Relationship between Beef Quality and Bull Breed
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Analytical Methods
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parzonko, A.; Bórawski, P. Competitiveness of Polish dairy farms in the European Union. Agric. Econ.-Czech. 2020, 66, 168–174. [Google Scholar] [CrossRef]
- Szczepaniak, B.; Górecka, D.; Flaczyk, E. Nutritional habits relating to meat and meat products consumption among young people from selected regions of Poland. Pol. J. Food Nutr. Sci. 2004, 13, 421–426. [Google Scholar]
- Poland, S. Animal Production Expressed in Physical Terms in 2021. Available online: https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/produkcja-zwierzeca-zwierzeta-gospodarskie/fizyczne-rozmiary-produkcji-zwierzecej-w-2021-r-,2,8.html (accessed on 13 March 2023).
- Polski Związek Hodowców i Producentów Bydła Mięsnego. Ocena Wartości Użytkowej Bydła Ras Mięsnych Wyniki Za Rok 2021. Available online: https://bydlo.com.pl/wp-content/uploads/2022/12/PZHiBM_Ocena2021_broszuraA4_prev-v3.pdf (accessed on 13 March 2023).
- Farmers, P.F.o.C.B.a.D. Ocena i Hodowla Bydła Mlecznego za rok 2021-Region Oceny Wschód. Available online: https://pfhb.pl/fileadmin/user_upload/OCENA/publikacje/publikacje_2022/wyniki_oceny/Wyniki_oceny_za_rok_2021_PFHBiPM_RO_WSCHOD.pdf (accessed on 13 March 2023).
- Solarczyk, P.; Gołębiewski, M.; Slósarz, J.; Łukasiewicz, M.; Przysucha, T.; Puppel, K. Effect of breed on the level of the nutritional and health-promoting quality of semimembranosus muscle in purebred and crossbred bulls. Animals 2020, 10, 1822. [Google Scholar] [CrossRef] [PubMed]
- Artioli, G.G.; Sale, C.; Jones, R.L. Carnosine in health and disease. Eur. J. Sport Sci. 2019, 19, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Łukasiewicz, M.; Puppel, K.; Balcerak, M.; Slósarz, J.; Gołębiewski, M.; Kuczyńska, B.; Batorska, M.; Więcek, J.; Kunowska-Slósarz, M.; Popczyk, B. Variability of anserine and carnosine concentration in the wild boar (Sus scrofa scrofa) meat. Anim. Sci. Pap. Rep. 2018, 36, 185–192. [Google Scholar]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef] [Green Version]
- Nogalski, Z.; Wielgosz-Groth, Z.; Purwin, C.; Sobczuk-Szul, M.; Mochol, M.; Pogorzelska-Przybytek, P.; Winarski, R. Effect of slaughter weight on the carcass value of young crossbred (’Polish Holstein Friesian’x’Limousin’) steers and bulls. Chil. J. Agric. Res. 2014, 74, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Pogorzelska-Przybyłek, P.; Nogalski, Z.; Sobczuk-Szul, M.; Purwin, C.; Momot, M. Carcass characteristics of grass-fed crossbred bulls and steers slaughtered at two different ages. Can. J. Anim. Sci. 2018, 98, 376–385. [Google Scholar] [CrossRef]
- Berry, D. Invited review: Beef-on-dairy—The generation of crossbred beef× dairy cattle. J. Dairy Sci. 2021, 104, 3789–3819. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Rockville, Maryland, USA, 1990; Volume 1. [Google Scholar]
- ISO 5509: 2000; Animal and Vegetable Fats and Oils-Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2000.
