Evaluation of a Saccharomyces cerevisiae Fermentation Product on the Feedlot Performance and Carcass Merit of Hair Lambs Offered an Annual Ryegrass-Hay-Based Finishing Diet: A Pilot Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Feedlot Study
2.2. Carcass Trait Determination
2.3. Statistical Analysis
3. Results
3.1. Animal Feedlot Evaluation
3.2. Carcass Merit Evaluation
4. Discussion
4.1. Feedlot Evaluation
4.2. Carcass Merit Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wallinga, D.; Smit, L.A.M.; Davis, M.F.; Casey, J.A.; Nachman, K.E. A Review of the Effectiveness of Current US Policies on Antimicrobial Use in Meat and Poultry Production. Curr. Environ. Health Rep. 2022, 9, 339–354. [Google Scholar] [CrossRef]
- Seo, J.K.; Kim, S.W.; Kim, M.H.; Upadhaya, S.D.; Kam, D.K.; Ha, J.K. Direct-fed Microbials for ruminant animals. Asian-Aust. J. Anim. Sci. 2010, 23, 1657–1667. [Google Scholar] [CrossRef]
- Poppy, G.D.; Rabiee, A.R.; Lean, I.J.; Sanchez, W.K.; Dorton, K.L.; Morley, P.S. A meta-analysis of the effects of feeding yeast culture produced by anaerobic fermentation of Saccharomyces cerevisiae on milk production of lactating dairy cows. J. Dairy Sci. 2012, 95, 6027–6041. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.H.; Elghandour, M.M.Y.; Salem, A.Z.M.; Zeweil, H.S.; Kholif, A.E.; Klieve, A.V.; Abdelrassol, A.M.A. Influence of Trichoderma reesei or Saccharomyces cerevisiae on performance, ruminal fermentation, carcass characteristics and blood biochemistry of lambs fed Atriplex nummularia and Acacia saligna mixture. Livest. Sci. 2015, 180, 90–97. [Google Scholar] [CrossRef]
- Hassan, A.A.; Salem, A.Z.M.; Kholif, A.E.; Samir, M.; Yacout, M.H.; Abu Hafsa, S.H.; Mendoza, G.D.; Elghandour, M.M.Y.; Ayala, M.; Lopez, S. Performance of crossbred dairy Friesian calves fed two levels of Saccharomyces cerevisiae: Intake, digestion, ruminal fermentation, blood parameters and fecal pathogenic bacteria. J. Agric. Sci. Camb. 2016, 154, 1488–1498. [Google Scholar] [CrossRef] [Green Version]
- Payandeh, S.; Kafilzadeh, F. The effect of yeast (Saccharomyces cerevisiae) on nutrient intake, digestibility, and finishing performance of lambs fed a diet based on dried molasses sugar beet pulp. Pak. J. Biol. Sci. 2007, 10, 4426–4431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathi, M.K.; Karim, S.A. Effect of yeast cultures supplementation on live weight change, rumen fermentation, ciliate protozoa population, microbial hydrolytic enzymes status, and slaughtering performance of growing lamb. Livest. Sci. 2011, 135, 17–25. [Google Scholar] [CrossRef]
- Vosooghi-Poostindoz, V.; Foroughi, A.R.; Delkhoroshan, A.; Ghaffari, M.H.; Vakili, R.; Soleimani, A.K. Effect of different levels of protein with or without probiotics on growth performance and blood metabolite responses during pre- and post- weaning phases of male Kurdi lambs. Small Rumin. Res. 2014, 117, 1–9. [Google Scholar] [CrossRef]
- Haddad, S.G.; Goussous, S.N. Effect of yeast culture supplementation on nutrient intake, digestibility, and growth performance of Awassi lambs. Anim. Feed Sci. Technol. 2005, 118, 343–348. [Google Scholar] [CrossRef]
- Ding, J.; Zhou, Z.M.; Ren, L.P.; Meng, Q.X. Effect of monensin and live yeast supplementation on growth performance, nutrient digestibility, carcass characteristics, and ruminal fermentation parameters in lambs fed steam-flaked corn-based diets. Asian-Aust. J. Anim. Sci. 2008, 21, 547–554. [Google Scholar] [CrossRef]
