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Simple Summary: Accurate farming is essential for optimal pasture management and productivity
improvement. Recently, automatic sheep face detection has become a promising solution for accu-
rate farming. In this study, we explore a novel sheep face detection scheme based on lightweight
convolutional neural network. The results have shown that our proposed detection method has the
characteristics of real-time and robust detection, which provides a potential solution for accurate
sheep face detection on actual sheep farms.

Abstract: The accurate breeding of individual sheep has shown outstanding effectiveness in food
quality tracing, prevention of fake insurance claims, etc., for which sheep identification is the key
to guaranteeing its high performance. As a promising solution, sheep identification based on sheep
face detection has shown potential effectiveness in recent studies. Unfortunately, the performance of
sheep face detection has still been a challenge due to diverse background illumination, sheep face
angles and scales, etc. In this paper, an effective and lightweight sheep face detection method based
on an improved RetinaFace algorithm is proposed. In order to achieve an accurate and real-time
detection of sheep faces on actual sheep farms, the original RetinaFace algorithm is improved in
two main aspects. Firstly, to accelerate the speed of multi-scale sheep face feature extraction, an
improved MobileNetV3-large with a switchable atrous convolution is optimally used as the backbone
network of the proposed algorithm. Secondly, the channel and spatial attention modules are added
into the original detector module to highlight important facial features of the sheep. This helps obtain
more discriminative sheep face features to mitigate against the challenges of diverse face angles and
scale in sheep. The experimental results on our collected real-world scenarios have shown that the
proposed method outperforms others with an F1 score of 95.25%, an average precision of 96.00%, a
model size of 13.20 M, an average processing time of 26.83 ms, and a parameter of 3.20 M.

Keywords: sheep face detection; improved RetinaFace; lightweight; attention module; computer vision

1. Introduction

With the increasing need for high-quality animal husbandry products such as milk
and meat, accurate breeding of sheep has drawn increasing attention in animal husbandry
studies, which can improve product outputs and quality traceability by automated and
precise management of livestock [1,2]. Accurate sheep identification is one of the key
techniques for accurate farming. Typically, there are many common methods that use GPS
necklaces, ear tags, and radio frequency identification (RFID) for animal identification [3–6].
However, those devices are expensive, time-consuming, and even cause physical damage
to livestock. What’s more, the performance of those methods is limited by the effective
monitoring distance and device reliability, which do not meet the requirement of remote
monitoring and precision livestock farming. Therefore, it is of great importance to design a
more robust sheep identification scheme for modern accurate breeding.
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Recently, with the rapid development of machine learning, computer vision, and deep
learning, animal identification has shifted from manual devices to automation. Automatic
sheep identification methods generally require the use of a vision system equipped with
sensors, such as cameras, to monitor animal groups, and specific animals are identified
through processing and analyzing sensor data based on computer vision techniques. These
methods have the advantages of low cost and cause no harm to livestock. Early automatic
animal identification mainly relied on traditional machine learning methods (e.g., SVM
or KNN). For example, Kumar et al. [7] utilized a range of traditional feature extraction
methods, such as independent-candid covariance-free incremental PCA (IND-CCPCA) com-
bined with a support vector-based classifier for cattle face recognition. Shahinfar et al. [8]
explored the feasibility of using three machine-learning algorithms to analyze dairy cow
images. More recent methods [9–11] have been proposed to improve identification per-
formance by utilizing novel convolutional neural network (CNN) models. For example,
Li et al. [10] used lightweight CNN to recognize the individual identity of beef cattle. Dur-
ing the same period, Hitelman et al. [9] utilized ResNet50V2 and ArcFace to recognize
sheep faces, and Wang et al. [11] used the YOLO algorithm for dairy cow face detection.

Although the above methods have shown good potential performance, limitations
still need to be addressed. Automatic sheep identification is regarded as the task of object
detection and classification in most research. Consequently, as the key prerequisite for
automatic sheep identification, the performance of sheep face detection is fateful to final
identification. However, the performance of sheep face detection still cannot meet the
requirements of actual sheep farms due to diverse face angles and scales, the high similarity
of sheep faces, and so on, which hamper accurate sheep identification.

Early works have already made different efforts to improve the detection performance
of sheep faces or body parts. Due to the fast development of human face detection algo-
rithms (e.g., two-stage detection methods (R-CNN [12], Fast R-CNN [13]) and one-stage
methods (SSD [14], YOLOv4 algorithm [15], RetinaNet [16], etc.), most of the previous
research has usually applied the above methods to sheep face detection tasks. For example,
U-Net and Network-II models were used to detect small-scale sheep faces [17]. Similarly,
the Siamese network was used to detect and track the bodies of dairy goats [18]. As a
typical two-stage human face detection algorithm, Faster R-CNN has also beenproven
to be effective in detecting sheep and dairy goats [19,20]. In recent works, the popular
detection YOLO series algorithm has been applied to sheep face detection. For example,
Meng et al. [21] tried to use an improved YOLO framework to detect sheep faces. Moreover,
the YOLOv4 algorithms have had good performance in detecting large-scale sheep face
images [22].