- Puppel, K.; Kapusta, A.; Kuczyńska, B. The etiology of oxidative stress in the various species of animals, a review. J. Sci. Food Agric. 2015, 95, 2179–2184. [Google Scholar] [CrossRef]
- Kapusta, A.; Kuczyńska, B.; Puppel, K. Relationship between the degree of antioxidant protection and the level of malondialdehyde in high-performance Polish Holstein-Friesian cows in peak of lactation. PLoS ONE 2018, 13, e0193512. [Google Scholar] [CrossRef] [Green Version]
- Pizzoferrato, L.; Manzi, P.; Marconi, S.; Fedele, V.; Claps, S.; Rubino, R. Degree of antioxidant protection: A parameter to trace the origin and quality of goat’s milk and cheese. J. Dairy Sci. 2007, 90, 4569–4574. [Google Scholar] [CrossRef]
- IBM. IBM SPSS Statistics for Windows, Version 23.0; IBM: Armonk, NY, USA, 2023. [Google Scholar]
- Davis, H.; Magistrali, A.; Butler, G.; Stergiadis, S. Nutritional benefits from fatty acids in organic and grass-fed beef. Foods 2022, 11, 646. [Google Scholar] [CrossRef] [PubMed]
- Long, C.; Stewart, T.; Cartwright, T.; Jenkins, T. Characterization of cattle of a five breed diallel: I. Measures of size, condition and growth in bulls. J. Anim. Sci. 1979, 49, 418–431. [Google Scholar] [CrossRef]
- Sakowski, T.; Grodkowski, G.; Gołebiewski, M.; Slósarz, J.; Kostusiak, P.; Solarczyk, P.; Puppel, K. Genetic and Environmental Determinants of Beef Quality—A Review. Front. Vet. Sci. 2022, 9, 60. [Google Scholar] [CrossRef]
- Kayar, T.; İnal, Ș. Comparison of fattening performance of Limousine, Charolais, Angus and Hereford breed bulls. Euras. J. Vet. Sci. 2019, 35, 104–108. [Google Scholar] [CrossRef]
- Pogorzelska, J.; Miciński, J.; Ostoja, H.; Kowalski, I.M.; Szarek, J.; Strzyżewska, E. Quality traits of meat from young Limousin, Charolais and Hereford bulls. Pak. Vet. J. 2013, 33, 65–68. [Google Scholar]
- Southgate, J.; Kempster, A.; Cook, G. Evaluation of British Friesian, Canadian Holstein and beef breed× British Friesian steers slaughtered over a commercial range of fatness from 16-month and 24-month beef production systems 2. Carcass characteristics, and rate and efficiency of lean gain. Anim. Sci. 1988, 46, 365–378. [Google Scholar]
- McGee, M.; Kenny, D.; Fitzsimons, C. Intake, feed efficiency and carcass traits of Charolais and Holstein-Friesian steers offered a high-concentrate diet. J. Anim. Sci. 2018, 96, 100–101. [Google Scholar] [CrossRef]
- Bureš, D.; Bartoň, L. Performance, carcass traits and meat quality of Aberdeen Angus, Gascon, Holstein and Fleckvieh finishing bulls. Lives. Sci. 2018, 214, 231–237. [Google Scholar] [CrossRef]
- Hozáková, K.; Vavrišínová, K.; Neirurerová, P.; Bujko, J. Growth of beef cattle as prediction for meat production: A review. Acta Fytotech. Zootech 2020, 23, 58–69. [Google Scholar] [CrossRef]
- Mazzucco, J.P.; Goszczynski, D.E.; Ripoli, M.V.; Melucci, L.M.; Pardo, A.M.; Colatto, E.; Rogberg-Muñoz, A.; Mezzadra, C.A.; Depetris, G.; Giovambattista, G. Growth, carcass and meat quality traits in beef from Angus, Hereford and cross-breed grazing steers, and their association with SNPs in genes related to fat deposition metabolism. Meat Sci. 2016, 114, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Ustuner, H.; Ardicli, S.; Arslan, O.; Brav, F.C. Fattening performance and carcass traits of imported Simmental bulls at different initial fattening age. Large Anim. Rev. 2020, 26, 161–165. [Google Scholar]
- Albertí, P.; Panea, B.; Sañudo, C.; Olleta, J.; Ripoll, G.; Ertbjerg, P.; Christensen, M.; Gigli, S.; Failla, S.; Concetti, S. Live weight, body size and carcass characteristics of young bulls of fifteen European breeds. Livest. Sci. 2008, 114, 19–30. [Google Scholar] [CrossRef]
