Influence of Hempseed Meal on Fresh Goat Meat Characteristics Stored in Vacuum Packaging
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Packaging and Display Conditions
2.3. Instrumental Color
2.4. Purge Loss and pH
2.5. Thiobarbituric Acid Reactive Substance (TBARS)
2.6. Microbiology
2.7. Warner-Bratzler Shear Force and Cook Loss
2.8. Statistical Analysis
3. Results
3.1. Carcass Data
3.2. Instrumental Fresh Color
3.3. Purge Loss and pH
3.4. Cook Loss
3.5. Lipid Oxidation (TBARS)
3.6. Microbiology
3.7. Warner-Bratzler Shear Force
4. Discussion
4.1. Carcass Data
4.2. Instrumental Fresh Color
4.3. Purge Loss and pH
4.4. Cook Loss
4.5. Lipid Oxidation (TBARS)
4.6. Microbiology
4.7. Warner-Bratzler Shear Force
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Sohaimy, S.A.; Androsova, N.V.; Toshev, A.D.; El Enshasy, H.A. Nutritional Quality, Chemical, and Functional Characteristic of Hemp (Cannabis sativa ssp. sativa) Protein Isolate. Plants 2022, 11, 2825. [Google Scholar] [CrossRef]
- Luginbuhl, J.M. Is There a Market for Goat Meat in the US? Yes, There Is! Available online: Go.ncsu.edu/readext?371142 (accessed on 6 January 2023).
- Sheep and Goat Meat in United States|Observatory of Economic Complexity (OEC). Available online: https://oec.world/en/profile/bilateral-product/sheep-and-goat-meat/reporter/usa (accessed on 18 October 2022).
- Bouloc, P.; Allegret, S.; Arnaud, L. Hemp Industrial Production and Uses; CAB International: Wallingford, UK, 2019; ISBN 978 1 84593 792 8. [Google Scholar]
- Karlsson, L.; Ruiz-Moreno, M.; Stern, M.D.; Martinsson, K. Effects of Temperature during Moist Heat Treatment on Ruminal Degradability and Intestinal Digestibility of Protein and Amino Acids in Hempseed Cake. Asian-Australas. J. Anim. Sci. 2012, 25, 1559–1567. [Google Scholar] [CrossRef] [Green Version]
- Semwogerere, F.; Katiyatiya, C.L.F.; Chikwanha, O.C.; Marufu, M.C.; Mapiye, C. Bioavailability and Bioefficacy of Hemp By-Products in Ruminant Meat Production and Preservation: A Review. Front. Vet. Sci. 2020, 7, 572906. [Google Scholar] [CrossRef]
- FAO. FAOSTAT. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 3 August 2023).
- van Wyk, G.L.; Hoffman, L.C.; Strydom, P.E.; Frylinck, L. Differences in Meat Quality of Six Muscles Obtained from Southern African Large-Frame Indigenous Veld Goat and Boer Goat Wethers and Bucks. Animals 2022, 12, 382. [Google Scholar] [CrossRef] [PubMed]
- Dhanda, J.S.; Taylor, D.G.; Murray, P.J.; Pegg, R.B.; Shand, P.J. Goat Meat Production: Present Status and Future Possibilities. Asian-Australas. J. Anim. Sci. 2003, 16, 1842–1852. [Google Scholar] [CrossRef]
- Pophiwa, P.; Webb, E.C.; Frylinck, L. A Review of Factors Affecting Goat Meat Quality and Mitigating Strategies. Small Rumin. Res. 2020, 183, 106035. [Google Scholar] [CrossRef]
- Webb, E.C.; Casey, N.H.; Simela, L. Goat Meat Quality. Small Rumin. Res. 2005, 60, 153–166. [Google Scholar] [CrossRef]