Despite satisfactory results obtained by these intelligent detection methods based
on human face detection technology, there are certain issues that still limit their practical
application. Firstly, the diverse sheep face angle and scale in actual sheep farming have
received little attention, and only a few studies have been conducted to construct an actual
sheep dataset with characteristics of multi-scale and multi-location. Secondly, the high
performance of sheep face detection often depends on complex deep learning models such
as ResNet152, but it is accompanied by the problem of low efficiency, which seriously
inhibits its practical applicability. RetinaFace, a single-stage detection algorithm widely
used in human face detection, can obviously improve the accuracy of face identification [23].
The algorithm has the characteristic of multi-scale detection, which can be adapted to multi-
scale detection in an actual farm environment. It can also predict the face box and face
landmarks at the same time, which can support face alignment and effectively improves
recognition accuracy. In this work, we propose an effective and lightweight sheep face
detection method based on an improved RetinaFace algorithm. The proposed method uses
improved MobileNetV3-large as the backbone network to extract multi-scale sheep facial
features, and the single-stage headless detector (SSH) module is added with the channel
and spatial attention mechanism to focus on important global facial features. Finally, the
original multi-task loss function is optimized to fit the task of detecting sheep face box
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and facial landmarks. The experimental results on our collected real-world scenarios
showed that the proposed method performs well in detecting multi-scale sheep faces in
real-time, especially in the performance of detecting large-scale and small-scale sheep faces,
which was obviously improved compared with other competing methods. In addition, we
also demonstrate the effectiveness of the proposed method in an unseen environment by
enabling zero-shot sheep face detection.

This paper aims to detect sheep faces and facial landmarks based on our improved
RetinaFace algorithm, which can assist the breeder in identifying the ID of sheep quickly
and accurately. Furthermore, this method is completely contactless and only uses the visual
information of sheep’s face without any expensive auxiliary devices. Our main contribution
can be summarized as: (1) we propose an improved RetinaFace algorithm to achieve
accurate and real-time detection of sheep faces on actual sheep farms; (2) the improved
MobileNetV3-large with a switchable atrous convolution (SAC) is introduced to accelerate
the speed of multi-scale sheep face feature extraction; (3) the channel and spatial attention
modules are added into the original detector module to obtain more discriminative sheep
face features for detection; (4) a new sheep face dataset with characteristics of multi-scale
have been conducted for open benchmark verification of sheep face detection.

The remaining paper is structured as follows. In Section 2, data collection, dataset
construction, and the improved methods of the original algorithm are discussed. Experi-
mental results discussion is shown in Section 3. In Section 4, the conclusions of this paper
are summarized. It should be noted that the images of the dataset used in this paper
are captured in an actual farm environment and included different scale faces of dairy
goats and Ningxia Tan sheep. The code is available at https://github.com/haojy-2001
/RetinaFace_SheepFaceDetectrion.git (accessed on 27 July 2023).

2. Materials and Methods
2.1. Dataset

The data used in this study are collected by recording two types of sheep: Ningxia Tan
sheep and dairy goats. The rough videos of sheep faces are recorded by several cameras
that are deployed at positions of different heights and angles on the ranch. The resolution
of the videos is adjusted to 1920 × 1080 pixels.

After obtaining rough videos of sheep faces, some data pre-processing operations
are adopted to construct the sheep image dataset used in this study. Firstly, to avoid
data redundancy caused by the high similarity of the adjacent frames, the key frames are
extracted from the videos by using the FFMpeg open software to obtain the sheep face
images. Secondly, the face area and five landmarks of the sheep face image are manually
annotated using the Labelme software. Some images with annotation information are
shown in Figure 1. It should be noted that the collected dataset includes the face images
with two types of background—inside and outside of the sheep house—to simulate the
actual sheep ranch environment. Compared with the previous dataset [9], our new sheep
face dataset has multi-scale characteristics, and the face region is located at different
positions of the image, which provides a more challenging benchmark verification for
sheep face detection and avoids overfitting during the training stage.

Overall, a total of 3749 images of 119 sheep were recorded in our new dataset. It
includes 1415 images of 62 Ningxia Tan sheep and 2334 images of 57 dairy goats. According
to the ratios of 6:2:2, the images of the dataset are randomly divided into the training set,
the validation set, and the test set, which contains 2251, 748, and 750 images, respectively.

https://github.com/haojy-2001/RetinaFace_SheepFaceDetectrion.git
https://github.com/haojy-2001/RetinaFace_SheepFaceDetectrion.git
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Figure 1. Some selected and annotated images of sheep faces from our dataset (1–5 for Ningxia Tan
sheep, 6–10 for dairy goats).