- Abramowicz, P.; Balcerak, M.; Brzozowski, P.; Gołębiewski, M.; Grodzki, H.; Kuczyńska, B.; Kunowska-Slósarz, M.; Przysucha, T.; Puppel, K.; Slósarz, J. Meat Use of Cattle; Przysucha, T., Gołębiewki, M., Slósarz, J., Eds.; SGGW: Warsaw, Poland, 2018. [Google Scholar]
- Robelin, J. Growth of adipose tissues in cattle; partitioning between depots, chemical composition and cellularity. A review. Livest. Prod. Sci. 1986, 14, 349–364. [Google Scholar] [CrossRef]
- Berg, R.; Andersen, B.; Liboriussen, T. Growth of bovine tissues 1. Genetic influences on growth patterns of muscle, fat and bone in young bulls. Anim. Sci. 1978, 26, 245–258. [Google Scholar] [CrossRef]
- Augustini, C.; Sami, A.; Schwarz, F. Effects of feeding intensity and time on feed on performance, carcass characteristics and meat quality of Simmental bulls. Meat Sci. 2004, 67, 195–201. [Google Scholar]
- Irshad, A.; Kandeepan, G.; Kumar, S.; Ashish, K.; Vishnuraj, M.; Shukla, V. Factors influencing carcass composition of livestock: A review. J. Anim. Prod. Adv. 2013, 3, 177–186. [Google Scholar]
- Van der Westhuizen, J. Making sense out of maturity types in beef cattle. SA Stud. Breed./SA Stoetteler 2014, 2014, 23–25. [Google Scholar]
- Kempster, A.; Cuthbertson, A.; Harrington, G. Carcase Evaluation in Livestock Breeding, Production and Marketing; Granada Publishing Limited: London, UK, 1982. [Google Scholar]
- Casasús, I.; Ferrer, R.; Sanz, A.; Villalba, D.; Revilla, R. Performance and ingestive activity of Brown Swiss and Pirenaica cows and their calves during the spring on valley meadows. Arch. Zootec. 2000, 49, 445–456. [Google Scholar]
- Morales, R.; Aguiar, A.; Subiabre, I.; Realini, C. Beef acceptability and consumer expectations associated with production systems and marbling. Food Qual. Prefer. 2013, 29, 166–173. [Google Scholar] [CrossRef]
- Garmyn, A. Consumer preferences and acceptance of meat products. Foods 2020, 9, 708. [Google Scholar] [CrossRef] [PubMed]
- Testa, M.L.; Grigioni, G.; Panea, B.; Pavan, E. Color and marbling as predictors of meat quality perception of Argentinian consumers. Foods 2021, 10, 1465. [Google Scholar] [CrossRef]
- Diler, A.; Yanar, M.; Özdemir, V.F.; Aydin, R.; Kaynar, Ö.; Palangi, V.; Lackner, M.; Koçyigit, R. Effects of Slaughter Age of Holstein Friesian Bulls on Meat Quality: Chemical Composition, Textural Characteristics, Sensory Attributes and Fatty Acid Profile. Foods 2022, 12, 158. [Google Scholar] [CrossRef] [PubMed]
- Panea, B.; Olleta, J.L.; Sañudo, C.; del Mar Campo, M.; Oliver, M.A.; Gispert, M.; Serra, X.; Renand, G.; del Carmen Oliván, M.; Jabet, S. Effects of breed-production system on collagen, textural, and sensory traits of 10 European beef cattle breeds. J. Texture Stud. 2018, 49, 528–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, R.; Albenzio, M.; Della Malva, A.; Santillo, A.; Loizzo, P.; Sevi, A. Proteolytic pattern of myofibrillar protein and meat tenderness as affected by breed and aging time. Meat Sci. 2013, 95, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Della Malva, A.; De Palo, P.; Lorenzo, J.M.; Maggiolino, A.; Albenzio, M.; Marino, R. Application of proteomic to investigate the post-mortem tenderization rate of different horse muscles. Meat Sci. 2019, 157, 107885. [Google Scholar] [CrossRef]
- Przysucha, T.; Stefaniuk, M.; Golebiewski, M.; Slosarz, J.; Wnek, K.; Kunowska-Slosarz, M. Analysis of fattening results of Polish Holstein-Friesian bulls and PHF x Belgian Blue crossbreds bulls. Ann. Wars. Univ. Life Sci. SGGW. Anim Sci 2014, 53, 55–59. [Google Scholar]
