Licury Cake in Diets for Lactating Goats: Intake, Digestibility, Feeding Behavior, Milk Production and Composition, and Nitrogen Metabolism
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Committee and Experiment Location
2.2. Animals, Experimental Design, and Management
2.3. Intake and Apparent Digestibility of Nutritional Components
2.4. Feeding Behavior
2.5. Milk Production and Composition
2.6. Chemical Analysis
2.7. Blood Metabolites
2.8. Nitrogen Balance
2.9. Statistical Analysis
3. Results
3.1. Intake and Apparent Digestibility of Nutritional Components
3.2. Feeding Behavior
3.3. Production and Composition of Milk
3.4. Blood Metabolites
3.5. Nitrogen Balance
4. Discussion
4.1. Intake and Apparent Digestibility of Nutritional Components
4.2. Feeding Behavior
4.3. Production and Composition of Milk
4.4. Blood Metabolites
4.5. Nitrogen Balance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dentler, J.; Kiefer, L.; Hummler, T.; Bahrs, E.; Elsaesser, M. The impact of low-input grass-based and high-input confinement-based dairy systems on food production, environmental protection and resource use. Agroecol. Sustain. Food Syst. 2020, 44, 1089–1110. [Google Scholar] [CrossRef]
- Mcgrath, J.; Duval, S.M.; Tamassia, L.F.M.; Kindermann, M.; Stemmler, R.T.; Gouve, V.N.; Acedo, T.S.; Immig, I.; Williams, S.N.; Celi, P. Nutritional strategies in ruminants: A lifetime approach. Res. Vet. Sci. 2018, 116, 28–39. [Google Scholar] [CrossRef]
- Antoniassi, R.; Miranda, P.C.; Ferreira, G.F.; Vieira, T.M.F.S.; Freitas, S.C.D.; Matsuura, M.I.D.S.F. Nutritional evaluation of Syagrus coronata kernels and development of cookies prepared with cassava flour and licuri kernels. Food Sci. Technol. 2022, 42, e69720. [Google Scholar] [CrossRef]
- Souza, M.C.P.; Moura, F.; Silva, J.V.; Almeida, C. Phylogeography of the palm Syagrus coronata (Martius) Beccari (Arecaceae): Distribution in the “Caatinga” and Atlantic forest domains. Braz. J. Bot. 2018, 41, 849–857. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Vieira, J.F.; Barbosa, A.M.; Silva, T.M.; Bezerra, L.R.; Nascimento Junior, N.G.; Freitas Junior, J.E.; Jaeger, S.M.P.L.; Oliveira, P.A.; Oliveira, R.L. Effect of replacing ground corn and soybean meal with licuri cake on the performance, digestibility, nitrogen metabolism and ingestive behavior in lactating dairy cows. Animal 2017, 11, 1957–1965. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.P.; Santos, S.A.; Cirne, L.G.; Pina, D.D.S.; Alba, H.D.; Rodrigues, T.C.; Araújo, M.L.G.M.L.; Lima, V.G.O.; Galvão, J.M.; Nascimento, C.O.; et al. Carcass characteristics and meat quality of feedlot goat kids fed high-concentrate diets with licury cake. Livest. Sci. 2021, 244, 104391. [Google Scholar] [CrossRef]
- Santos, M.D.C.; Silva, R.R.; da Silva, F.F.; de Oliveira, A.B.; Santos, L.V.; Paixão, T.R.; Silva, A.P.G.; Silva, J.W.D.; Barbosa, R.P.; da Costa, G.D. Nutrient intake and ingestive behavior of feedlot steers fed with licuri cake. Trop. Anim. Health Prod. 2020, 52, 1803–1809. [Google Scholar] [CrossRef]
- Bagaldo, A.R.; Miranda, G.S.; Júnior, M.S.; de Araújo, F.L.; Matoso, R.V.M.; Chizzotti, M.L.; BEZERRA, L.R.; Oliveira, R.L. Effect of Licuri cake supplementation on performance, digestibility, ingestive behavior, carcass traits and meat quality of grazing lambs. Small Rumin. Res. 2019, 177, 18–24. [Google Scholar] [CrossRef]