2.2. Sheep Face Detection Algorithm Based on the Improved RetinaFace
2.2.1. Overview

In order to achieve real-time sheep face and facial landmarks detection on an actual
sheep ranch, we propose a novel sheep face detection algorithm based on an improved
RetinaFace. The structure of the proposed method is shown in Figure 2 and consists of three
parts: an improved MobileNetV3-large network, feature pyramid networks (FPN), and an
SHH-CBAM module. All of the input sheep face images were resized to 320 × 320 pixels.
We used the same resize method (bilinear interpolation algorithm) as the original RetinaFace
algorithm to avoid the problem of excessive model parameters in encoding high-resolution
images. Given a resized image with a size of 320 × 320 pixels, the improved MobileNetV3-
large network first takes it as an input to generate multi-resolution feature maps (here,
the layers of C3, C4, and C5 are chosen). Then, the output feature maps of layer C3,
C4, and C5 from the backbone network are respectively input into the FPN to obtain
multi-scale features. In the FPN, the feature maps of C3, C4, and C5 are respectively
processed by a series of operations of 1 × 1 convolution, up-sampling, elements addition,
and 3 × 3 convolution [24], and finally, the multi-scale feature maps of C3’, C4’, and C5’
are obtained. Subsequently, in order to strengthen the ability of context modeling and
to highlight important facial features of the sheep, the context module with CBAM takes
feature maps of C3’, C4’, and C5’ as an input, respectively, and outputs the corresponding
feature maps of P3, P4, and P5. Once the final multi-scale feature maps of P3, P4, and P5
are ready, the detector consisting of ClassHead, BoxHead, and LandmarkHead takes those
final multi-scale feature maps as an input to predict the positions of the sheep faces and
facial landmarks. The technical details above are presented in the sections below.
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Figure 2. The architecture of the improved RetinaFace algorithm. The improved MobileNetV3-large
network first takes a resized image as an input. Then, the output feature maps from the backbone
network are respectively input into the FPN. The multi-scale feature maps of C3’, C4’, and C5’ are
further input into the SSH-CBAM module to obtain the prediction results.
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2.2.2. Improved MobileNetV3-Large Network

Unlike the original RetinaFace algorithm that used complex deep learning models-
ResNet50 as the backbone network, we propose a novel lightweight backbone network-
improved MobileNetV3-large [25] with a switchable atrous convolution [26] to accelerate
the speed of multi-scale sheep face feature extraction.

Table 1 provides the details of the proposed improved MobileNetV3-large network.
As shown in the header of Table 1, Layers represent the building block of the network, and
exp size is the channels of the feature maps after the expansion convolution. #out denotes
the channels of the final output feature map. SE is used to indicate whether the building
block uses the attention mechanism, and NL is the type of nonlinearity function (e.g., HS
denotes the h-swish function, and RE is the ReLU function). s represents the stride of the
convolution. It should be noted that the suffix symbol “(SAC)” represents our improved
building blocks, where the depth-wise convolution is replaced by the SAC module (as a
trainable expansion convolution), e.g., in the second row, the symbol of “bneck (SAC)“
represents that the depth-wise convolution of the original bneck block is replaced by SAC
module with a stride of 2.

Table 1. The improved MobileNetV3-large network structure. conv2d denotes 2D convolution layer.
SE denotes whether there is a Squeeze and Excite in that block. NL denotes the type of nonlinearity
used (e.g., HS denotes the h-swish function, and RE is the ReLU function). s denotes the stride of
convolution. bneck denotes the bottleneck layer. NBN denotes no batch normalization. k denotes
the user-defined channel size of the final output, where we have maintained the same value as the
original MobileNetV3-large. SAC denotes whether there is a switchable atrous convolution replacing
the original convolution layer.

Layers Exp Size #out SE NL s

conv2d (SAC), 3 × 3 - 16 - HS 2
Bneck (SAC), 3 × 3 16 16 - RE 1

C1 bneck (SAC), 3 × 3 64 24 - RE 1
bneck (SAC), 3 × 3 72 24 - RE 1

C2 bneck (SAC), 3 × 3 72 40 X RE 2
bneck, 5 × 5 120 40 X RE 1
bneck, 5 × 5 120 40 X RE 1

C3 bneck, 3 × 3 240 80 - HS 2
bneck, 3 × 3 200 80 - HS 1
bneck, 3 × 3 184 80 - HS 1
bneck, 3 × 3 184 80 - HS 1
bneck, 3 × 3 480 112 X HS 1
bneck, 3 × 3 672 112 X HS 1

C4 bneck, 5 × 5 672 160 X HS 2
bneck, 5 × 5 960 160 X HS 1
bneck, 5 × 5 960 160 X HS 2