- Pophiwa, P.; Webb, E.C.; Frylinck, L. Carcass and Meat Quality of Boer and Indigenous Goats of South Africa under Delayed Chilling Conditions. South Afr. J. Anim. Sci. 2017, 47, 794. [Google Scholar] [CrossRef] [Green Version]
- Leick, C.M.; Broadway, P.R.; Solaiman, S.; Behrends, J.M. Quality and Consumer Acceptability of Salt and Phosphate Enhanced Goat Loin from Goats Fed Varying Levels of Pine Bark. Meat Sci. 2012, 90, 665–669. [Google Scholar] [CrossRef]
- Kannan, G.; Lee, J.H.; Kouakou, B. Chevon Quality Enhancement: Trends in Pre- and Post-Slaughter Techniques. Small Rumin. Res. 2014, 121, 80–88. [Google Scholar] [CrossRef]
- Abrahamsen, F.W.; Gurung, N.K.; Abebe, W.; Reddy, G.P.; Mullenix, M.K.; Adhikari, S. Effects of Feeding Varying Levels of Hempseed Meal on Dry Matter Intake, Rumen Fermentation, In Vitro Digestibility, Blood Metabolites and Growth Performance of Growing Meat Goats. Appl. Anim. Sci. 2021, 37, 681–688. [Google Scholar] [CrossRef]
- McMillin, K.W. Meat Goat Selection, Carcass Evaluation and Fabrication Guide. LSU Ag Cent. Res. Ext. 2023, 2951, 8. [Google Scholar]
- American Meat Science Association Meat Color Measurement Guidelines; American Meat Science Association: Champaign, IL, USA, 2012.
- Buege, J.A.; Aust, S.D. Microsomal Lipid Peroxidation. In Methods in Enzymology; Fleischer, S., Packer, L., Eds.; Biomembranes -Part C: Biological Oxidations; Academic Press: Cambridge, MA, USA, 1978; Volume 52, pp. 302–310. [Google Scholar]
- United States Food and Drug, Bacteriological Analytical Manual. Available online: https://Www.Fda.Gov/Food/Laboratory-Methods-Food/Bacteriological-Analytical-Manual-Bam (accessed on 15 April 2022).
- Ncogo Nchama, C.N.; Fabro, C.; Baldini, M.; Saccà, E.; Foletto, V.; Piasentier, E.; Sepulcri, A.; Corazzin, M. Hempseed By-Product in Diets of Italian Simmental Cull Dairy Cows and Its Effects on Animal Performance and Meat Quality. Animals 2022, 12, 1014. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahim, G.M.; Khatiwada, J.; Rankins, D.; Gurung, N.; Gueye, A. Influence of Feeding Peanut Skins on Performance of Gulf Coast Ewe Lambs. J. Anim. Res. Technol. 2012, 1, 20–24. [Google Scholar] [CrossRef]
- Gibb, D.J.; Shah, M.A.; Mir, P.S.; McAllister, T.A. Effect of Full-Fat Hemp Seed on Performance and Tissue Fatty Acids of Feedlot Cattle. Can. J. Anim. Sci. 2005, 85, 223–230. [Google Scholar] [CrossRef]
- Bray, A.R.; Graafhuis, A.E.; Chrystall, B.B. The Cumulative Effect of Nutritional, Shearing and Preslaughter Washing Stresses on the Quality of Lamb Meat. Meat Sci. 1989, 25, 59–67. [Google Scholar] [CrossRef]
- Berruga, M.I.; Vergara, H.; Gallego, L. Influence of Packaging Conditions on Microbial and Lipid Oxidation in Lamb Meat. Small Rumin. Res. 2005, 57, 257–264. [Google Scholar] [CrossRef]