- Costa, E.G.L.; da Silva, F.F.; Silva, R.R.; Porto, A.F.; Santiago, B.M.; Rocha, L.C.; Cruz, A.G.; Guedes, A.C.F.; Neto, T.M.; Vieira, E.A. Inclusion of licuri meal in the diet of pasture dairy cows. Trop. Anim. Health Prod. 2019, 51, 2505–2511. [Google Scholar] [CrossRef]
- NRC—National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academic Press: Washington, DC, USA, 2007. [Google Scholar]
- Reis, M.J.; Santos, S.A.; Prates, L.L.; Detmann, E.; Carvalho, G.G.P.; Santos, A.C.S.; Rufino, L.M.; Mariz, L.D.; Neri, F.; Costa, E. Comparing sheep and cattle to quantify internal markers in tropical feeds using in situ ruminal incubation. Anim. Feed Sci. Technol. 2017, 232, 139–147. [Google Scholar] [CrossRef]
- Berchielli, T.T.; Pires, A.V.; Oliveira, S.G. Nutrição de Ruminantes, 2nd ed.; Funep: São Paulo, Brazil, 2011. [Google Scholar]
- Johnson, T.R.; Combs, D.K. Effects of prepartum diet, inert rumen bulk, and dietary polyethylene glycol on dry matter intake of lactating dairy cows. J. Dairy Sci. 1991, 74, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Bürger, P.J.; Pereira, J.C.; Queiroz, A.D.; Silva, J.D.; Valadares Filho, S.D.C.; Cecon, P.R.; Casali, A.D.P. Ingestive behavior in Holstein calves fed diets with different concentrate levels. Rev. Bras. Zootec. 2000, 29, 236–242. [Google Scholar] [CrossRef] [Green Version]
- NRC—National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academic Press: Washington, DC, USA, 2001. [Google Scholar]
- Ali, A.; Shook, G.E. An optimum transformation for somatic cell concentration in milk. J. Dairy Sci. 1980, 63, 487–490. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; Association of Official Analytical Chemists Inc.: Washington, DC, USA, 2002. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A.E. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standartization of procedures for nitrogen fractionation of ruminants feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Valente, T.N.P.; Detmann, E.; Valadares Filho, S.C.; Cunha, M.; Queiroz, A.C.; Sampaio, C.B. In situ estimation of indigestible compounds contents in cattle feed and feces using bags made from different textiles. Braz. J. Anim. Sci. 2011, 40, 666–675. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.B. Challenges with nonfiber carbohydrate methods. J. Anim. Sci. 2003, 81, 3226–3232. [Google Scholar] [CrossRef]
- Da Cruz, C.H.; Santos, S.A.; de Carvalho, G.G.P.; Azevedo, J.A.G.; Detmann, E.; de Campos Valadares Filho, S.; Mariz, L.D.S.; Pereira, E.S.; Nicory, I.M.C.; Tosto, M.S.L.; et al. Estimating digestible nutrients in diets for small ruminants fed with tropical forages. Livest. Sci. 2021, 249, 104532. [Google Scholar] [CrossRef]
- Valadares, R.F.D.; Broderick, G.A.; Valadares Filho, S.C.; Clayton, M.K. Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. J. Dairy Sci. 1999, 82, 2686–2696. [Google Scholar] [CrossRef]
- Fonseca, C.E.M.D.; Valadares, R.F.D.; Valadares Filho, S.D.C.; Leão, M.I.; Cecon, P.R.; Rodrigues, M.T.; Pina, D.S.; Marcondes, M.I.; Paixão, M.L.; Araújo, A.M. Microbial protein synthesis in lactating goats fed diets with increasing levels of dietary protein. Rev. Bras. Zootec. 2006, 35, 1169–1177. [Google Scholar] [CrossRef] [Green Version]
- Zeoula, L.; Fereli, F.; Prado, I.; Geron, L.; Caldas Neto, S.F.; Prado, O.; Maeda, E. Digestibility and nitrogen balance of sheep diets containing different levels of ruminal degradable protein and ground corn. Rev. Bras. Zootec. 2006, 35, 2179–2186. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute. SAS/STAT®Users Guide, Version 9.3; SAS Institute Inc.: Cary, NC, USA, 2009.