- Khalid, M.F.; Shahzad, M.A.; Sarwar, M.; Rehman, A.U.; Sharif, M.; Mukhtar, V. Probiotics and lamb performance: A review. Afr. J. Agric. Res. 2011, 6, 5198–5203. [Google Scholar] [CrossRef]
- Abdelrahman, M.M.; Hunatti, D.A. The effect of dietary yeast and protected methionine on performance and trace mineral status of growing Awassi lambs. Livest. Sci. 2008, 115, 235–241. [Google Scholar] [CrossRef]
- Valdés-García, Y.S.; Aguilera-Soto, J.I.; Barreras, A.; Estrada-Angulo, A.; Gómez-Vázquez, A.; Plascencia, A.; Ríos, F.G.; Reyes, J.J.; Stuart, J.; Torrentera, N. Growth performance and carcass characteristics in finishing feedlot heifers fed different levels of chromium-enriched live yeast or fed zilpaterol hydrochloride. Cuba. J. Agric. Sci. 2011, 4, 361–368. [Google Scholar]
- Estrada-Angulo, A.; Valdes, Y.S.; Carrillo-Muro, O.; Castro-Perez, B.I.; Barreras, A.; Lopez-Soto, M.A.; Plascencia, A.; Davila-Ramos, H.; Rios, F.G.; Zinn, R.A. Effects of feeding different levels of chromium-enriched live yeast in hairy lambs fed a corn-based diet: Effects on growth performance, dietary energetics, carcass traits and visceral organ mass. Anim. Prod. Sci. 2013, 53, 308–315. [Google Scholar] [CrossRef]
- Velázquez-Garduño, G.; Mariezcurrena-Berasain, M.A.; Salem, A.Z.M.; Gutiérrez-Ibañez, A.T.; Bernal-Martínez, L.R.; Pinzón-Martínez, D.L.; Kholif, A.E.; Odongo, N.E.; Mariezcurrena-Berasain, M.D. Effect of organic selenium-enriched yeast supplementation in finishing sheep diet on carcasses microbiological contamination and meat physical characteristics. Ital. J. Anim. Sci. 2015, 14, 443–447. [Google Scholar] [CrossRef]
- Shen, Y.B.; Carroll, J.A.; Yoon, I.; Mateo, R.D.; Kim, S.W. Effects of supplementing Saccharomyces cerevisiae fermentation product to sow diets on performance of sows and nursing piglets. J. Anim. Sci. 2011, 89, 2462–2471. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Wang, H.; Ran, T.; Yoon, I.; Saleem, A.M.; Yang, W. Influence of yeast culture and feed antibiotics on ruminal fermentation and site and extent of digestion in beef heifers fed high grain rations. J. Anim. Sci. 2018, 96, 3916–3927. [Google Scholar] [CrossRef] [Green Version]
- Deters, E.L.; Stokes, R.S.; Genther-Schroder, O.N.; Hansen, S.L. Effects of a Saccharomyces cerevisiae fermentation product in receiving diets of newly weaned beef steers. II. Digestibility and response to a vaccination challenge. J. Anim. Sci. 2018, 96, 3906–3915. [Google Scholar] [CrossRef]
- Mao, H.L.; Mao, H.L.; Wang, J.K.; Liu, J.X.; Yoon, I. Effects of Saccharomyces cerevisiae fermentation product on in vitro fermentation and microbial communities of low-quality forages and mixed diets. J. Anim. Sci. 2013, 91, 3291–3298. [Google Scholar] [CrossRef]
- Umberger, W.J.; Boxall, P.C.; Lacy, R.C. Role of credence and health information in determining US consumers’ willingness-to-pay for grass-finished beef. Austral J. Agric. Res. Econ. 2009, 53, 603–623. [Google Scholar] [CrossRef]
- Duckett, S.K.; Neel, J.P.; Sonon, R.N., Jr.; Fontenot, J.P.; Clapham, W.M.; Scaglia, G. Effects of winter stocker growth rate and finishing system on: II. Ninth-tenth-eleventh-rib composition, muscle color, and palatability. J. Anim. Sci. 2007, 85, 2691–2698. [Google Scholar] [CrossRef] [Green Version]