- Morales-delaNuez, A.; Moreno-Indias, I.; Falcón, A.; Argüello, A.; Sánchez-Macias, D.; Capote, J.; Castro, N. Effects of Various Packaging Systems on the Quality Characteristic of Goat Meat. Asian-Australas. J. Anim. Sci. 2009, 22, 428–432. [Google Scholar] [CrossRef]
- Kafle, D.; Lee, J.H.; Min, B.R.; Kouakou, B. Carcass and Meat Quality of Goats Supplemented with Tannin-Rich Peanut Skin. J. Agric. Food Res. 2021, 5, 100159. [Google Scholar] [CrossRef]
- Strydom, P.E.; Hope-Jones, M. Evaluation of Three Vacuum Packaging Methods for Retail Beef Loin Cuts. Meat Sci. 2014, 98, 689–694. [Google Scholar] [CrossRef]
- Stivarius, M.R.; Pohlman, F.W.; McElyea, K.S.; Apple, J.K. Microbial, Instrumental Color and Sensory Color and Odor Characteristics of Ground Beef Produced from Beef Trimmings Treated with Ozone or Chlorine Dioxide. Meat Sci. 2002, 60, 299–305. [Google Scholar] [CrossRef]
- Devincenzi, T.; Prunier, A.; Meteau, K.; Prache, S. How Does Barley Supplementation in Lambs Grazing Alfalfa Affect Meat Sensory Quality and Authentication? Animals 2019, 13, 427–434. [Google Scholar] [CrossRef]
- Young, O.A.; Zhang, S.X.; Farouk, M.M.; Podmore, C. Effects of PH Adjustment with Phosphates on Attributes and Functionalities of Normal and High PH Beef. Meat Sci. 2005, 70, 133–139. [Google Scholar] [CrossRef]
- Lavieri, N.; Williams, S.K. Effects of Packaging Systems and Fat Concentrations on Microbiology, Sensory and Physical Properties of Ground Beef Stored at 4 ± 1 °C for 25 days. Meat Sci. 2014, 97, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.J. Observations on the Succession Dynamics of Lactic Acid Bacteria Populations in Chill-Stored Vacuum-Packaged Beef. Int. J. Food Microbiol. 2004, 90, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A Structural Approach to Understanding the Interactions between Colour, Water-Holding Capacity and Tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Li, S.; Ma, R.; Pan, J.; Lin, X.; Dong, X.; Yu, C. Combined Effects of Aging and Low Temperature, Long Time Heating on Pork Toughness. Meat Sci. 2019, 150, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Kılıç, B.; Şimşek, A.; Claus, J.R.; Atılgan, E. Encapsulated Phosphates Reduce Lipid Oxidation in Both Ground Chicken and Ground Beef during Raw and Cooked Meat Storage with Some Influence on Color, PH, and Cooking Loss. Meat Sci. 2014, 97, 93–103. [Google Scholar] [CrossRef]
- El Rammouz, R.; Babilé, R.; Fernandez, X. Effect of Ultimate PH on the Physicochemical and Biochemical Characteristics of Turkey Breast Muscle Showing Normal Rate of Postmortem PH Fall. Poult. Sci. 2004, 83, 1750–1757. [Google Scholar] [CrossRef] [PubMed]
- Kannan, G.; Kouakou, B.; Gelaye, S. Color Changes Reflecting Myoglobin and Lipid Oxidation in Chevon Cuts during Refrigerated Display. Small Rumin. Res. 2001, 42, 67–75. [Google Scholar] [CrossRef]