- Malau-Aduli, A.E.; Siebert, B.D.; Bottema, C.D.; Pitchford, W.S. Breed comparison of the fatty acid composition of muscle phospholipids in Jersey and Limousin cattle. J. Anim. Sci. 1998, 76, 766–773. [Google Scholar] [CrossRef] [Green Version]
- Sobczuk-Szul, M.; Mochol, M.; Nogalski, Z.; Pogorzelska-Przybyłek, P.; Momot, M. Fattening of Polish Holstein-Friesian× Limousin Bulls under Two Production Systems and Its Effect on the Fatty Acid Profiles of Different Fat Depots. Animals 2021, 11, 3078. [Google Scholar] [CrossRef]
- Litwińczuk, Z.; Domaradzki, P. Chemical composition, fatty acid profile, including health indices of intramuscular fat, and technological suitability of the meat of young bulls of three breeds included in a genetic resources conservation programme fattened within a low-input system. Anim. Sci. Pap. Rep. 2016, 34, 387–397. [Google Scholar]
- Litwińczuk, Z.; Domaradzki, P.; Grodzicki, T.; Litwińczuk, A.; Florek, M. The relationship of fatty acid composition and cholesterol content with intramuscular fat content and marbling in the meat of Polish Holstein-Friesian cattle from semi-intensive farming. Anim. Sci. Pap. Rep. 2015, 33, 119–128. [Google Scholar]
- McGee, M.; Keane, M.G.; Neilan, R.; Caffrey, P.; Moloney, A.P. Meat quality characteristics of high dairy genetic-merit Holstein, standard dairy genetic-merit Friesian and Charolais x Holstein-Friesian steers. Ir. J. Agric. Food Res. 2020, 59, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Corino, C.; Vizzarri, F.; Ratti, S.; Pellizzer, M.; Rossi, R. Long Term Dietary Supplementation with Omega-3 Fatty Acids in Charolais Beef Cattle Reared in Italian Intensive Systems: Nutritional Profile and Fatty Acids Composition of Longissimus lumborum Muscle. Animals 2022, 12, 1123. [Google Scholar] [CrossRef]
- Ferrinho, A.M.; Peripolli, E.; Banchero, G.; Pereira, A.S.C.; Brito, G.; La Manna, A.; Fernandez, E.; Montossi, F.; Kluska, S.; Mueller, L.F. Effect of growth path on carcass and meat-quality traits of Hereford steers finished on pasture or in feedlot. Anim. Prod. Sci. 2019, 60, 323–332. [Google Scholar] [CrossRef]
- Otto, J.R.; Mwangi, F.W.; Pewan, S.B.; Adegboye, O.A.; Malau-Aduli, A.E. Lipogenic Gene Single Nucleotide Polymorphic DNA Markers Associated with Intramuscular Fat, Fat Melting Point, and Health-Beneficial Omega-3 Long-Chain Polyunsaturated Fatty Acids in Australian Pasture-Based Bowen Genetics Forest Pastoral Angus, Hereford, and Wagyu Beef Cattle. Genes 2022, 13, 1411. [Google Scholar]
- Sobczuk-Szul, M.; Nogalski, Z.; Wielgosz-Groth, Z.; Mochol, M.; Rzemieniewski, A.; Pogorzelska-Przybylek, P.; Purwin, C. Fatty acid profile in 4 types of fat depots in Polish Holstein-Friesian and Limousine× Polish Holstein-Friesian bulls. Turk. J. Vet. 2014, 38, 189–194. [Google Scholar] [CrossRef]
- Bartoň, L.; Marounek, M.; Kudrna, V.; Bureš, D.; Zahradkova, R. Growth performance and fatty acid profiles of intramuscular and subcutaneous fat from Limousin and Charolais heifers fed extruded linseed. Meat Sci. 2007, 76, 517–523. [Google Scholar] [CrossRef]
- Gregory, K.; Cundiff, L.; Koch, R.; Dikeman, M.; Koohmaraie, M. Breed effects and retained heterosis for growth, carcass, and meat traits in advanced generations of composite populations of beef cattle. J. Anim. Sci. 1994, 72, 833–850. [Google Scholar] [CrossRef] [Green Version]
- Momot, M.; Nogalski, Z.; Pogorzelska-Przybyłek, P.; Sobczuk-Szul, M. Influence of genotype and slaughter age on the content of selected minerals and fatty acids in the longissimus thoracis muscle of crossbred bulls. Animals 2020, 10, 2004. [Google Scholar] [CrossRef]
