Chemical Composition and Functional Properties of Spray-Dried Animal Plasma and Its Contributions to Livestock and Pet Health: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Production of Spray-Dried Plasma
Safety
3. Spray-Dried Animal Plasma Chemical Composition
Item | Spray-Dried Porcine Plasma | Spray-Dried Bovine Plasma | Spray-Dried Chicken Plasma |
---|---|---|---|
Crude protein (g/100 g) | 78.74 | 75.21 | 76.74 |
Essential amino acids (g/100 g CP) | |||
Arginine, Arg | 3.77 | 4.15 | 4.48 |
Histidine, His | 2.20 | 3.84 | 2.77 |
Isoleucine, Ile | 2.14 5 | 3.13 6 | 2.68 5 |
Leucine, Leu | 6.29 | 9.72 | 7.51 |
Lysine, Lys | 5.84 | 8.34 | 5.98 |
Methionine, Met | 0.69 | 0.93 | 1.38 |
Methionine + Cystine, Met + Cys | 2.37 6 | 2.37 5 | 3.75 6 |
Phenyloalanine, Phe | 3.42 | 5.38 | 4.16 |
Phenyloalanine + Tyrosine, Phe + Tyr | 6.45 | 9.57 | 7.32 |
Threonine, Thr | 4.49 | 6.45 | 4.50 |
Tryptophan, Trp | 1.03 | 1.54 | 1.27 |
Valine, Val | 4.01 | 6.87 | 4.81 |
Non-essential amino acids (g/100 g CP) | |||
Alanine, Ala | 3.41 | 5.15 | 4.86 |
Aspartic acid, Asp | 6.50 | 10.25 | 7.70 |
Glutamic acid, Glu | 9.08 | 13.89 | 11.76 |
Glycine, Gly | 2.33 | 3.50 | 3.20 |
Proline, Pro | 3.81 | 4.27 | 3.84 |
Serine, Ser | 4.00 | 6.09 | 5.08 |
Nutritional values | |||
Ʃ AA 1 | 67.72 | 99.13 | 81.51 |
Ʃ EAA 2 | 38.57 | 55.98 | 45.07 |
CS 3 | 39.63 | 41.58 | 49.63 |
EAAI 4 | 65.36 | 82.12 | 76.53 |
References | [8,25,34,61,84] | [68,85] | [8,69,70,71] |
Item | Spray-Dried Porcine Plasma | Spray-Dried Bovine Plasma | Spray-Dried Chicken Plasma |
---|---|---|---|
Crude ash (g/100 g) | 9.10 | 7.26 | 11.01 |
Macroelements (g/100 g) | |||
Ca | 0.18 | 0.08 | 0.22 |
P | 0.43 | 0.10 | 0.62 |
K | 0.13 | 0.34 | nd 1 |
Na | 5.23 | 5.50 | nd |
Cl | 2.19 | 6.80 | nd |
Mg | 0.15 | 0.02 | 0.04 |
Microelements (mg/100 g) | |||
Cu | 5.00 | 1.5 | nd |
Fe | 9.98 | nd | nd |
Mn | 1.10 | nd | nd |
Zn | 8.00 | 1.5 | nd |
References | [8,25,34,61,84] | [68,85] | [8,69,70,71] |
4. The Use of SDAP in Swine and Piglet Nutrition
5. Spray-Dried Animal Plasma in Poultry Nutrition
6. Dog and Cat Nutrition: SDAP in Pet Food
7. The Additive of SDAP to Aquatic Animals’ Diet
8. SDAP and Neuroprotective Effects
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McMichael, A.J.; Powles, J.W.; Butler, C.D.; Uauy, R. Food, Livestock Production, Energy, Climate Change, and Health. Lancet 2007, 370, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Harmon, D.L. Grand Challenge in Animal Nutrition. Front. Anim. Sci. 2020, 1, 621638. [Google Scholar] [CrossRef]
- Sandström, V.; Chrysafi, A.; Lamminen, M.; Troell, M.; Jalava, M.; Piipponen, J.; Siebert, S.; van Hal, O.; Virkki, V.; Kummu, M. Food System By-Products Upcycled in Livestock and Aquaculture Feeds Can Increase Global Food Supply. Nat. Food 2022, 3, 729–740. [Google Scholar] [CrossRef]
- Campbell, J.M.; Crenshaw, J.D.; González-Esquerra, R.; Polo, J. Impact of Spray-Dried Plasma on Intestinal Health and Broiler Performance. Microorganisms 2019, 7, 219. [Google Scholar] [CrossRef] [Green Version]
- Edwards, M.V.; Campbell, R.G.; Chapman, T.; Brouwers, H.; Pierzynowski, S.G.; Weström, B.R.; Prykhod’ko, O.; Gabor, L.; Choct, M. Spray-Dried Porcine Plasma and Yeast Derived Protein Meal Influence the Adaption to Weaning of Primiparous and Multiparous Sow Progeny in Different Ways. Anim. Prod. Sci. 2012, 53, 75–86. [Google Scholar] [CrossRef]
- Kar, S.K.; Jansman, A.J.M.; Boeren, S.; Kruijt, L.; Smits, M.A. Protein, Peptide, Amino Acid Composition, and Potential Functional Properties of Existing and Novel Dietary Protein Sources for Monogastrics. J. Anim. Sci. 2016, 94, 30–39. [Google Scholar] [CrossRef]
- Zhe, L.; Yang, L.; Lin, S.; Chen, F.; Wang, P.; Heres, L.; Zhuo, Y.; Tang, J.; Lin, Y.; Xu, S.; et al. Differential Responses of Weaned Piglets to Supplemental Porcine or Chicken Plasma in Diets without Inclusion of Antibiotics and Zinc Oxide. Anim. Nutr. 2021, 7, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, S.H.; Kim, B.G. Effects of Dietary Spray-Dried Plasma Protein on Nutrient Digestibility and Growth Performance in Nursery Pigs. J. Anim. Sci. 2022, 100, skab351. [Google Scholar] [CrossRef]
- Müller, L.K.F.; Paiano, D.; Gugel, J.; Lorenzetti, W.R.; Santurio, J.M.; de Castro Tavernari, F.; da Gloria, E.M.; Baldissera, M.D.; Da Silva, A.S. Post-Weaning Piglets Fed with Different Levels of Fungal Mycotoxins and Spray-Dried Porcine Plasma Have Improved Weight Gain, Feed Intake and Reduced Diarrhea Incidence. Microb. Pathog. 2018, 117, 259–264. [Google Scholar] [CrossRef]
- Pérez-Bosque, A.; Polo, J.; Torrallardona, D. Spray Dried Plasma as an Alternative to Antibiotics in Piglet Feeds, Mode of Action and Biosafety. Porc. Health Manag. 2016, 2, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Dijk, A.J.; Everts, H.; Nabuurs, M.J.A.; Margry, R.J.C.F.; Beynen, A.C. Growth Performance of Weanling Pigs Fed Spray-Dried Animal Plasma: A Review. Livest. Prod. Sci. 2001, 68, 263–274. [Google Scholar] [CrossRef]