- Duckett, S.K.; Neel, J.P.; Fontenot, J.P.; Clapham, W.M. Effects of winter stocker growth rate and finishing system on: III. Tissue proximate, fatty acid, vitamin, and cholesterol content. J. Anim. Sci. 2009, 87, 2961–2970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neel, J.P.; Fontenot, J.P.; Clapham, W.M.; Duckett, S.K.; Felton, E.E.; Scaglia, G.; Bryan, W.B. Effects of winter stocker growth rate and finishing system on: I. Animal performance and carcass characteristics. J. Anim. Sci. 2007, 85, 2012–2018. [Google Scholar] [CrossRef] [Green Version]
- French, P.; O’Riordan, E.G.; Monahan, F.J.; Caffrey, P.J.; Mooney, M.T.; Troy, D.J.; Moloney, A.P. The eating quality of meat of steers fed grass and/or concentrates. Meat Sci. 2001, 57, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, L.C.; Field, R.A.; Menkhaus, D.J.; Russel, W.C. Evaluation of range-grazed and concentrate-fed beef by a trained sensory panel, a household panel and a laboratory test market group. J. Sens. Stud. 1987, 2, 259–272. [Google Scholar] [CrossRef]
- O’Quinn, T.G.; Woerner, D.R.; Engle, T.E.; Chapman, P.L.; Legako, J.F.; Brooks, J.C.; Belk, K.E.; Tatum, J.D. Identifying consumer preferences for specific beef flavor characteristics in relation to cattle production and postmortem processing parameters. Meat Sci. 2016, 112, 90–102. [Google Scholar] [CrossRef]
- Ball, D.M.; Hoveland, C.S.; Lacefield, G.D. Southern Forages: Modern Concepts for Forage Crop Management, 5th ed.; International Plant Nutrition Institute: Ithaca, NY, USA, 2015. [Google Scholar]
- Burke, J.M.; Apple, J.K. Growth performance and carcass traits of forage-fed hair sheep wethers. Small Rumin. Res. 2007, 67, 264–270. [Google Scholar] [CrossRef]
- Burke, J.M.; Miller, J.E. Resistance to gastrointestinal parasites in Dorper, Katahdin, and St. Croix lambs in the southeastern United States. Small Rumin. Res. 2004, 54, 43–51. [Google Scholar] [CrossRef]
- Phillips, W.A.; Brown, M.A.; Dolezal, H.G.; Fitch, G.Q. Feedlot performance and carcass characteristics of lambs sired by Texel, Romanov, St. Croix or Dorset rams from Polypay and St. Croix ewes. Sheep Goat Res. J. 2005, 20, 11–16. [Google Scholar]
- Karim, S.A.; Porwal, K.; Kumar, S.; Singh, V. Carcass traits of Kheri lambs maintained on different system of feeding management. Meat Sci. 2007, 76, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Smeti, S.; Atti, N.; Mahouachi, M. Effects of finishing lambs in rich aromatic plant pasture or in feedlot on lamb growth and meat quality. J. Appl. Anim. Res. 2014, 42, 297–303. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 15th ed.; Association of Official Agricultural Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Texas Health and Human Services: Meat Safety. Available online: https://www.dshs.texas.gov/meat-safety (accessed on 14 June 2023).
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Ripoll, G.; Gonzalez-Calvo, L.; Molino, F.; Calvo, J.H.; Joy, M. Effects of finishing period length with Vitamin E supplementation and alfalfa grazing on carcass color and the evolution of meat color and the lipid oxidation of light lambs. Meat Sci. 2013, 933, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Culioli, J. Meat tenderness: Mechanical Assessment. In Expression of Tissue Proteinases and Regulation of Protein Degradation as Related to Meat Quality; Ouali, A., DeMeyer, D.I., Smulders, F.J.M., Eds.; ECCEAMST: Utrecht, The Netherlands, 1995; pp. 239–263. [Google Scholar]
- CIELab. Colorimetry, 3rd ed. Available online: http://cie.mogi.bme.hu/cie_arch/kee/div1/tc148.pdf (accessed on 15 April 2019).