- Allen, M.S. Effects of Diet on Short-Term Regulation of Feed Intake by Lactating Dairy Cattle. J. Dairy Sci. 2000, 83, 1598–1624. [Google Scholar] [CrossRef] [PubMed]
- Zábranský, L.; Galik, B.; Poborska, A.; Hadačova, V.; Šoch, M.; Lad, F.; Petraškova, E.; Frejlach, T. Influence of probiotic feed supplements on functional status of rumen. J. Cent. Eur. Agric. 2019, 20, 1044–1054. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Jin, W.; Feng, P.F.; Liu, J.H.; Mao, S.Y. High-grain diet feeding altered the composition and functions of the rumen bacterial community and caused the damage to the laminar tissues of goats. Animal 2018, 12, 2511–2520. [Google Scholar] [CrossRef] [PubMed]
- Schultz, E.B.; Amaral, R.M.D.; Glória, L.S.; Silva, F.F.; Rodrigues, M.T.; Vieira, R.A.M. Ingestive behavior of dairy goats fed diets containing increasing levels of neutral detergent fiber and particle size using multivariate analysis. Acta Sci. Anim. Sci. 2019, 41, e45870. [Google Scholar] [CrossRef]
- Denholm, S.J.; McNeilly, T.N.; Bashir, S.; Mitchell, M.C.; Wall, E.; Sneddon, A.A. Correlations of milk and serum element concentrations with production and management traits in dairy cows. J. Dairy Sci. 2022, 105, 9726–9737. [Google Scholar] [CrossRef]
- Haile-Mariam, M.; Pryce, J.E. Genetic parameters for lactose and its correlation with other milk production traits and fitness traits in pasture-based production systems. J. Dairy Sci. 2017, 100, 3754–3766. [Google Scholar] [CrossRef]
- Fox, P.F.; Uniacke-Lowe, T.; McSweeney, P.L.H.; O’Mahony, J.A. Dairy Chemistry and Biochemistry; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Allen, M.S. Symposium review: Integrating the control of energy intake and partitioning into ration formulation. J. Dairy Sci. 2023, 106, 2181–2190. [Google Scholar] [CrossRef]
- Cheng, Z.; Meng, Z.; Tan, D.; Datsomor, O.; Zhan, K.; Lin, M.; Zhao, G. Effects of supplementation of sodium acetate on rumen fermentation and microbiota in postpartum dairy cows. Front. Microbiol. 2022, 13, 1053503. [Google Scholar] [CrossRef]
- Danes, M.A.C.; Hanigan, M.D.; Apelo, S.A.; Dias, J.D.L.; Wattiaux, M.A.; Broderick, G.A. Post-ruminal supplies of glucose and casein, but not acetate, stimulate milk protein synthesis in dairy cows through differential effects on mammary metabolism. J. Dairy Sci. 2020, 103, 6218–6232. [Google Scholar] [CrossRef]
- Koop, G.; van Werven, T.; Toft, N.; Nielen, M. Estimating test characteristics of somatic cell count to detect Staphylococcus aureus-infected dairy goats using latent class analysis. J. Dairy Sci. 2011, 94, 2902–2911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaskous, S.; Farschtschi, S.; Pfaffl, M.W. Physiological Aspects of Milk Somatic Cell Count in Small Ruminants—A Review. Dairy 2023, 4, 26–42. [Google Scholar] [CrossRef]
- Min, B.R.; Tomita, G.; Hart, S.P. Effect of subclinical intramammary infection on somatic cell counts and chemical composition of goats’ milk. J. Dairy Res. 2007, 74, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Haenlein, G.F. Relationship of somatic cell counts in goat milk to mastitis and productivity. Small Rumin. Res. 2002, 45, 163–178. [Google Scholar] [CrossRef]