- Campbell, J.M.; Russell, L.E.; Crenshaw, J.D.; Behnke, K.C.; Clark, P.M. Growth Response of Broilers to Spray-Dried Plasma in Pelleted or Expanded Feed Processed at High Temperature. J. Anim. Sci. 2006, 84, 2501–2508. [Google Scholar] [CrossRef] [Green Version]
- Jamroz, D.; Wiliczkiewicz, A.; Orda, J.; Kuryszko, J.; Stefaniak, T. Use of Spray-Dried Porcine Blood by-Products in Diets for Young Chickens. J. Anim. Physiol. Anim. Nutr. 2012, 96, 319–333. [Google Scholar] [CrossRef]
- Quigley, J.D.; Kost, C.J.; Wolfe, T.A. Effects of Spray-Dried Animal Plasma in Milk Replacers or Additives Containing Serum and Oligosaccharides on Growth and Health of Calves. J. Dairy Sci. 2002, 85, 413–421. [Google Scholar] [CrossRef]
- Quigley, J.D.; Wolfe, T.M. Effects of Spray-Dried Animal Plasma in Calf Milk Replacer on Health and Growth of Dairy Calves. J. Dairy Sci. 2003, 86, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Coffey, R.D.; Cromwell, G.L. The Impact of Environment and Antimicrobial Agents on the Growth Response of Early-Weaned Pigs to Spray-Dried Porcine Plasma. J. Anim. Sci. 1995, 73, 2532–2539. [Google Scholar] [CrossRef]
- Torrallardona, D.; Conde, R.; Esteve-García, E.; Brufau, J. Use of Spray Dried Animal Plasma as an Alternative to Antimicrobial Medication in Weanling Pigs. Anim. Feed Sci. Technol. 2002, 99, 119–129. [Google Scholar] [CrossRef]
- Bosi, P.; Casini, L.; Finamore, A.; Cremokolini, C.; Merialdi, G.; Trevisi, P.; Nobili, F.; Mengheri, E. Spray-Dried Plasma Improves Growth Performance and Reduces Inflammatory Status of Weaned Pigs Challenged with Enterotoxigenic Escherichia Coli K88. J. Anim. Sci. 2004, 82, 1764–1772. [Google Scholar] [CrossRef] [Green Version]
- Walters, H.G.; Jasek, A.; Campbell, J.M.; Coufal, C.; Lee, J.T. Evaluation of Spray-Dried Plasma in Broiler Diets with or without Bacitracin Methylene Disalicylate. J. Appl. Poult. Res. 2019, 28, 364–373. [Google Scholar] [CrossRef]
- Blue, C.E.C.; Jababu, Y.; Ibrahim, S.A.; Minor, R.C.; Williams, L.L.; Adetunji, A.O.; Ali, R.; Young, L.S.; Fasina, Y.O. Spray-Dried Plasma Promotes Broiler Chick Growth by Enhancing Immune Surveillance. Animals 2023, 13, 1436. [Google Scholar] [CrossRef] [PubMed]
- Quigley, J.D., III; Drew, M.D. Effects of Oral Antibiotics or Bovine Plasma on Survival, Health and Growth in Dairy Calves Challenged with Escherichia Coli. Food Agric. Immunol. 2000, 12, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.; Fu, Q.; Armstrong, M.U.; Rennix, D.K.; Webster, D.W.; Galanko, J.A.; Chen, W.; Weaver, E.M.; Argenzio, R.A.; Rhoads, J.M. Oral Bovine Serum Concentrate Improves Cryptosporidial Enteritis in Calves. Pediatr. Res. 2002, 51, 370–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuchird, N.; Rairat, T.; Keetanon, A.; Phansawat, P.; Chou, C.-C.; Campbell, J. Effects of Spray-Dried Animal Plasma on Growth Performance, Survival, Feed Utilization, Immune Responses, and Resistance to Vibrio Parahaemolyticus Infection of Pacific White Shrimp (Litopenaeus vannamei). PLoS ONE 2021, 16, e0257792. [Google Scholar] [CrossRef]
- Polo, J.; Rodríguez, C.; Ródenas, J.; Morera, S.; Saborido, N. The Use of Spray-Dried Animal Plasma in Comparison with Other Binders in Canned Pet Food Recipes. Anim. Feed Sci. Technol. 2009, 154, 241–247. [Google Scholar] [CrossRef]
- Quigley, J.D.; Campbell, J.M.; Polo, J.; Russell, L.E. Effects of Spray-Dried Animal Plasma on Intake and Apparent Digestibility in Dogs. J. Anim. Sci. 2004, 82, 1685–1692. [Google Scholar] [CrossRef] [Green Version]
- Amer, S.A.; Farahat, M.; Khamis, T.; Abdo, S.A.; Younis, E.M.; Abdel-Warith, A.-W.A.; Reda, R.; Ali, S.A.; Davies, S.J.; Ibrahim, R.E. Evaluation of Spray-Dried Bovine Hemoglobin Powder as a Dietary Animal Protein Source in Nile Tilapia, Oreochromis Niloticus. Animals 2022, 12, 3206. [Google Scholar] [CrossRef]
- Blázquez, E.; Rodríguez, C.; Ródenas, J.; Segalés, J.; Pujols, J.; Polo, J. Biosafety Steps in the Manufacturing Process of Spray-Dried Plasma: A Review with Emphasis on the Use of Ultraviolet Irradiation as a Redundant Biosafety Procedure. Porc. Health Manag. 2020, 6, 16. [Google Scholar] [CrossRef]
- GMP. GMP+ Certification Scheme Animal Feed Sector 2006. Production of and Trade in Pet Foods; Good Manufacturing Practices. 2006. Available online: https://www.gmpplus.org/media/grwbkpf3/gmp-b8-en-20190401.pdf (accessed on 1 June 2023).
- Commission Regulation (EU) 2022/1104 of 1 July 2022 Amending Regulation (EU) No 68/2013 on the Catalogue of Feed Materials (Text with EEA Relevance). 2022. Volume 177. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32022R1104 (accessed on 1 June 2023).
- Regulation (EC) No 767/2009 of the European Parliament and of the Council of 13 July 2009 on the Placing on the Market and Use of Feed, Amending European Parliament and Council Regulation (EC) No 1831/2003 and Repealing Council Directive 79/373/EEC, Commission Directive 80/511/EEC, Council Directives 82/471/EEC, 83/228/EEC, 93/74/EEC, 93/113/EC and 96/25/EC and Commission Decision 2004/217/EC (Text with EEA Relevance)Text with EEA Relevance. 2018. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:229:0001:0028:EN:PDF (accessed on 1 June 2023).
