Mujer (PRODEMU). Mujeres en la Agricultura Familiaer Campesina en Chile; PRODEMU: Santiago, Chile, 2021. [Google Scholar]
- Fawaz-Yissi, M.J.; Rodriguez-Garces, C. Rural women and work in central Chile. Attitudes, factors and meanings. Cuad. Desarro. Rural 2013, 70, 47–68. [Google Scholar]
- Boza Martínez, S.; Cortés Belmar, M.; Muñoz Eulogio, T. Estrategias de desarrollo rural con enfoque de género en Chile: El caso del programa “Formación y capacitación para mujeres campesinas”. Civ. Cienc. Soc. Y Hum. 2016, 16, 63–76. [Google Scholar]
- Mestmacher, J.; Braun, A. Women, agroecology and the state: New perspectives on scaling-up agroecology based on a field research in Chile. Agroecol. Sustain. Food Syst. 2021, 45, 981–1006. [Google Scholar] [CrossRef]
- Retamal, P.; Gaspar, J.; Benavides, M.B.; Saenz, L.; Galarce, N.; Aravena, T.; Cornejo, J.; Lapierre, L. Virulence and antimicrobial resistance factors in Salmonella enterica serotypes isolated from pigs and chickens in central Chile. Front. Vet. Sci. 2022, 9, 971246. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Critically Important Antimicrobials for Human Medicine; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Kakoullis, L.; Papachristodoulou, E.; Chra, P.; Panos, G. Shiga toxin-induced haemolytic uraemic syndrome and the role of antibiotics: A global overview. J. Infect. 2019, 79, 75–94. [Google Scholar] [CrossRef]
- Rueda-Furlan, J.P.; Gallo, I.F.L.; de Campos, A.C.L.P.; Passaglia, J.; Falcão, J.P.; Navarro, A.; Nakazato, G.; Stehling, E.G. Molecular characterization of multidrug-resistant Shiga toxin-producing Escherichia coli harboring antimicrobial resistance genes obtained from a farmhouse. Pathog. Glob. Health 2019, 113, 268–274. [Google Scholar] [CrossRef]
- Furlan, J.P.R.; Ramos, M.S.; dos Santos, L.D.R.; da Silva Rosa, R.; Stehling, E.G. Multidrug-resistant Shiga toxin-producing Escherichia coli and hybrid pathogenic strains of bovine origin. Vet. Res. Commun. 2023. [Google Scholar] [CrossRef]
- Lalhruaipuii, K.; Dutta, T.K.; Roychoudhury, P.; Chakraborty, S.; Subudhi, P.K.; Samanta, I.; Bandyopadhayay, S.; Singh, S.B. Multidrug-Resistant Extended-Spectrum β-Lactamase-Producing Escherichia coli Pathotypes in North Eastern Region of India: Backyard Small Ruminants–Human–Water Interface. Microb. Drug Resist. 2021, 27, 1664–1671. [Google Scholar] [CrossRef]
- Pan, Y.; Hu, B.; Bai, X.; Yang, X.; Cao, L.; Liu, Q.; Sun, H.; Li, J.; Zhang, J.; Jin, D.; et al. Antimicrobial Resistance of Non-O157 Shiga Toxin-Producing Escherichia coli Isolated from Humans and Domestic Animals. Antibiotics 2021, 10, 74. [Google Scholar] [CrossRef]
- Isler, M.; Wissmann, R.; Morach, M.; Zurfluh, K.; Stephan, R.; Nüesch-Inderbinen, M. Animal petting zoos as sources of Shiga toxin-producing Escherichia coli, Salmonella and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Zoonoses Public Health 2021, 68, 79–87. [Google Scholar] [CrossRef]