C5 conv2d, 1 × 1 - 960 - HS 1
Pool, 7 × 7 - - - HS 1

conv2d, 1 × 1, NBN - 1280 - - 1
conv2d, 1 × 1, NBN - k - HS 1

The structure of our bneck (SAC) is shown in Figure 3. The input feature maps of
bneck (SAC) block are firstly processed by a 1 × 1 point-wise (Pwise) convolution and then
followed by a 3 × 3 SAC module. In the SAC module, the input feature maps are operated
by two global context modules and a switchable atrous convolution that is between those
two global context modules. The input maps of the pre-global context module are first
operated by global average pooling and a 1 × 1 convolution. Then the feature maps, after
processing, are concatenated with the original input maps, which is regarded as the final
output of the pre-global context module. Subsequently, the output feature maps are further
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input into the switchable atrous convolution. The processing procedure of the switchable
atrous convolution S(x) is defined as:

S(x) = Conv(x, w1, 1)· f (x) + (1− f (x))·Conv(x, w2, 3) (1)

where x represents the input features, Conv(x, w, r) denotes a convolution layer with
weight w and atrous rate r. f (x) represents the switchable function which consists of a
5 × 5 global average pooling layer and a 1 × 1 convolution. After obtaining the output
of the switchable atrous convolution, we input it into the subsequent post-global context
module whose structure was the same as the pre-global context module. After being
processed by the SAC module, the feature maps will be further operated by an SE module
and a 1 × 1 Pwise convolution. Finally, the processed feature map is added to the initial
input map by the shortcut connection to generate the final output feature maps.
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Figure 3. The bneck (SAC) structure of the C1 layer in the improved MobileNetV3-large. The input
feature maps are processed by the Pwise module, SAC module, SE module, and Pwise module,
sequentially. The output feature maps of the last Pwise module are added with the initial input map
by the shortcut connection as the bneck module’s final output.

Given an image, the improved MobileNetV3 large network takes it as an input and out-
puts feature maps of C3, C4, and C5 layers, which are used as inputs for subsequent modules.

2.2.3. SSH-CBAM Module with an Attention Mechanism

After obtaining the feature maps of C3, C4, and C5 layers, we employ the FPN module
as the next step of our method to generate multi-scale features. More specifically, the C3,
C4, and C5 feature maps are first processed by three 1 × 1 convolution layers, respectively.
Then, the processed feature maps of C3 and C4 are merged with different upsampled maps
(the processed C4 and the processed C5 are upsampled by a factor of 2) by element addition,
respectively. Finally, the merged feature maps C3, C4, and C5 are further processed by
three 3 × 3 convolution layers, respectively, to obtain the multi-scale feature maps C3’, C4’,
and C5’.

Substantially, in order to avoid the problem of losing semantic information [27], we
add the convolutional block attention module (CBAM) [28] into the context module of
the original RetinaFace algorithm to increase the capability of extracting more common
and important features. The original context module may lose some common features of
sheep faces after integrating the multi-scale contextual semantics, while the CBAM module
ensures the common sheep face features can be re-emphasized at different scales. The
structure of our context + CBAM module is shown in Figure 4. When a new input feature
map arrives, the det_conv1 branch (the upper route in Figure 4) first processes it by a 3 × 3
convolutional layer, followed by the CBAM module. For the det_context branch (the lower
route Figure 4), it begins with a 3 × 3 convolutional layer and then separates into two
branches. For the upper branch of det_context branch, the feature map is processed by
a 3 × 3 convolutional layer and followed by a CBAM module. The lower branch of the
det_context branch processes the feature map by two 3 × 3 convolutional layers and a
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CBAM module. The output feature maps of those three branches are concatenated together
to generate the final feature map with context semantic information.
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Figure 4. The improved context module with a CBAM. The input feature maps are processed by the
det_conv1 branch and det_context branch, respectively. In the det_context branch, the feature maps
are further separated into two branches to extract the context semantics. Finally, the output feature
maps of the three branches are input into a CBAM and concatenated together.

More specifically, the structure of the CBAM module is shown in Figure 5. It can be
seen that the input feature maps are first processed by max-pooling and average-pooling,
respectively. Then the outputs of the above two operations are input into a multi-layer
perceptron (MLP) with a hidden layer. After that, the outputs of the MLP are merged
by element-wise summation and then processed by the sigmoid function to obtain the
tensor MC with enhanced channel features. MC is further processed by the element-wise
multiplication with input feature maps to obtain the channel-refined feature maps. The
channel-refined feature maps obtained by the CAM will be input into SAM.
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Figure 5. The structure of the CBAM module. MLP denotes a multi-layer perceptron (MLP) with
one hidden layer. The input feature maps are processed by the CAM and SAM, sequentially. MC is
the output from the CAM, which is element-wise multiplied with the original input to obtain the
channel-refined feature maps. MS is the output from the SAM, which is element-wise multiplied
with the channel-refined feature maps to obtain the final refined feature maps.