- Kowalski, Z.; Makara, A.; Banach, M. Blood Plasma and Hemoglobin Production Process. Chemik 2011, 65, 466–475. [Google Scholar]
- Dailloux, S.; Djelveh, G.; Peyron, A.; Oulion, C. Rheological Behaviour of Blood Plasmas Concentrated by Ultrafiltration and by Evaporation in Relation to Liquid–Gel Transition Temperature. J. Food Eng. 2002, 55, 35–39. [Google Scholar] [CrossRef]
- Zhang, S.; Piao, X.; Ma, X.; Xu, X.; Zeng, Z.; Tian, Q.; Li, Y. Comparison of Spray-Dried Egg and Albumen Powder with Conventional Animal Protein Sources as Feed Ingredients in Diets Fed to Weaned Pigs. Anim. Sci. J. 2015, 86, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Blázquez, E.; Rodríguez, C.; Ródenas, J.; de Rozas, A.P.; Segalés, J.; Pujols, J.; Polo, J. Ultraviolet (UV-C) Inactivation of Enterococcus Faecium, Salmonella Choleraesuis and Salmonella Typhimurium in Porcine Plasma. PLoS ONE 2017, 12, e0175289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polo, J.; Rodríguez, C.; Ródenas, J.; Russell, L.E.; Campbell, J.M.; Crenshaw, J.D.; Torrallardona, D.; Pujols, J. Ultraviolet Light (UV) Inactivation of Porcine Parvovirus in Liquid Plasma and Effect of UV Irradiated Spray Dried Porcine Plasma on Performance of Weaned Pigs. PLoS ONE 2015, 10, e0133008. [Google Scholar] [CrossRef]
- Guerrero-Beltrán, J.A.; Barbosa-Cánovas, G.V. Reduction of Saccharomyces Cerevisiae, Escherichia Coli and Listeria Innocua in Apple Juice by Ultraviolet Light. J. Food Process Eng. 2005, 28, 437–452. [Google Scholar] [CrossRef]
- Keyser, M.; Műller, I.A.; Cilliers, F.P.; Nel, W.; Gouws, P.A. Ultraviolet Radiation as a Non-Thermal Treatment for the Inactivation of Microorganisms in Fruit Juice. Innov. Food Sci. Emerg. Technol. 2008, 9, 348–354. [Google Scholar] [CrossRef]
- Rossitto, P.V.; Cullor, J.S.; Crook, J.; Parko, J.; Sechi, P.; Cenci-Goga, B.T. Effects of UV Irradiation in a Continuous Turbulent Flow UV Reactor on Microbiological and Sensory Characteristics of Cow’s Milk. J. Food Prot. 2012, 75, 2197–2207. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Wang, W.; Song, X.; Wu, L.; Zhang, D. Effects of Drying Methods and Ash Contents on Heat-Induced Gelation of Porcine Plasma Protein Powder. Foods 2019, 8, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polo, J.; Quigley, J.D.; Russell, L.E.; Campbell, J.M.; Pujols, J.; Lukert, P.D. Efficacy of Spray-Drying to Reduce Infectivity of Pseudorabies and Porcine Reproductive and Respiratory Syndrome (PRRS) Viruses and Seroconversion in Pigs Fed Diets Containing Spray-Dried Animal Plasma. J. Anim. Sci. 2005, 83, 1933–1938. [Google Scholar] [CrossRef]
- Sampedro, F.; Snider, T.; Bueno, I.; Bergeron, J.; Urriola, P.E.; Davies, P.R. Risk Assessment of Feed Ingredients of Porcine Origin as Vehicles for Transmission of Porcine Epidemic Diarrhea Virus (PEDV); Research Report: Swine Health; University of Minnesota: Minneapolis, MN, USA, 2015; pp. 1–117. [Google Scholar]
- Pujols, J.; Segalés, J. Survivability of Porcine Epidemic Diarrhea Virus (PEDV) in Bovine Plasma Submitted to Spray Drying Processing and Held at Different Time by Temperature Storage Conditions. Vet. Microbiol. 2014, 174, 427–432. [Google Scholar] [CrossRef]
- Pujols, J.; Lorca-Oró, C.; Díaz, I.; Russell, L.E.; Campbell, J.M.; Crenshaw, J.D.; Polo, J.; Mateu, E.; Segalés, J. Commercial Spray-Dried Porcine Plasma Does Not Transmit Porcine Circovirus Type 2 in Weaned Pigs Challenged with Porcine Reproductive and Respiratory Syndrome Virus. Vet. J. 2011, 190, e16–e20. [Google Scholar] [CrossRef]
- Pujols, J.; López-Soria, S.; Segalés, J.; Fort, M.; Sibila, M.; Rosell, R.; Solanes, D.; Russell, L.; Campbell, J.; Crenshaw, J.; et al. Lack of Transmission of Porcine Circovirus Type 2 to Weanling Pigs by Feeding Them Spray-Dried Porcine Plasma. Vet. Rec. 2008, 163, 536–538. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.G.; Schalk, S.; Halbur, P.G.; Campbell, J.M.; Russell, L.E.; Opriessnig, T. Commercially Produced Spray-Dried Porcine Plasma Contains Increased Concentrations of Porcine Circovirus Type 2 DNA but Does Not Transmit Porcine Circovirus Type 2 When Fed to Naive Pigs. J. Anim. Sci. 2011, 89, 1930–1938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opriessnig, T.; Xiao, C.-T.; Gerber, P.F.; Zhang, J.; Halbur, P.G. Porcine Epidemic Diarrhea Virus RNA Present in Commercial Spray-Dried Porcine Plasma Is Not Infectious to Naïve Pigs. PLoS ONE 2014, 9, e104766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomónaco, M.; Sowul, M.; Gutiérrez, G.; Malacari, D.; Álvarez, I.; Porta, N.G.; Zabal, O.; Trono, K. Efficacy of the Spray-Drying Treatment to Inactivate the Bovine Leukemia Virus in Bovine Colostrum. J. Dairy Sci. 2020, 103, 6504–6510. [Google Scholar] [CrossRef] [PubMed]
- Lembcke, J.L.; Peerson, J.M.; Brown, K.H. Acceptability, Safety, and Digestibility of Spray-Dried Bovine Serum Added to Diets of Recovering Malnourished Children. J. Pediatr. Gastroenterol. Nutr. 1997, 25, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Tebbe, A.W.; Campbell, J.M.; Weiss, W.P. Effects of Spray-Dried Plasma Protein Product on Early-Lactation Dairy Cows. J. Dairy Sci. 2018, 101, 6019–6031. [Google Scholar] [CrossRef] [Green Version]
- Chahine, M.; de Haro Marti, M.E.; Matuk, C.; Aris, A.; Campbell, J.; Polo, J.; Bach, A. Effects of Spray-Dried Plasma Protein in Diets of Early Lactation Dairy Cows on Health, Milking and Reproductive Performance. Anim. Feed Sci. Technol. 2019, 257, 114266. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2021/1372 of 17 August 2021 Amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as Regards the Prohibition to Feed Non-Ruminant Farmed Animals, Other than Fur Animals, with Protein Derived from Animals (Text with EEA Relevance). 2021. Volume 295. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32021R1372 (accessed on 1 June 2023).