- Modzelewska-Kapituła, M.; Nogalski, Z.; Kwiatkowska, A. The influence of crossbreeding on collagen solubility and tenderness of Infraspinatus and Semimembranosus muscles of semi-intensively reared young bulls. Anim. Sci. J. 2016, 87, 1312–1321. [Google Scholar] [CrossRef] [PubMed]
- Nogalski, Z.; Sobczuk-Szul, M.; Pogorzelska-Przybyłek, P.; Wielgosz-Groth, Z.; Purwin, C.; Modzelewska-Kapituła, M. Comparison of slaughter value for once-calved heifers and heifers of Polish Holstein-Friesian× Limousine crossbreds. Meat Sci. 2016, 117, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sargentini, C.; Bozzi, R.; Lorenzini, G.; Degl’Innocenti, P.; Martini, A.; Giorgetti, A. Productive performances of Maremmana young bulls reared following organic rules and slaughtered at 18 and 24 months of age. Ital. J. Anim. Sci. 2010, 9, e31. [Google Scholar] [CrossRef]
- Humada, M.; Serrano, E.; Sañudo, C.; Rolland, D.; Dugan, M. Production system and slaughter age effects on intramuscular fatty acids from young Tudanca bulls. Meat Sci. 2012, 90, 678–685. [Google Scholar] [CrossRef]
- Park, S.J.; Beak, S.-H.; Kim, S.Y.; Jeong, I.H.; Piao, M.Y.; Kang, H.J.; Fassah, D.M.; Na, S.W.; Yoo, S.P.; Baik, M. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle—A review. Asian-Australas. J. Anim. Sci. 2018, 31, 1043. [Google Scholar] [CrossRef] [Green Version]
- Nuernberg, K. Optimising the nutritional profile of beef. Improv. Sens. Nutr. Qual. Fresh Meat 2009, 321–341. [Google Scholar]
- Bednárová, A.; Mocák, J.; Gössler, W.; Velik, M.; Kaufmann, J.; Staruch, L. Effect of animal age and gender on fatty acid and elemental composition in Austrian beef applicable for authentication purposes. Chem. Papers 2013, 67, 274–283. [Google Scholar] [CrossRef]
- Maltin, C.; Sinclair, K.; Warriss, P.; Grant, C.; Porter, A.; Delday, M.I.; Warkup, C. The effects of age at slaughter, genotype and finishing system on the biochemical properties, muscle fibre type characteristics and eating quality of bull beef from suckled calves. Anim. Sci. 1998, 66, 341–348. [Google Scholar] [CrossRef]
- Sadowska, A.; Rakowska, R.; Dybkowska, E.; Świąder, K. Czynniki przedubojowe warunkujące wartość odżywczą i jakość sensoryczną mięsa wołowego. Postępy Tech. Przetwórstwa Spożywczego 2016, 2, 122–128. [Google Scholar]
- Oprządek, J.O.A. Czynniki wpływające na jakość mięsa wołowego. Przegląd Hod. 2000, 68, 42–45. [Google Scholar]
- Nürnberg, K.; Ender, B.; Papstein, H.-J.; Wegner, J.; Ender, K.; Nürnberg, G. Effects of growth and breed on the fatty acid composition of the muscle lipids in cattle. Z. Für Leb. Und-Forsch. A 1999, 208, 332–335. [Google Scholar] [CrossRef]
- Morittu, V.M.; Spina, A.A.; Iommelli, P.; Poerio, A.; Oliverio, F.V.; Britti, D.; Tudisco, R. Effect of Integration of Linseed and Vitamin E in Charolaise× Podolica Bulls’ Diet on Fatty Acids Profile, Beef Color and Lipid Stability. Agriculture 2021, 11, 1032. [Google Scholar] [CrossRef]
- Lloret, A.; Esteve, D.; Monllor, P.; Cervera-Ferri, A.; Lloret, A. The effectiveness of vitamin E treatment in Alzheimer’s disease. Int. J. Mol. 2019, 20, 879. [Google Scholar] [CrossRef] [Green Version]
- Byers, T.; Perry, G. Dietary carotenes, vitamin C, and vitamin E as protective antioxidants in human cancers. Annu. Rev. Nutr. 1992, 12, 139–159. [Google Scholar] [CrossRef] [PubMed]
- Hallfrisch, J.; Muller, D.C.; Singh, V.N. Vitamin A and E intakes and plasma concentrations of retinol, β-carotene, and α-tocopherol in men and women of the Baltimore Longitudinal Study of Aging. Am. J. Clin. Nutr. 1994, 60, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Descalzo, A.M.; Sancho, A. A review of natural antioxidants and their effects on oxidative status, odor and quality of fresh beef produced in Argentina. Meat Sci. 2008, 79, 423–436. [Google Scholar] [CrossRef]