- Priyanka; Meena, P.R.; Meghwanshi, K.K.; Rana, A.; Singh, A.P. Leafy greens as a potential source of multidrug-resistant diarrhoeagenic Escherichia coli and Salmonella. Microbiology 2021, 167, 001059. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Saharan, V.V.; Nimesh, S.; Singh, A.P. Phenotypic and virulence traits of Escherichia coli and Salmonella strains isolated from vegetables and fruits from India. J. Appl. Microbiol. 2018, 125, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Bautista-De León, H.; Gómez-Aldapa, C.A.; Rangel-Vargas, E.; Vázquez-Barrios, E.; Castro-Rosas, J. Frequency of indicator bacteria, Salmonella and diarrhoeagenic Escherichia coli pathotypes on ready-to-eat cooked vegetable salads from Mexican restaurants. Lett. Appl. Microbiol. 2013, 56, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Bruyand, M.; Mariani-Kurkdjian, P.; Gouali, M.; de Valk, H.; King, L.A.; Le Hello, S.; Bonacorsi, S.; Loirat, C. Hemolytic uremic syndrome due to Shiga toxin-producing Escherichia coli infection. Médecine Mal. Infect. 2018, 48, 167–174. [Google Scholar] [CrossRef]
- Karama, M.; Cenci-Goga, B.T.; Malahlela, M.; Smith, A.M.; Keddy, K.H.; El-Ashram, S.; Kabiru, L.M.; Kalake, A. Virulence Characteristics and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli Isolates from Humans in South Africa: 2006–2013. Toxins 2019, 11, 424. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, F.; Fuenzalida, V.; Ramos, R.; Escobar, B.; Neira, V.; Borie, C.; Lapierre, L.; López, P.; Venegas, L.; Dettleff, P.; et al. Genomic features and antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli strains isolated from food in Chile. Zoonoses Public Health 2021, 68, 226–238. [Google Scholar] [CrossRef]
- Aravena, C.; Valencia, B.; Villegas, A.; Ortega, M.; Fernández, R.A.; Araya, R.P.; Saavedra, A.; Del Campo, R. Characterization of Salmonella Heidelberg strains isolated in Chile. Rev. Médica Chile 2019, 147, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Pardo-Esté, C.; Lorca, D.; Castro-Severyn, J.; Krüger, G.; Alvarez-Thon, L.; Zepeda, P.; Sulbaran-Bracho, Y.; Hidalgo, A.; Tello, M.; Molina, F.; et al. Genetic Characterization of Salmonella Infantis with Multiple Drug Resistance Profiles Isolated from a Poultry-Farm in Chile. Microorganisms 2021, 9, 2370. [Google Scholar] [CrossRef]
- Baquero, F.; Coque, T.M.; Martínez, J.-L.; Aracil-Gisbert, S.; Lanza, V.F. Gene Transmission in the One Health Microbiosphere and the Channels of Antimicrobial Resistance. Front. Microbiol. 2019, 10, 2892. [Google Scholar] [CrossRef] [Green Version]
Region | Province | N° of BPS Sampled | N° of S. enterica-Positive BPS | Positivity Rate of S. enterica (%) | N° of STEC-Positive BPS | Positivity Rate of STEC (%) | N° of S. enterica/ STEC-Positive BPS | Positivity Rate of S. enterica/ STEC (%) |
---|---|---|---|---|---|---|---|---|
Metropolitana | Melipilla | 34 | 2 | 5.88% | 4 | 11.77% | 6 | 17.65% |
Talagante | 7 | 0 | 0% | 0 | 0% | 0 | 0% | |
Cordillera | 5 | 1 | 20% | 3 | 60% | 4 | 80% | |
Maipo | 16 | 1 | 6.25% | 1 | 6.25% | 2 | 12.50% | |
Chacabuco | 13 | 0 | 0% | 2 | 15.38% | 2 | 15.38% | |
Santiago | 10 | 0 | 0% | 0 | 0% | 0 | 0% | |
Subtotal | 85 | 4 | 4.71% | 10 | 11.76% | 14 | 16.47% | |
Valparaíso | Los Andes | 3 | 0 | 0% | 0 | 0% | 0 | 0% |
de Valparaíso | 6 | 0 | 0% | 0 | 0% | 0 | 0% | |
San Felipe | 25 | 0 | 0% | 6 | 24% | 6 | 24% | |
San Antonio | 12 | 0 | 0% | 3 | 25% | 3 | 25% | |
Petorca | 8 | 0 | 0% | 1 | 12.50% | 1 | 12.50% | |
Quillota | 0 | 0 | 0% | 0 | 0% | 0 | 0% | |
Subtotal | 54 | 0 | 0% | 10 | 18.52% | 10 | 18.52% | |