- Blázquez, E.; Pujols, J.; Segalés, J.; Rodríguez, C.; Campbell, J.; Russell, L.; Polo, J. Estimated Quantity of Swine Virus Genomes Based on Quantitative PCR Analysis in Spray-Dried Porcine Plasma Samples Collected from Multiple Manufacturing Plants. PLoS ONE 2022, 17, e0259613. [Google Scholar] [CrossRef]
- Seo, H.W.; Oh, Y.; Han, K.; Park, C.; Chae, C. Reduction of Porcine Circovirus Type 2 (PCV2) Viremia by a Reformulated Inactivated Chimeric PCV1-2 Vaccine-Induced Humoral and Cellular Immunity after Experimental PCV2 Challenge. BMC Vet. Res. 2012, 8, 194. [Google Scholar] [CrossRef] [Green Version]
- Opriessnig, T.; Gerber, P.F.; Xiao, C.-T.; Halbur, P.G.; Matzinger, S.R.; Meng, X.-J. Commercial PCV2a-Based Vaccines Are Effective in Protecting Naturally PCV2b-Infected Finisher Pigs against Experimental Challenge with a 2012 Mutant PCV2. Vaccine 2014, 32, 4342–4348. [Google Scholar] [CrossRef]
- Joshi, L.R.; Fernandes, M.H.V.; Clement, T.; Lawson, S.; Pillatzki, A.; Resende, T.P.; Vannucci, F.A.; Kutish, G.F.; Nelson, E.A.; Diel, D.G. Pathogenesis of Senecavirus A Infection in Finishing Pigs. J. Gen. Virol. 2016, 97, 3267–3279. [Google Scholar] [CrossRef]
- Lyoo, K.-S.; Choi, J.-Y.; Hahn, T.-W.; Park, K.T.; Kim, H.K. Effect of Vaccination with a Modified Live Porcine Reproductive and Respiratory Syndrome Virus Vaccine on Growth Performance in Fattening Pigs under Field Conditions. J. Vet. Med. Sci. 2016, 78, 1533–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenk, S.; Schoenhals, G.J.; de Souza, G.; Mann, M. A High Confidence, Manually Validated Human Blood Plasma Protein Reference Set. BMC Med. Genom. 2008, 1, 41. [Google Scholar] [CrossRef] [Green Version]
- Dàvila, E.; Parés, D.; Cuvelier, G.; Relkin, P. Heat-Induced Gelation of Porcine Blood Plasma Proteins as Affected by PH. Meat Sci. 2007, 76, 216–225. [Google Scholar] [CrossRef]
- Ravindran, V.; Morel, P.C. Ileal Amino Acid Digestibility of Some Novel Dietary Protein Sources for Growing Chickens. J. Sci. Food Agric. 2006, 86, 2603–2608. [Google Scholar] [CrossRef]
- Jamroz, D.; Wiliczkiewicz, A.; Orda, J.; Skorupińska, J.; Słupczyńska, M.; Kuryszko, J. Chemical Composition and Biological Value of Spray Dried Porcine Blood By-Products and Bone Protein Hydrolysate for Young Chickens. Br. Poult. Sci. 2011, 52, 589–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, J.; Lovatelli, A.; Aguilar-Manjarrez, J.; Cornish, L.; Dabbadie, L.; Desrochers, A.; Diffey, S.; Garrido Gamarro, E.; Geehan, J.; Hurtado, A.; et al. Seaweeds and Microalgae: An Overview for Unlocking Their Potential in Global Aquaculture Development; FAO Fisheries and Aquaculture Circular; FAO: Rome, Italy, 2021; ISBN 978-92-5-134710-2. [Google Scholar]
- Volkmann, H.; Imianovsky, U.; Oliveira, J.L.B.; Sant’Anna, E.S. Cultivation of Arthrospira (Spirulina) Platensis in Desalinator Wastewater and Salinated Synthetic Medium: Protein Content and Amino-Acid Profile. Braz. J. Microbiol. 2008, 39, 98–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tayebati, H.; Pajoum Shariati, F.; Soltani, N.; Sepasi Tehrani, H. Effect of Various Light Spectra on Amino Acids and Pigment Production of Arthrospira Platensis Using Flat-Plate Photobioreactor. Prep. Biochem. Biotechnol. 2021, 1–12. [Google Scholar] [CrossRef]
- Gottlob, R.O.; DeRouchey, J.M.; Tokach, M.D.; Goodband, R.D.; Dritz, S.S.; Nelssen, J.L.; Hastad, C.W.; Knabe, D.A. Amino Acid and Energy Digestibility of Protein Sources for Growing Pigs. J. Anim. Sci. 2006, 84, 1396–1402. [Google Scholar] [CrossRef]
- Sinha, R.; Radha, C.; Prakash, J.; Kaul, P. Whey Protein Hydrolysate: Functional Properties, Nutritional Quality and Utilization in Beverage Formulation. Food Chem. 2007, 101, 1484–1491. [Google Scholar] [CrossRef]
- Borg, B.S.; Campbell, J.M.; Polo, J. Evaluation of the Chemical and Biological Characteristics of Spray-Dried Plasma Protein Collected from Various Locations around the World. Am. Assoc. Swine Vet. 2002, 33, 97–100. [Google Scholar]
- Duarte, R.T.; Simoes, M.C.C.; Sgarbieri, V.C. Bovine Blood Components: Fractionation, Composition, and Nutritive Value. J. Agric. Food Chem. 1999, 47, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Rio De Reys, M.T.E.; Constantinides, S.M.; Sgarbieri, V.C.; El-Dash, A.A. Chicken Blood Plasma Proteins: Physicochemical, Nutritional and Functional Properties. J. Food Sci. 1980, 45, 17–20. [Google Scholar] [CrossRef]
- Sorapukdee, S.; Narunatsopanon, S. Comparative Study on Compositions and Functional Properties of Porcine, Chicken and Duck Blood. Korean J. Food Sci. Anim. Resour. 2017, 37, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Wu, G. Composition of Amino Acids and Related Nitrogenous Nutrients in Feedstuffs for Animal Diets. Amino Acids 2020, 52, 523–542. [Google Scholar] [CrossRef] [Green Version]
- Cotterill, O.J.; Glauert, J.; Froning, G.W. Nutrient Composition of Commercially Spray-Dried Egg Products. Poult. Sci. 1978, 57, 439–442. [Google Scholar] [CrossRef]
- Abreha, E.; Getachew, P.; Laillou, A.; Chitekwe, S.; Baye, K. Physico-Chemical and Functionality of Air and Spray Dried Egg Powder: Implications to Improving Diets. Int. J. Food Prop. 2021, 24, 152–162. [Google Scholar] [CrossRef]
- Lunde, G. Trace Metal Contents of Fish Meal and of the Lipid Phase Extracted from Fish Meal. J. Sci. Food Agric. 1973, 24, 413–419. [Google Scholar] [CrossRef]
- Bragadóttir, M.; Pálmadóttir, H.; Kristbergsson, K. Composition and Chemical Changes during Storage of Fish Meal from Capelin (Mallotus villosus). J. Agric. Food Chem. 2004, 52, 1572–1580. [Google Scholar] [CrossRef]
- Mavropoulou, I.P.; Kosikowski, F.V. Composition, Solubility, and Stability of Whey Powders. J. Dairy Sci. 1973, 56, 1128–1134. [Google Scholar] [CrossRef]
- Sugiarto, M.; Ye, A.; Singh, H. Characterisation of Binding of Iron to Sodium Caseinate and Whey Protein Isolate. Food Chem. 2009, 114, 1007–1013. [Google Scholar] [CrossRef]
- Madenci, A.B.; Bilgiçli, N. Effect of Whey Protein Concentrate and Buttermilk Powders on Rheological Properties of Dough and Bread Quality. J. Food Qual. 2014, 37, 117–124. [Google Scholar] [CrossRef]
- Paula da Silva, S.; Ferreira do Valle, A.; Perrone, D. Microencapsulated Spirulina Maxima Biomass as an Ingredient for the Production of Nutritionally Enriched and Sensorially Well-Accepted Vegan Biscuits. LWT 2021, 142, 110997. [Google Scholar] [CrossRef]
- Ramírez-Rodrigues, M.M.; Estrada-Beristain, C.; Metri-Ojeda, J.; Pérez-Alva, A.; Baigts-Allende, D.K. Spirulina Platensis Protein as Sustainable Ingredient for Nutritional Food Products Development. Sustainability 2021, 13, 6849. [Google Scholar] [CrossRef]
- Masten Rutar, J.; Jagodic Hudobivnik, M.; Nečemer, M.; Vogel Mikuš, K.; Arčon, I.; Ogrinc, N. Nutritional Quality and Safety of the Spirulina Dietary Supplements Sold on the Slovenian Market. Foods 2022, 11, 849. [Google Scholar] [CrossRef]
- Rodríguez, C.; Saborido, N.; Ródenas, J.; Polo, J. Effects of Spray-Dried Animal Plasma on Food Intake and Apparent Nutrient Digestibility by Cats When Added to a Wet Pet Food Recipe. Anim. Feed Sci. Technol. 2016, 216, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Almeida, F.N.; Stein, H.H. Standardized Total Tract Digestibility of Phosphorus in Blood Products Fed to Weanling Pigs. Rev. Colomb. Cienc. Pecu. 2011, 24, 609–616. [Google Scholar]
- Delaney, R.A.M. The Nutritive Value of Porcine Blood Plasma Concentrates Prepared by Ultrafiltration and Spray Drying. J. Sci. Food Agric. 1975, 26, 303–310. [Google Scholar] [CrossRef]
- Tybor, P.T.; Dill, C.W.; Landmann, W.A. Functional Properties of Proteins Isolated from Bovine Blood by a Continuous Pilot Process. J. Food Sci. 1975, 40, 155–159. [Google Scholar] [CrossRef]
- Gatnau, R. Spray Dried Porcine Plasma as a Source of Protein and Immunoglobulins for Weanling Pigs. Master’s Thesis, Iowa State University, Ames, IA, USA, 1990; pp. 35–82.