- Warren, H.E.; Scollan, N.D.; Nute, G.; Hughes, S.; Wood, J.; Richardson, R. Effects of breed and a concentrate or grass silage diet on beef quality in cattle of 3 ages. II: Meat stability and flavour. Meat Sci. 2008, 78, 270–278. [Google Scholar] [CrossRef]
- Skaperda, Z.; Argyriadou, A.; Nechalioti, P.M.; Alvanou, M.; Makri, S.; Bouroutzika, E.; Kyriazis, I.D.; Tekos, F.; Veskoukis, A.S.; Kallitsis, T. Redox biomarker baseline levels in cattle tissues and their relationships with meat quality. Antioxidants 2021, 10, 958. [Google Scholar] [CrossRef]
- Descalzo, A.M.; Rossetti, L.; Grigioni, G.; Irurueta, M.; Sancho, A.M.; Carrete, J.; Pensel, N.A. Antioxidant status and odour profile in fresh beef from pasture or grain-fed cattle. Meat Sci. 2007, 75, 299–307. [Google Scholar] [CrossRef]
- Yilmaz, S.; Mustafa, I.; Kandemir, F.M.; Yusuf, G. Malondialdehyde and total antioxidant levels and hematological parameters of beef cattle with coccidiosis. Van Vet. J. 2014, 25, 41–45. [Google Scholar]
- Grossi, S.; Rossi, L.; De Marco, M.; Sgoifo Rossi, C.A. The effect of different sources of selenium supplementation on the meat quality traits of young charolaise bulls during the finishing phase. Antioxidants 2021, 10, 596. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.S.; Compiani, R.; Baldi, G.; Bernardi, C.; Muraro, M.; Marden, J.; Dell’Orto, V. The effect of different selenium sources during the finishing phase on beef quality. J. Anim. Feed Sci. 2015, 24, 93–99. [Google Scholar] [CrossRef]
- Hipkiss, A.R.; Worthington, V.C.; Himsworth, D.T.; Herwig, W. Protective effects of carnosine against protein modification mediated by malondialdehyde and hypochlorite. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 1998, 1380, 46–54. [Google Scholar] [CrossRef]
- Hipkiss, A.R.; Brownson, C.; Bertani, M.F.; Ruiz, E.; Ferro, A. Reaction of carnosine with aged proteins: Another protective process? Ann. N. Y. Acad. Sci. 2002, 959, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.; Geesink, G.; Ilian, M.; Morton, J.; Sedcole, J.; Bickerstaffe, R. Pro-oxidant activities of carnosine, rutin and quercetin in a beef model system and their effects on the metmyoglobin-reducing activity. Eur. Food Res. Technol. 2004, 218, 507–514. [Google Scholar] [CrossRef]
- Watanabe, A.; Ueda, Y.; HIGUCHI, M. Effects of slaughter age on the levels of free amino acids and dipeptides in fattening cattle. Anim. Sci. J. 2004, 75, 361–367. [Google Scholar] [CrossRef]
- Purchas, R.; Rutherfurd, S.; Pearce, P.; Vather, R.; Wilkinson, B. Concentrations in beef and lamb of taurine, carnosine, coenzyme Q10, and creatine. Meat Sci. 2004, 66, 629–637. [Google Scholar] [CrossRef]
- Schuller-Levis, G.B.; Gordon, R.E.; Wang, C.; Park, E. Taurine reduces lung inflammation and fibrosis caused by bleomycin. Taur. 5 Begin. 21st Century 2003, 395–402. [Google Scholar]
- Redmond, H.P.; Stapleton, P.; Neary, P.; Bouchier-Hayes, D. Immunonutrition: The role of taurine. Nutrition 1998, 14, 599–604. [Google Scholar] [CrossRef]
- Lajtha, A.; Oja, S.S.; Saransaari, P.; Schousboe, A. Handbook of Neurochemistry and Molecular Neurobiology: Amino Acids and Peptides in the Nervous System; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Sánchez-Escalante, A.; Djenane, D.; Torrescano, G.; Giménez, B.; Beltrán, J.A.; Roncalés, P. Evaluation of the antioxidant ability of hydrazine-purified and untreated commercial carnosine in beef patties. Meat Sci. 2003, 64, 59–67. [Google Scholar] [CrossRef]
- Djenane, D.; Sanchez-Escalante, A.; Beltrán, J.A.; Roncales, P. Ability of α-tocopherol, taurine and rosemary, in combination with vitamin C, to increase the oxidative stability of beef steaks packaged in modified atmosphere. Food Chem. 2002, 76, 407–415. [Google Scholar] [CrossRef]