Total | 139 | 4 | 2.88% | 20 | 14.39% | 24 | 17.27% |
Variable | Category | p-Value | OR 1 | 95% CI 2 | |
---|---|---|---|---|---|
Lower | Upper | ||||
(Intercept) | - | 0.352 | 0.486 | 0.106 | 2.221 |
N° of pets | - | 0.160 | 0.541 | 0.229 | 1.277 |
Animals have contact with wild birds | No | reference | |||
Yes | 0.019 | 0.059 | 0.005 | 0.636 |
Variable | Category | p-Value | OR 1 | 95% CI 2 | |
---|---|---|---|---|---|
Lower | Upper | ||||
(Intercept) | - | <0.001 | 0.027 | 0.003 | 0.218 |
Presence of ruminants | - | 0.036 | 1.038 | 1.002 | 1.075 |
Presence of guinea pigs or rabbits | - | 0.132 | 1.126 | 0.964 | 1.316 |
Animals have contact with wild birds | No | reference | |||
Yes | 0.251 | 3.429 | 0.417 | 28.179 | |
Receive state assistance or support | No | reference | |||
Yes | 0.266 | 1.901 | 0.612 | 5.894 |
Variable | Category | p-Value | OR 1 | 95% CI 2 | |
---|---|---|---|---|---|
Lower | Upper | ||||
(Intercept) | - | <0.001 | 0.027 | 0.003 | 0.218 |
Presence of ruminants | - | 0.004 | 1.038 | 1.002 | 1.075 |
Person in charge of the system | Family | reference | |||
Man | 0.213 | 2.422 | 0.603 | 9.732 | |
Woman | 0.045 | 3.542 | 1.029 | 12.193 |
Pathogen (N° of Isolates) | N° of Isolates | Frequency | Antimicrobial Resistance Profile | N° of Antimicrobial Drugs with Strain Resistance |
---|---|---|---|---|
S. enterica (5) | 1 | 20% | CLX, IMP, DXC, NTF * | 4 |
1 | 20% | CLX, CVN, CPN | 3 | |
1 | 20% | AMP, AMX, DXC, NTF, CPN | 5 | |
1 | 20% | AMP, AMX, CTD, DXC, NTD, CPN | 6 | |
1 | 20% | - | 0 | |
STEC (14) | 12 | 85.7% | CLX | 1 |
2 | 14.3% | CLX, CPN | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urzúa-Encina, C.; Fernández-Sanhueza, B.; Pavez-Muñoz, E.; Ramírez-Toloza, G.; Lujan-Tomazic, M.; Rodríguez, A.E.; Alegría-Morán, R. Epidemiological Characterization of Isolates of Salmonella enterica and Shiga Toxin-Producing Escherichia coli from Backyard Production System Animals in the Valparaíso and Metropolitana Regions. Animals 2023, 13, 2444. https://doi.org/10.3390/ani13152444
Urzúa-Encina C, Fernández-Sanhueza B, Pavez-Muñoz E, Ramírez-Toloza G, Lujan-Tomazic M, Rodríguez AE, Alegría-Morán R. Epidemiological Characterization of Isolates of Salmonella enterica and Shiga Toxin-Producing Escherichia coli from Backyard Production System Animals in the Valparaíso and Metropolitana Regions. Animals. 2023; 13(15):2444. https://doi.org/10.3390/ani13152444
Chicago/Turabian StyleUrzúa-Encina, Constanza, Bastián Fernández-Sanhueza, Erika Pavez-Muñoz, Galia Ramírez-Toloza, Mariela Lujan-Tomazic, Anabel Elisa Rodríguez, and Raúl Alegría-Morán. 2023. "Epidemiological Characterization of Isolates of Salmonella enterica and Shiga Toxin-Producing Escherichia coli from Backyard Production System Animals in the Valparaíso and Metropolitana Regions" Animals 13, no. 15: 2444. https://doi.org/10.3390/ani13152444
APA StyleUrzúa-Encina, C., Fernández-Sanhueza, B., Pavez-Muñoz, E., Ramírez-Toloza, G., Lujan-Tomazic, M., Rodríguez, A. E., & Alegría-Morán, R. (2023). Epidemiological Characterization of Isolates of Salmonella enterica and Shiga Toxin-Producing Escherichia coli from Backyard Production System Animals in the Valparaíso and Metropolitana Regions. Animals, 13(15), 2444. https://doi.org/10.3390/ani13152444