- Gatnau, R.; Zimmerman, D.R. Spray Dried Porcine Plasma (SDPP) as a Source of Protein for Weanling Pigs in Two Environments. J. Anim. Sci. 1991, 69 (Suppl. S1), 103. [Google Scholar]
- Zimmerman, D.R. Porcine Plasma Proteins in Diets of Weanling Pigs; Swine Research Reports; Iowa State University: Ames, IA, USA, 1987. [Google Scholar]
- Torrallardona, D. Spray Dried Animal Plasma as an Alternative to Antibiotics in Weanling Pigs—A Review. Asian-Australas. J. Anim. Sci. 2009, 23, 131–148. [Google Scholar] [CrossRef]
- Rantanen, M.M.; Smith, J.W.; Richert, B.T.; Friesen, K.G.; Russell, L.E.; Nelssen, J.L.; Goodband, R.D.; Tokach, M.D. Influence of Spray-Dried Plasma Source on Growth Performance of Weanling Pigs. Kans. Agric. Exp. Stn. Res. Rep. 1994, 72–75. [Google Scholar] [CrossRef] [Green Version]
- Burnham, L.L.; Kim, I.H.; Hines, R.H.; Hancock, J.D. Wheat Gluten and Spray-Dried Plasma Protein Blends for Nursery Pigs. Kans. Agric. Exp. Stn. Res. Rep. 1995, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Angulo, E.; Cubiló, D. Effect of Different Dietary Concentrations of Spray-Dried Porcine Plasma and a Modified Soyprotein Product on the Growth Performance of Piglets Weaned at 6 Kg Body Weight. Anim. Feed Sci. Technol. 1998, 72, 71–79. [Google Scholar] [CrossRef]
- Lawrence, K.R.; Goodband, R.D.; Tokach, M.D.; Dritz, S.S.; Nelssen, J.L.; Derouchey, J.M. Comparison of Wheat Gluten and Spray-Dried Animal Plasma in Diets for Nursery Pigs. J. Anim. Sci. 2004, 82, 3635–3645. [Google Scholar] [CrossRef] [PubMed]
- Grinstead, G.S.; Goodband, R.D.; Dritz, S.S.; Tokach, M.D.; Nelssen, J.L.; Woodworth, J.C.; Molitor, M. Effects of a Whey Protein Product and Spray-Dried Animal Plasma on Growth Performance of Weanling Pigs. J. Anim. Sci. 2000, 78, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Kerr, C.A.; Goodband, R.D.; Smith, J.W., II; Musser, R.E.; Bergström, J.R.; Nessmith, W.B., Jr.; Tokach, M.D.; Nelssen, J.L. Evaluation of Potato Proteins on the Growth Performance of Early-Weaned Pigs. J. Anim. Sci. 1998, 76, 3024–3033. [Google Scholar] [CrossRef]
- Nofrarías, M.; Manzanilla, E.G.; Pujols, J.; Gibert, X.; Majó, N.; Segalés, J.; Gasa, J. Spray-Dried Porcine Plasma Affects Intestinal Morphology and Immune Cell Subsets of Weaned Pigs. Livest. Sci. 2007, 108, 299–302. [Google Scholar] [CrossRef]
- Che, L.; Zhan, L.; Fang, Z.; Lin, Y.; Yan, T.; Wu, D. Effects of Dietary Protein Sources on Growth Performance and Immune Response of Weanling Pigs. Livest. Sci. 2012, 148, 1–9. [Google Scholar] [CrossRef]
- Cho, K.H.; Sampath, V.; Kim, A.J.; Yoo, J.S.; Kim, I.H. Evaluation of Full-Fatted and Hydrolysate Mealworm (Tenebrio molitor) Larvae as a Substitute for Spray-Dried Plasma Protein Diet in Weaning Pigs. J. Anim. Physiol. Anim. Nutr. 2022, 107, 589–597. [Google Scholar] [CrossRef]
- Jin, X.H.; Heo, P.S.; Hong, J.S.; Kim, N.J.; Kim, Y.Y. Supplementation of Dried Mealworm (Tenebrio Molitor Larva) on Growth Performance, Nutrient Digestibility and Blood Profiles in Weaning Pigs. Asian-Australas. J. Anim. Sci. 2016, 29, 979–986. [Google Scholar] [CrossRef] [Green Version]
- Kierończyk, B.; Rawski, M.; Józefiak, A.; Mazurkiewicz, J.; Świątkiewicz, S.; Siwek, M.; Bednarczyk, M.; Szumacher-Strabel, M.; Cieślak, A.; Benzertiha, A.; et al. Effects of Replacing Soybean Oil with Selected Insect Fats on Broilers. Anim. Feed Sci. Technol. 2018, 240, 170–183. [Google Scholar] [CrossRef]
- The Weaner Pig: Nutrition and Management. Proceedings of a British Society of Animal Science Occasional Meeting, University of Nottingham, UK, September 2000, 1st ed.; Varley, M.A.; Wiseman, J. (Eds.) CABI Publishing: Wallingford, UK, 2001; ISBN 978-0-85199-532-8. [Google Scholar]
- Castelo, P.G.; Rodrigues, L.A.; de Gabardo, M.P.; Guedes, R.M.C.; Moreno, A.M.; Coura, F.M.; Heinemann, M.B.; Rosa, B.O.; Brustolini, A.P.L.; Araújo, I.C.S.; et al. A Dietary Spray-Dried Plasma Feeding Programme Improves Growth Performance and Reduces Faecal Bacterial Shedding of Nursery Pigs Challenged with Enterotoxigenic Escherichia Coli K88. J. Anim. Physiol. Anim. Nutr. 2022, 107, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Zhong, X.; He, J.; Zhang, L.; Bai, K.; Xu, W.; Wang, T.; Huang, X. Supplementation of Tributyrin Improves the Growth and Intestinal Digestive and Barrier Functions in Intrauterine Growth-Restricted Piglets. Clin. Nutr. Edinb. Scotl. 2016, 35, 399–407. [Google Scholar] [CrossRef]
- Petschow, B.W.; Blikslager, A.T.; Weaver, E.M.; Campbell, J.M.; Polo, J.; Shaw, A.L.; Burnett, B.P.; Klein, G.L.; Rhoads, J.M. Bovine Immunoglobulin Protein Isolates for the Nutritional Management of Enteropathy. World J. Gastroenterol. 2014, 20, 11713–11726. [Google Scholar] [CrossRef]
- Hampson, D.J. Alterations in Piglet Small Intestinal Structure at Weaning. Res. Vet. Sci. 1986, 40, 32–40. [Google Scholar] [CrossRef]
- Pluske, J.R.; Hampson, D.J.; Williams, I.H. Factors Influencing the Structure and Function of the Small Intestine in the Weaned Pig: A Review. Livest. Prod. Sci. 1997, 51, 215–236. [Google Scholar] [CrossRef]