- Weber, C.; Bysted, A.; Hłlmer, G. The coenzyme Q10 content of the average Danish diet. Int. J. Vitam. Nutr. Res. Int. Z. Fur Vitam. -Und Ernahrungsforschung. Int. J. Vitam. Nutr. Res. 1997, 67, 123–129. [Google Scholar]
- Crane, F.L. Biochemical Functions of Coenzyme Q10. J. Am. Coll. Nutr. 2001, 20, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Decker, E.A.; Mei, L. Antioxidant mechanisms and applications in muscle foods. Recipr. Meat Conf. Proc. 1996, 49, 64–72. [Google Scholar]
- Rötig, A.; Appelkvist, E.-L.; Geromel, V.; Chretien, D.; Kadhom, N.; Edery, P.; Lebideau, M.; Dallner, G.; Munnich, A.; Ernster, L. Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 2000, 356, 391–395. [Google Scholar] [CrossRef]
- Potargowicz, E.; Szerszenowicz, E.; Staniszewska, M.; Nowak, D. Mitochondria jako źródło reaktywnych form tlenu. Postępy Hig. I Med. Doświadczalnej 2005, 59, 259–266. [Google Scholar]
- Begum, G.; Cunliffe, A.; Leveritt, M. Physiological role of carnosine in contracting muscle. Int. J. Sport Nutr. Exerc 2005, 15, 493–514. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.H.; Kreider, R.B.; Branch, J.D. Creatine: The Power Supplement; Human Kinetics: Champaign, IL, USA, 1999. [Google Scholar]
- Mora, L.; Hernández-Cázares, A.S.; Sentandreu, M.A.; Toldrá, F. Creatine and creatinine evolution during the processing of dry-cured ham. Meat Sci. 2010, 84, 384–389. [Google Scholar] [CrossRef]
- Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [CrossRef]
- Honda, T.; Ishida, T.; Kobayashi, I.; Oguri, Y.; Mizuno, Y.; Mannen, H.; Iwaisaki, H.; Kuge, S.; Saito, K.; Oyama, K. Change of fatty acid composition of the lumbar longissimus during the final stage of fattening in the Japanese Black cattle. Anim. Sci. J. 2016, 87, 578–583. [Google Scholar] [CrossRef]
- Okumura, T.; Saito, K.; Sakuma, H.; Nade, T.; Nakayama, S.; Fujita, K.; Kawamura, T. Intramuscular fat deposition in principal muscles from twenty-four to thirty months of age using identical twins of Japanese Black steers. J. Anim. Sci. 2007, 85, 1902–1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez-Mosquera, J.M.; Fernandez-Novo, A.; de Mercado, E.; Vázquez-Gómez, M.; Gardon, J.C.; Pesántez-Pacheco, J.L.; Revilla-Ruiz, Á.; Patrón-Collantes, R.; Pérez-Solana, M.L.; Villagrá, A. Beef nutritional characteristics, fat profile and blood metabolic markers from purebred Wagyu, crossbred Wagyu and crossbred European steers raised on a fattening farm in Spain. Animals 2023, 13, 864. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.; Enser, M.; Fisher, A.; Nute, G.; Sheard, P.; Richardson, R.; Hughes, S.; Whittington, F. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Albrecht, E.; Teuscher, F.; Ender, K.; Wegner, J. Growth-and breed-related changes of marbling characteristics in cattle. J. Anim. Sci. 2006, 84, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
No. of Heads in 2012 | No. of Heads in 2021 | Population Change | |
---|---|---|---|
PHF | 597,715 | 704,506 | 106,791 (+17.86%) |
Limousine | 11,879 | 13,948 | +2069 (+17.4%) |
Charolaise | 2265 | 1571 | −694 (−30.6%) |
Hereford | 743 | 1409 | +666 (+89.6%) |
Number (n) | Standardized Live Weight (kg) | Carcass Weight (kg) | Standardized Daily Gains (kg) | Daily Carcass Gains (kg) | |
---|---|---|---|---|---|
PHF | 16 | 536 | 317 | 0.82 | 0.53 |
Limousine | 18 | 694 | 413 | 1.08 | 0.68 |
Charolaise | 17 | 689 | 416 | 1.06 | 0.67 |
Hereford | 16 | 669 | 390 | 1.04 | 0.66 |
p-value | 0.001 | 0.001 | 0.001 | 0.001 | |
SEM | 4.251 | 8.213 | 0.054 | 0.012 |