- Podhorecká, K.; Borková, M.; Šulc, M.; Seydlová, R.; Dragounová, H.; Švejcarová, M.; Peroutková, J.; Elich, O. Somatic cell count in goat milk: An indirect quality indicator. Foods 2021, 10, 1046. [Google Scholar] [CrossRef]
- Rønn, M.; Knudsen, K.B.; Kristensen, N.B.; Weisbjerg, M.R. Can lignin and monomer composition of fibre describe the variation in iNDF in forages? Anim. Feed Sci. Technol. 2022, 284, 115157. [Google Scholar] [CrossRef]
- Zhang, N.; Teng, Z.; Li, P.; Fu, T.; Lian, H.; Wang, L.; Gao, T. Oscillating dietary crude protein concentrations increase N retention of calves by affecting urea-N recycling and nitrogen metabolism of rumen bacteria and epithelium. PLoS ONE 2021, 16, e0257417. [Google Scholar] [CrossRef]
- Lapierre, H.; Lobley, G.E. Nitrogen recycling in the ruminant: A review. J. Dairy Sci. 2001, 84, E223–E236. [Google Scholar] [CrossRef]
- Nichols, K.; de Carvalho, I.P.C.; Rauch, R.; Martín-Tereso, J. Unlocking the limitations of urea supply in ruminant diets by considering the natural mechanism of endogenous urea secretion. Animal 2022, 16, 100537. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Yang, D.; Sun, Z.; Niu, J.; Bao, Y.; Liu, S.; Tan, Z.; Hao, L.; Cheng, Y.; Liu, S. Changes in blood metabolic profiles reveal the dietary deficiencies of specific nutrients and physiological status of grazing yaks during the cold season in qinghai province of China. Metabolites 2022, 12, 738. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zheng, N.; Shen, W.; Zhao, S.; Wang, J. Synchrony degree of dietary energy and nitrogen release influences microbial community, fermentation, and protein synthesis in a rumen simulation system. Microorganisms 2020, 8, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Li, Z.; Moraes, L.E.; Shen, J.; Yu, Z.; Zhu, W. Effects of incremental urea supplementation on rumen fermentation, nutrient digestion, plasma metabolites, and growth performance in fattening lambs. Animals 2019, 9, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Licury Cake (g kg−1) | Licury Cake | |||
---|---|---|---|---|---|
0 | 67 | 133 | 200 | ||
Ingredient (g kg−1) | |||||
Maize silage | 500.0 | 500.0 | 500.0 | 500.0 | - |
Licury cake | 0.0 | 67.0 | 133.0 | 200.0 | - |
Ground corn | 225.0 | 183.0 | 146.0 | 108.0 | - |
Cottonseed meal | 200.0 | 175.0 | 146.0 | 117.0 | - |
Corn germ | 17.0 | 17.0 | 17.0 | 17.0 | - |
Soybean meal | 42.0 | 42.0 | 42.0 | 42.0 | - |
Urea | 8.0 | 8.0 | 8.0 | 8.0 | |
Mineral supplement 1 | 8.0 | 8.0 | 8.0 | 8.0 | - |
Chemical composition (g kg−1 DM) | |||||
Dry matter (g/kg as-fed) | 620.0 | 620.7 | 621.3 | 621.8 | 913.2 |
Mineral matter | 34.0 | 33.0 | 30.5 | 35.1 | 32.1 |
Crude protein | 184.6 | 184.2 | 182.8 | 178.0 | 176.6 |
Neutral detergent fiber ap 2 | 382.6 | 411.8 | 440.0 | 468.3 | 637.2 |
Acid detergent fiber ap 2 | 258.8 | 279.4 | 299.1 | 318.8 | 487.4 |
Potentially digestible neutral detergent fiber | 223.2 | 240.1 | 256.4 | 272.7 | 368.8 |
Neutral detergent insoluble nitrogen | - | - | - | - | 13.7 |