- Owusu-Asiedu, A.; Nyachoti, C.M.; Baidoo, S.K.; Marquardt, R.R.; Yang, X. Response of Early-Weaned Pigs to an Enterotoxigenic Escherichia Coli (K88) Challenge When Fed Diets Containing Spray-Dried Porcine Plasma or Pea Protein Isolate plus Egg Yolk Antibody. J. Anim. Sci. 2003, 81, 1781–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Chen, D.W.; Yu, B.; He, J.; Yu, J.; Mao, X.B.; Wang, J.X.; Luo, J.Q.; Huang, Z.Q.; Cheng, G.X.; et al. Spray-Dried Chicken Plasma Improves Intestinal Digestive Function and Regulates Intestinal Selected Microflora in Weaning Piglets. J. Anim. Sci. 2015, 93, 2967–2976. [Google Scholar] [CrossRef]
- Boyer, P.E.; D’Costa, S.; Edwards, L.L.; Milloway, M.; Susick, E.; Borst, L.B.; Thakur, S.; Campbell, J.M.; Crenshaw, J.D.; Polo, J.; et al. Early-Life Dietary Spray-Dried Plasma Influences Immunological and Intestinal Injury Responses to Later-Life Salmonella Typhimurium Challenge. Br. J. Nutr. 2015, 113, 783–793. [Google Scholar] [CrossRef]
- Dong, G.Z.; Pluske, J.R. The Low Feed Intake in Newly-Weaned Pigs: Problems and Possible Solutions. Asian-Australas. J. Anim. Sci. 2007, 20, 440–452. [Google Scholar] [CrossRef] [Green Version]
- Pierce, J.L.; Cromwell, G.L.; Lindemann, M.D.; Russell, L.E.; Weaver, E.M. Effects of Spray-Dried Animal Plasma and Immunoglobulins on Performance of Early Weaned Pigs. J. Anim. Sci. 2005, 83, 2876–2885. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Chang, X.; Stoll, B.; Fan, M.Z.; Arthington, J.; Weaver, E.; Campbell, J.; Burrin, D.G. Dietary Plasma Protein Reduces Small Intestinal Growth and Lamina Propria Cell Density in Early Weaned Pigs. J. Nutr. 2000, 130, 21–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blázquez, E.; Pujols, J.; Rodríguez, F.; Segalés, J.; Rosell, R.; Campbell, J.; Polo, J. Feeding Spray-Dried Porcine Plasma to Pigs Reduces African Swine Fever Virus Load in Infected Pigs and Delays Virus Transmission—Study 1. Vaccines 2023, 11, 824. [Google Scholar] [CrossRef] [PubMed]
- Pujols, J.; Blázquez, E.; Segalés, J.; Rodríguez, F.; Chang, C.-Y.; Argilaguet, J.; Bosch-Camós, L.; Rosell, R.; Pailler-García, L.; Gavrilov, B.; et al. Feeding Spray-Dried Porcine Plasma to Pigs Improves the Protection Afforded by the African Swine Fever Virus (ASFV) BA71∆CD2 Vaccine Prototype against Experimental Challenge with the Pandemic ASFV—Study 2. Vaccines 2023, 11, 825. [Google Scholar] [CrossRef]
- Balan, P.; Staincliffe, M.; Moughan, P.J. Effects of Spray-Dried Animal Plasma on the Growth Performance of Weaned Piglets—A Review. J. Anim. Physiol. Anim. Nutr. 2021, 105, 699–714. [Google Scholar] [CrossRef]
- Khadour, H.V.N.; Parsons, B.W.; Utterback, P.L.; Campbell, J.M.; Parsons, C.M.; Emmert, J.L. Metabolizable Energy and Amino Acid Digestibility in Spray-Dried Animal Plasma Using Broiler Chick and Precision-Fed Rooster Assays. Poult. Sci. 2022, 101, 101807. [Google Scholar] [CrossRef]
- Henn, J.D.; Bockor, L.; Vieira, M.S.; Ribeiro, A.M.L.; Kessler, A.M.; Albino, L.; Rostagno, H.; Crenshaw, J.D.; Campbell, J.M.; Rangel, L.F.S. Inclusion of Porcine Spray-Dried Plasma in Broiler Diets. J. Appl. Poult. Res. 2013, 22, 229–237. [Google Scholar] [CrossRef]
- Beski, S.S.M.; Swick, R.A.; Iji, P.A. Subsequent Growth Performance and Digestive Physiology of Broilers Fed on Starter Diets Containing Spray-Dried Porcine Plasma as a Substitute for Meat Meal. Br. Poult. Sci. 2015, 56, 559–568. [Google Scholar] [CrossRef]
- Beski, S.S.M.; Swick, R.A.; Iji, P.A. The Effect of the Concentration and Feeding Duration of Spray-Dried Plasma Protein on Growth Performance, Digestive Enzyme Activities, Nutrient Digestibility and Intestinal Mucosal Development of Broiler Chickens. Anim. Prod. Sci. 2016, 56, 1820–1827. [Google Scholar] [CrossRef]
- Bregendahl, K.; Ahn, D.U.; Trampel, D.W.; Campbell, J.M. Effects of Dietary Spray-Dried Bovine Plasma Protein on Broiler Growth Performance and Breast-Meat Yield. J. Appl. Poult. Res. 2005, 14, 560–568. [Google Scholar] [CrossRef]
- Campbell, J.M.; Russell, L.E.; Crenshaw, J.D.; Koehnk, H.J. Effect of Spray-Dried Plasma Form and Duration of Feeding on Broiler Performance during Natural Necrotic Enteritis Exposure. J. Appl. Poult. Res. 2006, 15, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Beski, S.S.M.; Swick, R.A.; Iji, P.A. Effect of Dietary Inclusion of Spray-Dried Porcine Plasma on Performance, Some Physiological and Immunological Response of Broiler Chickens Challenged with Salmonella Sofia. J. Anim. Physiol. Anim. Nutr. 2016, 100, 957–966. [Google Scholar] [CrossRef]
- Fasina, Y.O.; Obanla, T.O.; Ferket, P.R.; Shah, D.H. Comparative Efficacy of Spray-Dried Plasma and Bacitracin Methylene Disalicylate in Reducing Cecal Colonization by Salmonella Enteritidis in Broiler Chickens. Poult. Sci. 2021, 100, 101134. [Google Scholar] [CrossRef] [PubMed]
- Ruff, J.; Barros, T.L.; Campbell, J.; González-Esquerra, R.; Vuong, C.N.; Dridi, S.; Greene, E.S.; Hernandez-Velasco, X.; Hargis, B.M.; Tellez-Isaias, G. Spray-Dried Plasma Improves Body Weight, Intestinal Barrier Function, and Tibia Strength during Experimental Constant Heat Stress Conditions. Animals 2021, 11, 2213. [Google Scholar] [CrossRef]
- Klasing, K.C.; Korver, D.R. Leukocytic Cytokines Regulate Growth Rate and Composition Following Activation of the Immune System. J. Anim. Sci. 1997, 75, 58–67. [Google Scholar]