- Cannon, J.E.; Morgan, J.B.; Schmidt, G.R.; Tatum, J.D.; Sofos, J.N.; Smith, G.C.; Delmore, R.J.; Williams, S.N. Growth and Fresh Meat Quality Characteristics of Pigs Supplemented with Vitamin E. J Anim Sci 1996, 74, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Insausti, K.; Beriain, M.J.; Purroy, A.; Alberti, P.; Gorraiz, C.; Alzueta, M.J. Shelf Life of Beef from Local Spanish Cattle Breeds Stored under Modified Atmosphere. Meat Sci. 2001, 57, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Ball, J.J.; Wyatt, R.P.; Lambert, B.D.; Smith, H.R.; Reyes, T.M.; Sawyer, J.T. Influence of Plant-Based Proteins on the Fresh and Cooked Characteristics of Ground Beef Patties. Foods 2021, 10, 1971. [Google Scholar] [CrossRef]
- Rong, C.; Ling, Z.; Huihui, S.; Qi, L. Characterization of Microbial Community in High-Pressure Treated Oysters by High-Throughput Sequencing Technology. Innov. Food Sci. Emerg. Technol. 2018, 45, 241–248. [Google Scholar] [CrossRef]
- Yim, D.-G.; Jin, S.-K.; Hur, S.-J. Microbial Changes under Packaging Conditions during Transport and Comparison between Sampling Methods of Beef. J. Anim. Sci. Technol. 2019, 61, 47–53. [Google Scholar] [CrossRef] [Green Version]
- GILL, C.O. Meat Spoilage and Evaluation of the Potential Storage Life of Fresh Meat. J. Food Prot. 1983, 46, 444–452. [Google Scholar] [CrossRef]
- Iulietto, M.F.; Sechi, P.; Borgogni, E.; Cenci-Goga, B.T. Meat Spoilage: A Critical Review of a Neglected Alteration Due to Ropy Slime Producing Bacteria. Ital. J. Anim. Sci. 2015, 14, 4011. [Google Scholar] [CrossRef]
- Lee, J.H.; Kouakou, B.; Kannan, G. Chemical Composition and Quality Characteristics of Chevon from Goats Fed Three Different Post-Weaning Diets. Small Rumin. Res. 2008, 75, 177–184. [Google Scholar] [CrossRef]
- Vasanthi, C.; Venkataramanujam, V.; Dushyanthan, K. Effect of Cooking Temperature and Time on the Physico-Chemical, Histological and Sensory Properties of Female Carabeef (Buffalo) Meat. Meat Sci. 2007, 76, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Apple, J.K.; Roberts, W.J.; Maxwell, C.V.; Boger, C.B.; Fakler, T.M.; Friesen, K.G.; Johnson, Z.B. Effect of Supplemental Manganese on Performance and Carcass Characteristics of Growing-Finishing Swine. J. Anim. Sci. 2004, 82, 3267–3276. [Google Scholar] [CrossRef] [Green Version]
Feedstuffs | Treatment | |||
---|---|---|---|---|
0% | 10% | 20% | 30% | |
Hempseed meal | 0.0 | 10.0 | 20.0 | 30.0 |
Cotton Seed Hulls | 20.0 | 20.0 | 25.0 | 16.0 |
Alfalfa meal | 30.0 | 25.0 | 20.0 | 23.2 |
Cracked Corn | 31.6 | 30.9 | 27.2 | 27.3 |
Soybean Meal | 15.9 | 10.6 | 4.3 | 0.0 |
Cane molasses | 2.5 | 2.5 | 2.5 | 2.5 |
Premix * | 1.0 | 1.0 | 1.0 | 1.0 |
Total (%) | 100.0 | 100.0 | 100.0 | 100.0 |
Treatment | |||||
---|---|---|---|---|---|
0% | 10% | 20% | 30% | SEM * | |
Backfat Thickness (cm) | 0.06 | 0.04 | 0.03 | 0.04 | 0.013 |
Cold Carcass Weight (kg) | 27.6 | 26.8 | 25.6 | 25.6 | 2.36 |
Cooler Shrink (%) | 1.02 | 1.01 | 1.02 | 1.02 | 0.008 |
Ribeye Area (cm2) | 33.03 | 32.19 | 34.12 | 33.09 | 0.234 |