- Tarladgis, B.; Watts, B.; Younathan, M.; Dugan, L. A distillation method for the quantitative determination of malonaldehyde in rancid foods. J. Am. Oil Chem. Soc. 1960, 37, 44–48. [Google Scholar] [CrossRef]
- SAS Institute. User’s Guide: Statistics Version 9.4; SAS Institute Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Wagner, J.J.; Engle, T.E.; Belknap, C.R.; Dorton, K.L. Meta-analysis examining the effects of Saccharomyces cerevisiae fermentation products on feedlot performance and carcass traits. Prof. Anim. Sci. 2016, 32, 172–182. [Google Scholar] [CrossRef]
- Lesmeister, K.E.; Heinrichs, A.J.; Gabler, M.T. Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. J. Dairy Sci. 2004, 87, 1832–1839. [Google Scholar] [CrossRef] [Green Version]
- Schingoethe, D.J.; Linke, K.N.; Kalscheur, K.F.; Hippen, A.R.; Rennich, D.D.; Yoon, I. Feed efficiency of mid-lactation dairy cows fed Saccharomyces cerevisiae during summer. J. Dairy Sci. 2004, 87, 4178–4181. [Google Scholar] [CrossRef] [Green Version]
- Geng, C.Y.; Ren, L.P.; Zhou, Z.M.; Chang, Y.; Meng, Q.X. Comparison of active dry yeast (Saccharomyces cerevisiae) and yeast culture for growth performance, carcass traits, meat quality and blood indexes in finishing bulls. Anim. Sci. J. 2016, 87, 982–988. [Google Scholar] [CrossRef]
- Paulus, D.M.; Kelzer, J.M.; Fossa, M.V.; Belknap, C.; Crawford, G.I.; DiCostanzo, A. Effect of inclusion of a Saccharomyces cerevisiae fermentation product in beef cattle feedlot diets with 2 different sulfur concentrations on nutrient metabolism. J. Anim. Sci. 2012, 90 (Suppl. 2), 8. [Google Scholar]
- Swyers, K.L.; Wagner, J.J.; Dorton, K.L.; Archibeque, S.L. Evaluation of saccharomyces cerevisiae fermentation product as an alternative to monensin on growth performance, cost of gain, and carcass characteristics of heavy-weight yearling beef steers. J. Anim. Sci. 2014, 92, 2538–2545. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.S.; Mizubuti, I.Y.; Oliveira, R.L.; Pinto, A.P.; Ribeiro, E.L.A.; Gadelha, C.R.F.; Campos, A.C.N.; Pereira, M.F.; Carneiro, M.S.S.; Arruda, P.C.; et al. Supplementation with cashew nut and cottonseed meal to modify fatty acid content in lamb meat. Journal of food science. J. Food Sci. 2016, 81, C2143–C2148. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Bello-Pérez, E.; Larraín, R.E. Impacts of fat from ruminants’ meat on cardiovascular health and possible strategies to alter its lipid composition. J. Sci. Food Agric. 2017, 97, 1969–1978. [Google Scholar] [CrossRef] [PubMed]
Diet | ||
---|---|---|
Ingredient, % of DM | CON 1 | SCFP 2,3 |
Annual Ryegrass Hay | 50.0 | 50.0 |
Coastal Bermudagrass Hay | 8.6 | 8.6 |
Wheat Straw | 8.0 | 8.0 |
Commercial Sheep Pellet 4 | 29.5 | 29.5 |
Ground Corn | 3.9 | 3.9 |
Chemical Composition, % of DM | ||
DM | 94.0 ± 0.1 | 93.3 ± 0.1 |
NDF | 33.9 ± 3.1 | 34.9 ± 3.9 |
ADF | 19.5 ± 1.9 | 20.0 ± 1.5 |
CP | 18.0 ± 0.2 | 17.5 ± 0.2 |
Ether Extract | 3.3 ± 0.3 | 3.2 ± 0.2 |
Treatments | ||||
---|---|---|---|---|
Item | CON 1 | SCFP 2 | SEM 3 | p-Value |