In SAM, the channel-refined feature maps are operated by average-pooling and max-
pooling along the channel axis. The generated feature maps are further operated by a
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7 × 7 convolutional layer and a sigmoid function to obtain the tensor MS with enhanced
spatial features. After that, MS is processed by element-wise multiplication with the
channel-refined feature maps to obtain the final output. Overall, the channel-refined and
spatial-refined feature maps can be obtained by adding a CBAM module.

After obtaining the multi-scale feature maps C3′, C4′, and C5′, the context + CBAM
module takes them as an input, respectively, and outputs the corresponding feature maps
of P3, P4, and P5. Once the final multi-scale feature maps of P3, P4, and P5 are ready, the
detector consisting of ClassHead, BoxHead, and LandmarkHead takes those final multi-
scale feature maps as input to predict the positions of sheep face and landmarks. According
to the predicted results, we will finally get the predicted facial frames and landmarks by
non-maximal suppression (NMS).

2.2.4. Multi-Task Loss Function

The final multi-task loss function, including face classification loss, facial landmark
regression loss, and box regression loss, is defined as:

L = Lcls(pi, p∗i ) + λ1 p∗i Lbox(ti, t∗i ) + λ2 p∗i Lpts(li, l∗i ) (2)

where i represents any of the training anchor, Lcls denotes the face classification loss func-
tion, which is the binary classification loss function based on the cross-entropy loss function.
Pi is the probability of anchor i containing a sheep face; when p*

i = 1, it indicates the positive
anchor, otherwise, p*

i = 0 indicates the negative one. Lbox and Lpts are the face box regres-
sion loss and the facial landmark regression loss, respectively, which are both Smooth-L1
functions. For face box regression loss Lbox, ti =

{
tx, ty, tw, th

}
i and t∗i =

{
t∗x, t∗y , t∗w, t∗h

}
i

denote the coordinates of the predicted box and ground-truth positive anchor. In facial

landmarks regression loss Lpts, li =
{

lx1, ly1, . . . , lx5, ly5
}

i and l∗i =
{

l∗x1, l∗y1, . . . , l∗x5, l∗y5

}∗
i

represent the predicted five facial landmarks and the manual labeled ones associated with
the positive anchor. In our experiments, the loss coefficients λ1 and λ2 are set to 0.3 and 0.1,
respectively.

2.3. Evaluation Indicators

In this paper, four indicators, including F1 score, average precision (AP), average
processing time, and model size, are used to evaluate the performance of the detection
model. The equation of the F1 score is defined as:

F1 score =
2× Precision× Recall

Precision + Recall
(3)

In Equation (3), the range of the precision and the recall are both in [0, 1], and the
equations of these two indicators are defined in Equations (4) and (5), respectively.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

In Equations (4) and (5), TP represents the true positives whose IoU (intersection over
union) is more than 0.5, and FP denotes the false positives whose IoU is less than 0.5. FN is
the false negatives whose IoU equals to 0.

Another indicator AP is calculated as:

AP =
∫ 1

0
P(r)dr (6)
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In Equation (6), P represents a function that takes recall r as the independent variable.
AP is the definite integral of the function, in which the value of recall is from 0 to 1.

Furthermore, since the improved sheep face detection algorithm is designed for real-
time detection, it is necessary to evaluate the detection efficiency of the model under
actual conditions. Model size, average processing time, and Parameters (Param) are three
indicators to evaluate the degree of lightweight and real-time performance of the algorithm.

2.4. Experimental Setup

The experiment is implemented on a workstation that was installed with an NVIDA
TITAN RTX/PCle/SSE2 graphics card and Ubantu18.04.5 operating system. In our experi-
ment, the initial learning rate was set to 1× 10−3. The training epochs was set to 200, and
the batch size was set to 32. In addition, the Adam optimizer was used in this study. The
beta1, beta2, and epsilon parameters of the Adam optimizer were kept default settings of
0.9, 0.999, and 1× 10−8, respectively. The input scale of the images was resized to 320 ×
320 pixels during the training process.

3. Results and Discussion
3.1. Performance on Sheep Face Detection

In order to verify the effectiveness of the proposed method, we compared our pro-
posed method (RetinaFace + MobileNetV3-large + SAC + CBAM) with several mainstream
detecting algorithms (YOLOv4-tiny [29], YOLOv5s [30], and EfficentDet [31]). The compari-
son results are shown in Table 2. For fair comparison, all other comparison detectors shown
in Table 2 were retrained on our sheep dataset. In this verification, we used “RetinaFace +
ResNet50” to denote the method of RetinaFace with the backbone network ResNet50, “Reti-
naFace + MobileNetV3-large + SAC + CBAM” to denote the method of RetinaFace with the
improved MobileNetV3-large as the backbone network and with the SSH-CBAM module
and “RetinaFace + ResNet50 + SAC + CBAM” to denote the method of the RetinaFace
with improved ResNet50 as the backbone network and with the SSH-CBAM module. The
improved ResNet50 used a SAC module to replace all of 3 × 3 convolutions at the first two
stages of ResNet50.