Composition | Value |
---|---|
Maize silage (%) | 68 |
Barley (%) | 29 |
Supplements (%) | 3 |
Nutritional value | |
Dry matter (%) | 54 |
Protein (g/kg) | 128 |
NEm (Mcal/kg) | 1.77 |
Neg (Mcal/kg) | 1.15 |
NDF (g/kg) | 343 |
ADF (g/kg) | 194 |
Crude fat (g/kg) | 19 |
Protein [g/100 g] | Crude Fat [g/100 g] | Collagen [mg/100 g] | |
---|---|---|---|
PHF | 19.40 A,B,C | 2.95 A,B | 592.24 A,B,C |
Limousine | 23.73 A,d (+22.32%) | 2.16 A,C (−26.78%) | 549.84 A,d (−7.16%) |
Charolaise | 22.05 B (+13.66%) | 2.26 B,D (−23.39%) | 542.52 B,e, (−8.40%) |
Hereford | 21.21 C,d (+9.33%) | 3.01 C,D (+2.04%) | 552.62 C,d,e (−6.69%) |
SEM | 1.236 | 0.441 | 7.625 |
[g/100 g] | C18:1 trans-11 | C18:2 n-6 | C18:2 cis-9, trans-11 | C18:3 n-3 | C20:5 n-3 | C22:6 n-3 |
---|---|---|---|---|---|---|
PHF | 0.83 A,B,C | 8.24 A,B,C | 2.59 A,B,C | 0.49 A,B,C | 0.42 A,B,C | 0.07 A,B,C |
Limousine | 1.39 A,D,E (+67.45%) | 12.19 A,d,E (+47.94%) | 4.03 A,d,E (+55.60%) | 0.74 A,D (+51.2%) | 0.71 A,D (+69.05%) | 0.11 A,d (+57.14%) |
Charolaise | 1.63 B,D,F (+96.39%) | 13.45 B,d,F (+63.23%) | 4.27 B,d,F (+64.86%) | 0.71 B,E (+44.90%) | 0.74 B,E (+76.19%) | 0.14 B,d,E (+100%) |
Hereford | 1.26 C,E,F (+51.80%) | 10.38 C,E,F (+25.97%) | 3.63 C,E,F (+40.15%) | 0.66 C,D,E (+34.70%) | 0.65 C,D,E (+54.76%) | 0.09 C,D,E (+28.57%) |
SEM | 0.233 | 0.478 | 0.119 | 0.017 | 0.041 | 0.011 |
[μg/g] | β-Carotene | α-Retinol | α-Tocopherol |
---|---|---|---|
PHF | 0.20 A,B,C | 0.66 A,B,C | 1.61 A,B,C |
Limousine | 0.36 A,D (+80%) | 0.81 A,D (+22.73%) | 2.78 A,D,E (+72.67%) |
Charolaise | 0.33 B,E (+65%) | 0.79 B,E (+19.70%) | 3.11 B,D,f (+93.17%) |
Hereford | 0.21 C,D,E (+5%) | 0.68 C,D,E (+3.03%) | 3.08 C,E,f (+91.30%) |
SEM | 0.012 | 0.078 | 0.113 |
TAS [mmol/L] | DAP | MDA [mM/g] | |
---|---|---|---|
PHF | 0.80 A,B,C | 5.12 × 10−3 A,B,C | 3.30 A,B,C |
Limousine | 1.36 A,D,E (+70%) | 8.10 × 10−3 A,d,E (+58.20%) | 1.24 A,D (−62.42%) |
Charolaise | 1.98 B,D,F (+147.5%) | 7.80 × 10−3 B,d,F (+52.34%) | 1.20 B,E (−63.64%) |
Hereford | 0.85 C,E,F (+6.25%) | 6.25 × 10−3 C,E,F (+22.07%) | 2.45 C,D,E (−25.76%) |
SEM | 0.011 | 0.013 | 0.013 |
[mg/100 g] | Anserine | Carnosine | Taurine | Coenzyme Q10 | Creatinine | Creatine |
---|---|---|---|---|---|---|
PHF | 61.22 A,B,C | 387.30 A,B,C | 34.28 A,B,C | 1.87 A,B,C | 4.12 A,B,C | 396.96 A,B,C |
Limousine | 74.08 A,d,E (+21.00%) | 431.53 A,D,E (+11.42%) | 43.49 A,d,E (+26.87%) | 2.33 A,d,e (+24.60%) | 5.61 A,d,E (+36.17%) | 422.66 A,d,E (+6.47%) |
Charolaise | 72.52 B,d,F (+18.46%) | 445.36 B,D,F (+14.99%) | 42.14 B,d,F (+22.92%) | 2.54 B,d,F (+35.82%) | 5.44 B,d,F (+32.04%) | 418.22 B,d,F (+5.36%) |
Hereford | 69.29 C,E,F (+13.18%) | 419.59 C,E,F (+8.34%) | 37.31 C,E,F (+8.84%) | 2.08 C,e,F (+11.23%) | 4.85 C,E,F (+17.72%) | 411.05 C,E,F (+3.55%) |
SEM | 0.752 | 1.114 | 0.442 | 0.022 | 0.073 | 0.812 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostusiak, P.; Slósarz, J.; Gołębiewski, M.; Sakowski, T.; Puppel, K. Relationship between Beef Quality and Bull Breed. Animals 2023, 13, 2603. https://doi.org/10.3390/ani13162603
Kostusiak P, Slósarz J, Gołębiewski M, Sakowski T, Puppel K. Relationship between Beef Quality and Bull Breed. Animals. 2023; 13(16):2603. https://doi.org/10.3390/ani13162603
Chicago/Turabian StyleKostusiak, Piotr, Jan Slósarz, Marcin Gołębiewski, Tomasz Sakowski, and Kamila Puppel. 2023. "Relationship between Beef Quality and Bull Breed" Animals 13, no. 16: 2603. https://doi.org/10.3390/ani13162603
APA StyleKostusiak, P., Slósarz, J., Gołębiewski, M., Sakowski, T., & Puppel, K. (2023). Relationship between Beef Quality and Bull Breed. Animals, 13(16), 2603. https://doi.org/10.3390/ani13162603