Initial BW (kg) 4 | 19.5 | 19.6 | 0.89 | 0.93 |
Final BW (kg) | 34.2 | 36.7 | 0.38 | <0.01 |
ADG (kg) 5 | 0.15 | 0.16 | 0.01 | <0.01 |
DMI (kg DM day−1) 6 | 1.20 | 1.19 | 0.11 | 0.41 |
FeedEff 7 | 0.02 | 0.01 | 0.001 | 0.40 |
Treatment | ||||
---|---|---|---|---|
Item | CON 1 | SCFP 2 | SEM 3 | p-Value |
HCW 4 (kg) | 13.3 | 16.6 | 1.56 | 0.27 |
Dress percentage (%) | 42.7 | 45.6 | 1.67 | 0.22 |
Max energy to cut (kgf) | 4.1 | 3.1 | 0.31 | 0.03 |
Total energy to cut (kgf) | 17.5 | 12.5 | 1.26 | <0.01 |
Lipid oxidation (mg MDA-kg−1 muscle) 5 | 1.2 | 1.6 | 0.29 | 0.40 |
Color: L* | 45.2 | 45.1 | 0.41 | 0.85 |
Color: a* | 11.6 | 11.6 | 0.25 | 0.87 |
Color: b* | 8.6 | 8.4 | 0.11 | 0.17 |
Treatments | ||||
---|---|---|---|---|
Fatty Acid | CON 1 | SCFP 2 | SEM 3 | p-Value |
C14:0 | 2.14 | 1.91 | 0.15 | 0.03 |
C14:1n5 | 0.12 | 0.13 | 0.03 | 0.69 |
C16 | 26.66 | 26.09 | 1.12 | 0.59 |
C16:1n7 | 1.56 | 0.98 | 0.50 | 0.17 |
C18 | 14.35 | 15.02 | 1.74 | 0.69 |
C18:1n9t | 3.04 | 1.96 | 0.75 | 0.06 |
C18:1n9c | 44.38 | 46.94 | 1.81 | 0.07 |
C18:2n6t | 0.27 | 0.24 | 0.05 | 0.54 |
C18:2n6c | 3.12 | 3.11 | 0.72 | 1.00 |
C18:3n6 | 0.05 | 0.10 | 0.07 | 0.50 |
C18:3n3 | 0.04 | 0.06 | 0.02 | 0.42 |
C20:0 | 0.35 | 0.27 | 0.07 | 0.13 |
C20:1n9 | 0.68 | 0.54 | 0.12 | 0.21 |
C20:3n3 | 0.07 | 0.12 | 0.04 | 0.22 |
C20:4n6 | 0.13 | 0.16 | 0.06 | 0.55 |
C20:5n3 | 1.23 | 0.48 | 0.76 | 0.27 |
C22:5n3 | 1.35 | 1.19 | 0.27 | 0.53 |
C22:6n3 | 0.21 | 0.39 | 0.24 | 0.40 |
C24:1n9 | 0.25 | 0.33 | 0.08 | 0.24 |
SFA | 43.50 | 43.28 | 1.56 | 0.89 |
MUFA | 50.03 | 50.87 | 1.19 | 0.45 |
PUFA | 6.48 | 5.85 | 1.22 | 0.59 |
n6 | 3.57 | 3.62 | 0.72 | 0.94 |
n3 | 2.91 | 2.23 | 0.89 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burt, J.C.; Boyd, J.A.; Baxter, L.L.; Garcia-Galicia, I.A.; Kerley, B.P. Evaluation of a Saccharomyces cerevisiae Fermentation Product on the Feedlot Performance and Carcass Merit of Hair Lambs Offered an Annual Ryegrass-Hay-Based Finishing Diet: A Pilot Study. Animals 2023, 13, 2630. https://doi.org/10.3390/ani13162630
Burt JC, Boyd JA, Baxter LL, Garcia-Galicia IA, Kerley BP. Evaluation of a Saccharomyces cerevisiae Fermentation Product on the Feedlot Performance and Carcass Merit of Hair Lambs Offered an Annual Ryegrass-Hay-Based Finishing Diet: A Pilot Study. Animals. 2023; 13(16):2630. https://doi.org/10.3390/ani13162630
Chicago/Turabian StyleBurt, Justin C., Jamie A. Boyd, Lisa L. Baxter, Ivan A. Garcia-Galicia, and Brittany P. Kerley. 2023. "Evaluation of a Saccharomyces cerevisiae Fermentation Product on the Feedlot Performance and Carcass Merit of Hair Lambs Offered an Annual Ryegrass-Hay-Based Finishing Diet: A Pilot Study" Animals 13, no. 16: 2630. https://doi.org/10.3390/ani13162630
APA StyleBurt, J. C., Boyd, J. A., Baxter, L. L., Garcia-Galicia, I. A., & Kerley, B. P. (2023). Evaluation of a Saccharomyces cerevisiae Fermentation Product on the Feedlot Performance and Carcass Merit of Hair Lambs Offered an Annual Ryegrass-Hay-Based Finishing Diet: A Pilot Study. Animals, 13(16), 2630. https://doi.org/10.3390/ani13162630