Table 2. Comparisons of sheep face detection results on the proposed dataset.

Method F1 Score AP Model Size
Average

Processing
Time

Param

YOLOv4-tiny [29] 77.05% 82.27% 23.56 MB 27.46 ms 5.87 M
YOLOv5s [30] 77.16% 95.19% 28.50 MB 27.22 ms 7.07 M

EfficentDet [31] 67.90% 73.40% 15.78 MB 42.63 ms 3.83 M
RetinaFace + ResNet50 [23] 94.02% 95.23% 119.02 MB 225.91 ms 29.67 M

RetinaFace + ResNet50 + SAC + CBAM 97.87% 96.44% 125.51 MB 266.62 ms 29.86 M
RetinaFace + MobileNetV3-large + SAC + CBAM 95.25% 96.00% 13.20 MB 26.83 ms 3.20 M

As shown in Table 2, compared with all of the lightweight detectors and the original
RetinaFace + ResNet50, our RetinaFace + MobileNetV3-large + SAC + CBAM obtained the
best F1 score of 95.25% and the best AP score of 96.00%, largely outperforming YOLOv4-
tiny, YOLOv5s, and EfficientDet, which demonstrates that our method significantly out-
performed the mainstream lightweight algorithms in detecting multi-scale sheep faces.
Meanwhile, the proposed method had the lowest processing time, smallest model size, and
lowest parameters, which proved the efficiency of the proposed method. It demonstrates
that the proposed method is more suitable for multi-scale and real-time sheep face detec-
tion. After utilizing the lightweight backbone network and several improvement strategies,
the model size and the average processing time of the proposed method was only about
10% of the baseline work, the RetinaFace + ResNet50, and the detection performance was
slightly improved. The comparison results proved that the proposed method, with its
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efficient improvement, achieved a better performance than the method with the original
deeper backbone network. According to the study [32], the walking speed of sheep is about
0.85 m/s. Thus, the proposed method can meet the need for real-time detection in the
actual environment and has the best detecting performance compared with the mainstream
lightweight algorithms and the original RetinaFace + ResNet50. Moreover, RetinaFace +
ResNet50 + SAC + CBAM obtained a higher F1 score and AP score compared with Reti-
naFace + ResNet50, which proves that our methods are still effective in the deep backbone
network and can help the overall network achieve a significantly better detection perfor-
mance. Compared with RetinaFace + ResNet50 + SAC + CBAM, our method (RetinaFace +
MobileNetV3-large + SAC + CBAM) achieved a highly competitive accuracy performance
with obviouslyless processing time and model size. On the whole, our method (RetinaFace
+ MobileNetV3-large + SAC + CBAM) outperformed the other state-of-the-art algorithms
in detection performance by a large margin and achieved a competitive detection speed.

3.2. Qualitative Evaluation

In this evaluation, we choose the top four detection algorithms with the highest
F1 score (excluding RetinaFace + ResNet50 + SAC + CBAM): RetinaFace + MobileNetV3-
large + SAC + CBAM, RetinaFace + ResNet50, YOLOv4-tiny, and YOLOv5s, to display the
detection bounding boxes of those approaches. The qualitative comparisons between the
top detection algorithms are shown in Figure 6. The detection bounding boxes of YOLOv4-
tiny, YOLOv5s, and RetinaFace + ResNet50 were significantly reduced compared with the
annotation boxes, as shown in the first line of Figure 6. The reason is that those methods
cannot achieve multi-scale features, and they are especially weak in obtaining global face
features from large-scale sheep faces. Meanwhile, YOLOv4-tiny failed to detect some
small-scale sheep faces, as shown in the third line of Figure 6. In comparison with other
approaches, the detection boxes of RetinaFace + MobileNetV3-large + SAC + CBAM almost
overlapped the manual annotation boxes, which proved that the improved MobileNetV3-
large network and SSH-CBAM module was helpful to obtain the global features of sheep
faces. Furthermore, the RetinaFace + ResNet50 had a weak performance in detecting small-
scale sheep faces, which proved that it could not effectively capture the key features of
sheep faces. Overall, the proposed method obtained the best performance and was robust
to detect all scales of sheep faces.Animals 2023, 13, 2458 11 of 16 

 

 
Figure 6. Qualitative results of different algorithms for sheep face detection. The blue box denotes 
the manual annotation face. The red box denotes the detection box of RetinaFace + MobileNetV3-
large + SAC + CBAM, and the green one is the detection box of RetinaFace + ResNet50. The orange 
one denotes the detection box of YOLOv5s. The yellow one denotes the detection box of YOLOv4-
tiny. 