Acid detergent insoluble nitrogen | - | - | - | - | 3.1 |
Lignin | 81.5 | 90.2 | 98.7 | 107.1 | 218.2 |
Ether extract | 40.6 | 39.4 | 38.0 | 36.6 | 33.9 |
Non-fibrous carbohydrates | 374.5 | 323.3 | 299.6 | 273.0 | 120.2 |
Total digestible nutrients | 768.7 | 735.6 | 725.9 | 710.7 | 610.6 |
Metabolizable energy, Mcal kg−1 | 2.97 | 2.83 | 2.78 | 2.71 | 2.27 |
Variable | Licury Cake (g kg−1) | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 67 | 133 | 200 | Linear | Quadratic | ||
Nutritional component intake (g day−1) | |||||||
Dry matter | 1596.0 | 1653.8 | 1593.1 | 1606.7 | 47.95 | 0.876 | 0.591 |
Organic matter | 1542.8 | 1597.8 | 1539.2 | 1551.4 | 46.23 | 0.852 | 0.589 |
Crude protein | 297.5 | 307.3 | 288.9 | 292.0 | 9.19 | 0.392 | 0.714 |
Ether extract 2 | 65.9 | 67.2 | 62.9 | 60.9 | 1.91 | 0.035 | 0.412 |
Neutral detergent fiber 3 | 588.6 | 654.7 | 684.3 | 739.1 | 22.26 | <0.001 | 0.732 |
Non-digestible neutral detergent fiber 4 | 242.8 | 268.7 | 278.2 | 301.0 | 9.27 | <0.001 | 0.826 |
Potentially digestible neutral detergent fiber 5 | 345.8 | 386.1 | 406.0 | 438.1 | 13.07 | <0.001 | 0.673 |
Non-fibrous carbohydrates 6 | 636.1 | 615.0 | 548.6 | 504.4 | 17.88 | <0.001 | 0.469 |
Total digestible nutrients | 1183.2 | 1213.5 | 1176.3 | 1162.4 | 34.34 | 0.494 | 0.497 |
Nutritional component digestibility (%) | |||||||
Dry matter 7 | 68.9 | 67.3 | 67.6 | 66.3 | 0.40 | 0.018 | 0.786 |
Crude protein | 73.8 | 73.3 | 72.2 | 75.0 | 0.53 | 0.575 | 0.107 |
Ether extract | 90.5 | 92.5 | 92.4 | 92.3 | 0.37 | 0.076 | 0.118 |
Neutral detergent fiber 8 | 42.9 | 43.0 | 46.1 | 45.8 | 0.65 | 0.036 | 0.889 |
Non-fibrous carbohydrates | 96.2 | 94.3 | 95.6 | 95.1 | 0.58 | 0.707 | 0.545 |
Total digestible nutrients | 73.9 | 73.7 | 74.1 | 72.5 | 0.45 | 0.320 | 0.431 |
Variable | Licury Cake (g kg−1) | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 67 | 133 | 200 | Linear | Quadratic | ||
Time per activity (min day−1) | |||||||
Feeding | 292.1 | 297.1 | 296.3 | 300.4 | 8.10 | 0.669 | 0.974 |
Rumination | 462.5 | 476.7 | 439.6 | 432.1 | 10.78 | 0.084 | 0.565 |
Idling | 685.0 | 666.3 | 704.2 | 707.5 | 13.13 | 0.228 | 0.569 |
Feeding efficiency (g h−1) | |||||||
Dry matter | 340.8 | 340.7 | 340.9 | 338.9 | 14.50 | 0.944 | 0.952 |
Neutral detergent fiber 2 | 125.5 | 134.8 | 146.5 | 155.8 | 6.48 | 0.005 | 0.999 |
Rumination efficiency (g h−1) | |||||||
Dry matter | 211.9 | 210.5 | 219.9 | 224.6 | 6.42 | 0.258 | 0.742 |
Neutral detergent fiber 3 | 77.9 | 83.4 | 94.5 | 103.2 | 3.01 | <0.001 | 0.665 |
Periods per activity (N° of episodes day−1) | |||||||
Feeding | 17.79 | 15.42 | 15.42 | 15.17 | 0.69 | 0.053 | 0.228 |
Rumination | 26.50 | 28.00 | 26.92 | 27.83 | 0.81 | 0.559 | 0.793 |
Idling | 35.33 | 35.83 | 34.08 | 35.58 | 0.77 | 0.850 | 0.672 |
Variable | Licury Cake (g kg−1) | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 67 | 133 | 200 | Linear | Quadratic | ||
4% Fat-corrected milk yield (g day−1) | 1032.4 | 1013.5 | 1041.2 | 982.2 | 70.94 | 0.664 | 0.579 |
Milk composition (%) | |||||||
Fat | 3.9 | 4.5 | 4.2 | 4.2 | 0.12 | 0.486 | 0.102 |