- Humphrey, B.D.; Klasing, K.C. Modulation of Nutrient Metabolism and Homeostasis by the Immune System. Worlds Poult. Sci. J. 2004, 60, 90–100. [Google Scholar] [CrossRef]
- Zeng, T.; Li, J.; Wang, D.; Li, G.; Wang, G.; Lu, L. Effects of Heat Stress on Antioxidant Defense System, Inflammatory Injury, and Heat Shock Proteins of Muscovy and Pekin Ducks: Evidence for Differential Thermal Sensitivities. Cell Stress Chaperones 2014, 19, 895–901. [Google Scholar] [CrossRef]
- Huang, C.; Jiao, H.; Song, Z.; Zhao, J.; Wang, X.; Lin, H. Heat Stress Impairs Mitochondria Functions and Induces Oxidative Injury in Broiler Chickens. J. Anim. Sci. 2015, 93, 2144–2153. [Google Scholar] [CrossRef]
- Kuttappan, V.A.; Vicuña, E.A.; Latorre, J.D.; Wolfenden, A.D.; Téllez, G.I.; Hargis, B.M.; Bielke, L.R. Evaluation of Gastrointestinal Leakage in Multiple Enteric Inflammation Models in Chickens. Front. Vet. Sci. 2015, 2, 66. [Google Scholar] [CrossRef] [Green Version]
- Belote, B.L.; Soares, I.; Tujimoto-Silva, A.; Tirado, A.G.C.; Martins, C.M.; Carvalho, B.; Gonzalez-Esquerra, R.; Rangel, L.F.S.; Santin, E. Field Evaluation of Feeding Spray-Dried Plasma in the Starter Period on Final Performance and Overall Health of Broilers. Poult. Sci. 2021, 100, 101080. [Google Scholar] [CrossRef]
- Jababu, Y.; Blue, C.; Ferket, P.R.; Fasina, Y.O. Comparative Effects of Spray-Dried Plasma and Bacitracin Methylene Disalicylate on Intestinal Development in Broiler Chicks. Int. J. Poult. Sci. 2020, 19, 161–168. [Google Scholar] [CrossRef]
- Dabbou, S.; Trocino, A.; Xiccato, G.; Nery, J.; Madrid, J.; Martinez, S.; Hernández, F.; Kalmar, I.D.; Capucchio, M.T.; Colombino, E.; et al. The Effect of Dietary Supplementation with Globin and Spray-Dried Porcine Plasma on Performance, Digestibility and Histomorphological Traits in Broiler Chickens. J. Anim. Physiol. Anim. Nutr. 2021, 105 (Suppl. S2), 42–51. [Google Scholar] [CrossRef] [PubMed]
- Etheridge, P.A.; Hickson, D.W.; Young, C.R.; Landmann, W.A.; Dill, C.W. Functional and Chemical Characteristics of Bovine Plasma Proteins Isolated as a Metaphosphate Complex. J. Food Sci. 1981, 46, 1782–1784. [Google Scholar] [CrossRef]
- Polo, J.; Rodríguez, C.; Saborido, N.; Ródenas, J. Functional Properties of Spray-Dried Animal Plasma in Canned Petfood. Anim. Feed Sci. Technol. 2005, 122, 331–343. [Google Scholar] [CrossRef]
- Polo, J.; Rodríguez, C.; Ródenas, J.; Morera, S.; Saborido, N. Use of Spray-Dried Animal Plasma in Canned Chunk Recipes Containing Excess of Added Water or Poultry Fat. Anim. Feed Sci. Technol. 2007, 133, 309–319. [Google Scholar] [CrossRef]
- Andrade, T.; Lima, D.C.; Domingues, L.P.; Félix, A.P.; de Oliveira, S.G.; Maiorka, A. Spray-Dried Porcine Plasma in Dog Foods: Implications on Digestibility, Palatability and Haematology. Semin. Ciênc. Agrár. 2019, 40, 1287. [Google Scholar] [CrossRef]
- Lee, A.H.; Lin, C.-Y.; Do, S.; Oba, P.M.; Belchik, S.E.; Steelman, A.J.; Schauwecker, A.; Swanson, K.S. Dietary Supplementation with Fiber, “Biotics”, and Spray-Dried Plasma Affects Apparent Total Tract Macronutrient Digestibility and the Fecal Characteristics, Fecal Microbiota, and Immune Function of Adult Dogs. J. Anim. Sci. 2022, 100, skac048. [Google Scholar] [CrossRef]
- Campbell, J.M.; Strohbehn, R.E.; Weaver, E.M.; Borg, B.S.; Russell, L.E.; Pozo, F.J.P.; Arthington, J.; Quigley, J. Methods and Compositions of Treatment for Modulating the Immune System of Animals. U.S. Patent Application 10/375,844, 26 August 2010. [Google Scholar]
- Rodriguez, C.; Blanch, F.; Romano, V.; Saborido, N.; Rodenas, J.; Polo, J. Porcine Immunoglobulins Survival in the Intestinal Tract of Adult Dogs and Cats Fed Dry Food Kibbles Containing Spray-Dried Porcine Plasma (SDPP) or Porcine Immunoglobulin Concentrate (PIC). Anim. Feed Sci. Technol. 2007, 139, 201–211. [Google Scholar] [CrossRef]
- Moretó, M.; Miró, L.; Amat, C.; Polo, J.; Manichanh, C.; Pérez-Bosque, A. Dietary Supplementation with Spray-Dried Porcine Plasma Has Prebiotic Effects on Gut Microbiota in Mice. Sci. Rep. 2020, 10, 2926. [Google Scholar] [CrossRef] [Green Version]
- Vasconcellos, R.S.; Henríquez, L.B.F.; Lourenço, P.d.S. Spray-Dried Animal Plasma as a Multifaceted Ingredient in Pet Food. Animals 2023, 13, 1773. [Google Scholar] [CrossRef]
- Wilson, D.; Evans, M.; Weaver, E.; Shaw, A.L.; Klein, G.L. Evaluation of Serum-Derived Bovine Immunoglobulin Protein Isolate in Subjects with Diarrhea-Predominant Irritable Bowel Syndrome. Clin. Med. Insights Gastroenterol. 2013, 6, CGast.S13200. [Google Scholar] [CrossRef] [PubMed]
- Parés, D.; Saguer, E.; Saurina, J.; Suñol, J.J.; Carretero, C. Functional Properties of Heat Induced Gels from Liquid and Spray-Dried Porcine Blood Plasma as Influenced by PH. J. Food Sci. 1998, 63, 958–961. [Google Scholar] [CrossRef]
- Parés, D.; Ledward, D.A. Emulsifying and Gelling Properties of Porcine Blood Plasma as Influenced by High-Pressure Processing. Food Chem. 2001, 74, 139–145. [Google Scholar] [CrossRef]
- Jia, S.; Li, X.; He, W.; Wu, G. Protein-Sourced Feedstuffs for Aquatic Animals in Nutrition Researchand Aquaculture. In Recent Advances in Animal Nutrition and Metabolism; Wu, G., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2022; pp. 237–261. ISBN 978-3-030-85686-1. [Google Scholar]