Treatment | |||||
---|---|---|---|---|---|
0% | 10% | 20% | 30% | SEM * | |
Shoulder (kg) | 6.79 | 6.56 | 6.28 | 6.25 | 0.246 |
Rack (kg) | 3.02 | 3.13 | 2.85 | 2.79 | 0.127 |
Loin (kg) | 2.86 | 2.79 | 2.75 | 2.54 | 0.157 |
Leg (kg) | 6.19 | 5.99 | 6.02 | 5.91 | 0.193 |
Day | |||||
---|---|---|---|---|---|
0 | 7 | 14 | 21 | SEM * | |
L* | 40.72 c | 42.84 b | 44.77 a | 44.70 a | 0.360 |
a* | 17.69 a | 16.64 b | 16.58 b | 16.78 b | 0.152 |
b* | 7.08 ab | 7.61 b | 7.56 b | 8.00 a | 0.121 |
C* | 19.35 a | 18.33 b | 18.24 b | 18.62 b | 0.177 |
Hue (°) | 23.77 b | 24.45 b | 24.37 b | 25.43 a | 0.252 |
RTB | 3.02 a | 2.69 b | 2.59 c | 2.64 bc | 0.025 |
Treatment | |||||
---|---|---|---|---|---|
0% | 10% | 20% | 30% | SEM * | |
L* | 43.62 ab | 44.32 a | 42.71 bc | 42.38 c | 0.360 |
a* | 17.28 a | 16.83 b | 16.87 ab | 16.70 b | 0.152 |
b* | 8.05 a | 7.81 ab | 7.54 b | 7.57 b | 0.121 |
C* | 19.10 a | 18.57 b | 18.50 b | 18.36 b | 0.177 |
Hue (°) | 24.89 a | 24.84 a | 24.01 b | 24.28 ab | 0.251 |
RTB | 2.75 | 2.68 | 2.76 | 2.75 | 0.025 |
Day | |||||
---|---|---|---|---|---|
0 | 7 | 14 | 21 | SEM * | |
pH | 6.07 a | 5.82 c | 5.94 c | 5.80 b | 0.033 |
Cook loss (%) | 24.54 c | 30.77 ab | 32.78 a | 29.98 b | 0.844 |
TBARS | 2.73 c | 2.75 c | 2.80 b | 2.85 a | 0.013 |
Microbial | 3.66 c | 5.21 b | 5.70 a | 5.27 b | 0.082 |
WBSF | 28.98 a | 19.40 c | 26.16 ab | 24.49 b | 1.095 |
Treatment | |||||
---|---|---|---|---|---|
0% | 10% | 20% | 30% | SEM * | |
pH | 5.86 bc | 5.84 c | 5.94 ab | 6.00 a | 0.033 |
Cook loss (%) | 29.43 | 29.57 | 30.54 | 28.55 | 0.844 |
TBARS | 2.78 | 2.78 | 2.80 | 2.77 | 0.010 |
Microbial | 4.89 | 4.86 | 5.07 | 5.02 | 0.082 |
WBSF | 23.08 b | 28.85 a | 25.04 b | 22.06 b | 1.094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zorn, V.E.; Brandebourg, T.D.; Mullenix, M.K.; Belk, A.D.; Ale, K.B.; Abrahamsen, F.W.; Gurung, N.K.; Sawyer, J.T. Influence of Hempseed Meal on Fresh Goat Meat Characteristics Stored in Vacuum Packaging. Animals 2023, 13, 2628. https://doi.org/10.3390/ani13162628
Zorn VE, Brandebourg TD, Mullenix MK, Belk AD, Ale KB, Abrahamsen FW, Gurung NK, Sawyer JT. Influence of Hempseed Meal on Fresh Goat Meat Characteristics Stored in Vacuum Packaging. Animals. 2023; 13(16):2628. https://doi.org/10.3390/ani13162628
Chicago/Turabian StyleZorn, Virginia E., Terry D. Brandebourg, Mary K. Mullenix, Aeriel D. Belk, Khim B. Ale, Frank W. Abrahamsen, Nar K. Gurung, and Jason T. Sawyer. 2023. "Influence of Hempseed Meal on Fresh Goat Meat Characteristics Stored in Vacuum Packaging" Animals 13, no. 16: 2628. https://doi.org/10.3390/ani13162628
APA StyleZorn, V. E., Brandebourg, T. D., Mullenix, M. K., Belk, A. D., Ale, K. B., Abrahamsen, F. W., Gurung, N. K., & Sawyer, J. T. (2023). Influence of Hempseed Meal on Fresh Goat Meat Characteristics Stored in Vacuum Packaging. Animals, 13(16), 2628. https://doi.org/10.3390/ani13162628