Protein | 3.5 | 3.5 | 3.5 | 3.4 | 0.06 | 0.151 | 0.807 |
Lactose | 4.5 | 4.4 | 4.5 | 4.5 | 0.02 | 0.882 | 0.937 |
Total solids | 12.6 | 13.1 | 13.0 | 12.8 | 0.17 | 0.690 | 0.088 |
Total solids non-fat | 8.7 | 8.7 | 8.7 | 8.6 | 0.06 | 0.129 | 0.505 |
Urea (mg dL−1) 2 | 26.9 | 28.9 | 29.4 | 29.5 | 0.45 | 0.026 | 0.881 |
Somatic cell count (×1000 mL−1) | 1319.3 | 708.2 | 576.8 | 1400.8 | 140.49 | 0.952 | 0.093 |
Somatic cell score | 6.72 | 5.82 | 5.53 | 6.81 | 0.56 | 0.345 | 0.162 |
Variable | Licury Cake (g kg−1) | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 67 | 133 | 200 | Linear | Quadratic | ||
Albumin (g dL−1) | 1.5 | 1.4 | 1.6 | 1.5 | 0.09 | 0.348 | 0.411 |
Globulin (g dL−1) | 4.4 | 4.2 | 4.7 | 4.6 | 0.19 | 0.935 | 0.939 |
Albumin:globulin ratio | 0.3 | 0.4 | 0.3 | 0.3 | 0.06 | 0.884 | 0.756 |
Total proteins (g dL−1) | 5.9 | 6.1 | 6.3 | 6.1 | 0.17 | 0.634 | 0.528 |
Urea (mg dL−1) 2 | 63.3 | 76.6 | 72.5 | 77.0 | 3.57 | 0.899 | 0.044 |
Variable | Licury Cake (g kg−1) | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 67 | 133 | 200 | Linear | Quadratic | ||
Nitrogen (g day−1) | |||||||
Ingested | 47.6 | 49.2 | 46.2 | 46.7 | 1.47 | 0.392 | 0.714 |
Excreted in feces | 7.2 | 6.1 | 7.3 | 5.9 | 0.24 | 0.052 | 0.641 |
Excreted in milk | 5.4 | 5.2 | 5.4 | 5.1 | 0.39 | 0.509 | 0.772 |
Excreted in urine | 15.8 | 11.4 | 15.6 | 18.3 | 1.18 | 0.166 | 0.066 |
Retained | 19.2 | 26.5 | 17.9 | 17.4 | 1.73 | 0.187 | 0.178 |
Digested | 40.4 | 43.1 | 38.9 | 40.8 | 1.34 | 0.647 | 0.775 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, F.G.; Leite, L.C.; Alba, H.D.R.; Pina, D.d.S.; Santos, S.A.; Tosto, M.S.L.; Rodrigues, C.S.; Silva, R.R.; de Freitas Júnior, J.E.; Mesquita, B.M.A.d.C.; et al. Licury Cake in Diets for Lactating Goats: Intake, Digestibility, Feeding Behavior, Milk Production and Composition, and Nitrogen Metabolism. Animals 2023, 13, 2535. https://doi.org/10.3390/ani13152535
Ferreira FG, Leite LC, Alba HDR, Pina DdS, Santos SA, Tosto MSL, Rodrigues CS, Silva RR, de Freitas Júnior JE, Mesquita BMAdC, et al. Licury Cake in Diets for Lactating Goats: Intake, Digestibility, Feeding Behavior, Milk Production and Composition, and Nitrogen Metabolism. Animals. 2023; 13(15):2535. https://doi.org/10.3390/ani13152535
Chicago/Turabian StyleFerreira, Fernanda G., Laudí C. Leite, Henry D. R. Alba, Douglas dos S. Pina, Stefanie A. Santos, Manuela S. L. Tosto, Carlindo S. Rodrigues, Robério R. Silva, José E. de Freitas Júnior, Bruna M. A. de C. Mesquita, and et al. 2023. "Licury Cake in Diets for Lactating Goats: Intake, Digestibility, Feeding Behavior, Milk Production and Composition, and Nitrogen Metabolism" Animals 13, no. 15: 2535. https://doi.org/10.3390/ani13152535
APA StyleFerreira, F. G., Leite, L. C., Alba, H. D. R., Pina, D. d. S., Santos, S. A., Tosto, M. S. L., Rodrigues, C. S., Silva, R. R., de Freitas Júnior, J. E., Mesquita, B. M. A. d. C., & Carvalho, G. G. P. d. (2023). Licury Cake in Diets for Lactating Goats: Intake, Digestibility, Feeding Behavior, Milk Production and Composition, and Nitrogen Metabolism. Animals, 13(15), 2535. https://doi.org/10.3390/ani13152535