3.3. Sheep Face Detection under Different Light Conditions 
In order to verify the effectiveness of the proposed method in different light condi-

tions, we performed gamma transformation on the images of the test set to simulate the 
different light situations. We set 𝛾𝛾 = 0.5 to simulate the illumination condition of 11:00 
a.m. to 14:00 p.m., 𝛾𝛾 = 1.5 to simulate the condition of 6:00 a.m. to 8:00 a.m. and 14:00 
p.m. to 16:00 p.m., 𝛾𝛾 = 2 to simulate the condition of 16:00 p.m. to 18:00 p.m., 𝛾𝛾 = 3 to 
simulate the condition of 18:00 p.m. to 19:00 p.m. and 5:00 a.m. to 6:00 a.m., 𝛾𝛾 = 4 to sim-
ulate the condition of 19:00 p.m. to 21:00 p.m. 

The detection results under different light conditions are shown in Table 3. The pro-
posed method still had a good performance in the range of 𝛾𝛾 from 0.5 to 2.0. When 𝜸𝜸 
equalled 3.0 or 4.0, the recall rate of the proposed method declined to some extent, since 
those night data are extremely dark and even difficult for people to recognize. 

Table 3. Comparisons of sheep face detection results for different γ. 

𝜸𝜸 Recall Precision F1 Score 
0.5 88.36% 95.65% 91.86% 
1.5 91.95% 97.34% 94.57% 
2.0 88.49% 96.41% 92.28% 
3.0 76.33% 95.32% 84.77% 
4.0 57.45% 94.21% 71.37% 

The qualitative detection results under different light conditions are shown in Figure 
7. The proposed method had a good performance in the range of 𝛾𝛾 from 0.5 to 2.0. When 
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Figure 6. Qualitative results of different algorithms for sheep face detection. The blue box denotes the
manual annotation face. The red box denotes the detection box of RetinaFace + MobileNetV3-large
+ SAC + CBAM, and the green one is the detection box of RetinaFace + ResNet50. The orange one
denotes the detection box of YOLOv5s. The yellow one denotes the detection box of YOLOv4-tiny.
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3.3. Sheep Face Detection under Different Light Conditions

In order to verify the effectiveness of the proposed method in different light conditions,
we performed gamma transformation on the images of the test set to simulate the different
light situations. We set γ = 0.5 to simulate the illumination condition of 11:00 a.m. to
14:00 p.m., γ = 1.5 to simulate the condition of 6:00 a.m. to 8:00 a.m. and 14:00 p.m. to
16:00 p.m., γ = 2 to simulate the condition of 16:00 p.m. to 18:00 p.m., γ = 3 to simulate
the condition of 18:00 p.m. to 19:00 p.m. and 5:00 a.m. to 6:00 a.m., γ = 4 to simulate the
condition of 19:00 p.m. to 21:00 p.m.

The detection results under different light conditions are shown in Table 3. The
proposed method still had a good performance in the range of γ from 0.5 to 2.0. When γ
equalled 3.0 or 4.0, the recall rate of the proposed method declined to some extent, since
those night data are extremely dark and even difficult for people to recognize.

Table 3. Comparisons of sheep face detection results for different γ.

γ Recall Precision F1 Score

0.5 88.36% 95.65% 91.86%
1.5 91.95% 97.34% 94.57%
2.0 88.49% 96.41% 92.28%
3.0 76.33% 95.32% 84.77%
4.0 57.45% 94.21% 71.37%

The qualitative detection results under different light conditions are shown in Figure 7.
The proposed method had a good performance in the range of γ from 0.5 to 2.0. When
γ equalled 3.0, the detection boxes deviated from the annotation boxes slightly. When
the γ equalled 4.0, there was no sheep face detected from the second image. The results
indicate that as the lighting conditions decrease, the performance of the method will slightly
decrease, but the detector is robust during the daytime period. The proposed method still
needs to be improved when detecting faces in low illumination environments, such as in
the sheep house at night.

3.4. Ablation Experiment

(1) Effectiveness of the Different Key Components of the Proposed Methods

For the purpose of comparing the impact of different key components on the detect-
ing performance, we conducted the ablation experiment. In this experiment, we used
“RetinaFace+MobileNetV3-large” to denote the method of RetinaFace with the original
MobileNetV3-large as the backbone network and “RetinaFace + MobileNetV3-large + SAC”
to denote the method of RetinaFace with the improved MobileNetV3-large as the backbone
network. As shown in Table 4, the proposed method RetinaFace + MobileNetV3-large +
SAC + CBAM) achieved a considerable performance gain in both F1 score and AP, when
compared to other variant approaches. Compared with RetinaFace + ResNet50, the de-
tection performance of the lightweight RetinaFace + MobileNetV3-large was decreased
significantly in both F1 score and AP, which demonstrated the lightweight backbone net-
work weakened the feature extraction ability of the method. It can be observed that adding
the SAC module could further improve the detection performance. The main reasons could
be attributed to adding the SAC module into the C1–C2 layers of the MobileNetV3-large,
helping to expand the receptive field, thus extracting large-scale sheep facial features from
the images for sheep face detection. Moreover, our RetinaFace + MobileNetV3-large + SAC
+ CBAM outperformed the RetinaFace + MobileNetV3-large + SAC in terms of F1 score and
AP score, which demonstrated the effectiveness of the proposed SSH-CBAM module for
sheep face detection. It can be noted that although adding SAC or CBAM brings a few
additional computational costs, the proposed method (RetinaFace + MobileNetV3-large
+ SAC + CBAM) achieved considerable performance gains in both F1 score and AP when
compared to other baseline approaches.
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Table 4. Results of the ablation experiment.