- Xu, J.; Sheng, Z.; Chen, N.; Xie, R.; Zhang, H.; Li, S. Effect of Dietary Fish Meal Replacement with Spray Dried Chicken Plasma on Growth, Feed Utilization and Antioxidant Capacity of Largemouth Bass (Micropterus salmoides). Aquac. Rep. 2022, 24, 101112. [Google Scholar] [CrossRef]
- de Araújo, E.P.; de Carvalho, P.L.P.F.; de Freitas, J.M.A.; da Silva, R.L.; Rocha, M.K.H.R.; Teixeira, C.P.; Damasceno, F.M.; Sartori, M.M.P.; Pezzato, L.E.; Barros, M.M. Dietary Spray-Dried Plasma Enhances the Growth Performance, Villus: Crypt Ratio and Cold-Induced Stress Resistance in Nile Tilapia (Oreochromis niloticus). Aquaculture 2017, 479, 675–681. [Google Scholar] [CrossRef] [Green Version]
- Tapia-Paniagua, S.T.; Balebona, M.d.C.; Firmino, J.P.; Rodríguez, C.; Polo, J.; Moriñigo, M.A.; Gisbert, E. The Effect of Spray-Dried Porcine Plasma on Gilthead Seabream (Sparus aurata) Intestinal Microbiota. Aquac. Nutr. 2020, 26, 801–811. [Google Scholar] [CrossRef]
- Fernández-Alacid, L.; Sanahuja, I.; Madrid, C.; Polo, J.; Firmino, J.P.; Balsalobre, C.; Reyes-López, F.E.; Vallejos-Vidal, E.; Andree, K.B.; Gisbert, E.; et al. Evaluating the Functional Properties of Spray-Dried Porcine Plasma in Gilthead Seabream (Sparus aurata) Fed Low Fish Meal Diets. Animals 2022, 12, 3297. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Bosque, A.; Miró, L.; Polo, J.; Russell, L.; Campbell, J.; Weaver, E.; Crenshaw, J.; Moretó, M. Dietary Plasma Protein Supplements Prevent the Release of Mucosal Proinflammatory Mediators in Intestinal Inflammation in Rats. J. Nutr. 2010, 140, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Miró, L.; Garcia-Just, A.; Amat, C.; Polo, J.; Moretó, M.; Pérez-Bosque, A. Dietary Animal Plasma Proteins Improve the Intestinal Immune Response in Senescent Mice. Nutrients 2017, 9, 1346. [Google Scholar] [CrossRef] [Green Version]
- Miró, L.; Amat, C.; Rosell-Cardona, C.; Campbell, J.M.; Polo, J.; Pérez-Bosque, A.; Moretó, M. Dietary Supplementation with Spray-Dried Porcine Plasma Attenuates Colon Inflammation in a Genetic Mouse Model of Inflammatory Bowel Disease. Int. J. Mol. Sci. 2020, 21, 6760. [Google Scholar] [CrossRef] [PubMed]
- Maijó, M.; Miró, L.; Polo, J.; Campbell, J.; Russell, L.; Crenshaw, J.; Weaver, E.; Moretó, M.; Pérez-Bosque, A. Dietary Plasma Proteins Attenuate the Innate Immunity Response in a Mouse Model of Acute Lung Injury. Br. J. Nutr. 2012, 107, 867–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Just, A.; Miró, L.; Pérez-Bosque, A.; Amat, C.; Polo, J.; Pallàs, M.; Griñán-Ferré, C.; Moretó, M. Dietary Spray-Dried Porcine Plasma Prevents Cognitive Decline in Senescent Mice and Reduces Neuroinflammation and Oxidative Stress. J. Nutr. 2020, 150, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-Y.; Tan, M.-S.; Yu, J.-T.; Tan, L. Role of Pro-Inflammatory Cytokines Released from Microglia in Alzheimer’s Disease. Ann. Transl. Med. 2015, 3, 136. [Google Scholar] [CrossRef]
- Caracciolo, B.; Xu, W.; Collins, S.; Fratiglioni, L. Cognitive Decline, Dietary Factors and Gut-Brain Interactions. Mech. Ageing Dev. 2014, 136–137, 59–69. [Google Scholar] [CrossRef]
- Rosell-Cardona, C.; Amat, C.; Griñán-Ferré, C.; Polo, J.; Pallàs, M.; Pérez-Bosque, A.; Moretó, M.; Miró, L. The Neuroprotective Effects of Spray-Dried Porcine Plasma Supplementation Involve the Microbiota-Gut-Brain Axis. Nutrients 2022, 14, 2211. [Google Scholar] [CrossRef]
- Rosell-Cardona, C.; Griñan-Ferré, C.; Pérez-Bosque, A.; Polo, J.; Pallàs, M.; Amat, C.; Moretó, M.; Miró, L. Dietary Spray-Dried Porcine Plasma Reduces Neuropathological Alzheimer’s Disease Hallmarks in SAMP8 Mice. Nutrients 2021, 13, 2369. [Google Scholar] [CrossRef] [PubMed]
- Bah, C.S.F.; Bekhit, A.E.-D.A.; Carne, A.; McConnell, M.A. Slaughterhouse Blood: An Emerging Source of Bioactive Compounds. Compr. Rev. Food Sci. Food Saf. 2013, 12, 314–331. [Google Scholar] [CrossRef]
- Chapagain, D.; Range, F.; Huber, L.; Virányi, Z. Cognitive Aging in Dogs. Gerontology 2018, 64, 165–171. [Google Scholar] [CrossRef]
- Landsberg, G. Therapeutic Agents for the Treatment of Cognitive Dysfunction Syndrome in Senior Dogs. Prog. Neuropsychopharmacol. Biol. Psychiatry 2005, 29, 471–479. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazimierska, K.; Biel, W. Chemical Composition and Functional Properties of Spray-Dried Animal Plasma and Its Contributions to Livestock and Pet Health: A Review. Animals 2023, 13, 2484. https://doi.org/10.3390/ani13152484
Kazimierska K, Biel W. Chemical Composition and Functional Properties of Spray-Dried Animal Plasma and Its Contributions to Livestock and Pet Health: A Review. Animals. 2023; 13(15):2484. https://doi.org/10.3390/ani13152484
Chicago/Turabian StyleKazimierska, Katarzyna, and Wioletta Biel. 2023. "Chemical Composition and Functional Properties of Spray-Dried Animal Plasma and Its Contributions to Livestock and Pet Health: A Review" Animals 13, no. 15: 2484. https://doi.org/10.3390/ani13152484
APA StyleKazimierska, K., & Biel, W. (2023). Chemical Composition and Functional Properties of Spray-Dried Animal Plasma and Its Contributions to Livestock and Pet Health: A Review. Animals, 13(15), 2484. https://doi.org/10.3390/ani13152484