Method F1 Score AP Model Size Average
Processing Time

RetinaFace + ResNet50 [23] 94.02% 95.23% 119.02 MB 225.91 ms
RetinaFace + MobileNetV3-large 93.76% 89.83% 12.89 MB 22.32 ms

RetinaFace + MobileNetV3-large + SAC 95.12% 94.77% 13.19 MB 25.57 ms
RetinaFace + MobileNetV3-large + SAC + CBAM 95.25% 96.00% 13.20 MB 26.83 ms

(2) Effectiveness of the proposed detection method on the sheep face recognition task

As a key prerequisite, sheep face detection plays a crucial role in robust sheep face
recognition. In order to verify the effect of sheep face detection methods on the performance
of sheep face recognition, we conducted experiments on the publicly available sheep face
recognition method (i.e., ArcFace [33]) based on the detection results of the detection
methods (i.e., YOLOv4-tiny) and our proposed detection method). Specifically, we used
the detection results as training data and test data for the sheep face recognition method.

The experimental results are shown in Table 5. Here, we used “YOLOv4-tiny + ArcFace”
to denote the recognition method based on the detection results of YOLOv4-tiny, and “Ours
+ ArcFace” to denote the recognition method based on the detection results of our proposed
detection method. As shown in Table 4, “Ours + ArcFace obtained the best recognition
accuracy of 87.74%, outperforming YOLOv4-tiny + ArcFace by 16.31 percentage points.
The experimental results proved that our sheep face detection method could boost the
performance of a state-of-the-art publicly available sheep face recognition method.
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Table 5. Comparisons of sheep face recognition based on different detection methods.

Method Accuracy

YOLOv4-tiny [29] + ArcFace [33] 71.43%
Ours + ArcFace [33] 87.74%

(3) Ablation study of adding the SAC module into MobileNetV3-large

This study provided experiments for our improved MobileNetV3-large network that
added the SAC module. We explored several choices for injecting such a SAC module
within the original MobileNetV3-large network. The comparative results of adding the
SAC module in different stages of the original MobileNetV3-large are shown in Table 6. It
can be seen that adding the SAC module into deeper layers of MobileNetV3-large (e.g.,
C5, C4, and C3) significantly led to the decline in precision and recall scores, and the
MobileNetV3-large + SAC_C2 achieved the best performance compared to other choices. It
indicates that applying the SAC module in small-resolution feature maps (deeper layers)
will lose part of the feature information, and the networks cannot capture the key facial
features of Sheep. However, utilizing the SAC module at the appropriate position can
effectively help the network to gain a larger receptive field and capture large-scale facial
features. These results motivate us to use a MobileNetV3-large + SAC_C2 for the backbone
network of our final architecture.

Table 6. Sheep face detection results based on different improvement methods of MobileNetV3-large.

Method Recall Precision F1 Score

MobileNetV3-large 90.31% 97.49% 93.76%
MobileNetV3-large + SAC_C5 63.10% 67.81% 65.37%
MobileNetV3-large + SAC_C4 72.86% 77.65% 75.18%
MobileNetV3-large + SAC_C3 86.70% 94.66% 90.50%

MobileNetV3-large + SAC_C2 (proposal) 92.22% 98.20% 95.12%
MobileNetV3-large + SAC_C1 91.33% 97.43% 94.28%

4. Conclusions

In this paper, we propose an improved lightweight RetinaFace algorithm for multi-
scale sheep face detection. To accelerate the speed of the multi-scale sheep face feature
extraction, an improved MobileNetV3-large with a switchable atrous convolution (SAC)
was optimally used as the backbone network of the proposed algorithm. The channel
and spatial attention modules were added into the original detector module to highlight
important facial features of sheep. Furthermore, this work was trained and tested on a new
sheep face dataset captured in a real sheep ranch with the characteristics of multi-scale.
The experimental results on our new dataset demonstrate the effectiveness and robustness
of the proposed method, which can be adopted to the multi-scale sheep face detection task
in real time. It should be noted that the proposed method can be used in domains other
than sheep face detection (e.g., cattle face detection or body detection of other animals), but
these need to be further verified.

In the future, we will continue to explore an ensembled framework to properly inte-
grate the improved sheep face detection model and the improved sheep face recognition
model for identifying the IDs of the sheep quickly and accurately.
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