The Effects of Sodium Acetate on the Immune Functions of Peripheral Mononuclear Cells and Polymorphonuclear Granulocytes in Postpartum Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Blood Collection and Sampling Analysis
2.3. Isolation of Peripheral Blood Mononuclear Cells
2.4. Isolation of Polymorphonuclear Granulocytes
2.5. Determination of Related Gene Expression
2.6. Statistical Analysis
3. Results
3.1. Effects of NaAc on Blood Routine Indexes in Postpartum Dairy Cows
3.2. Gene Expression of Peripheral Blood Mononuclear Cells
3.3. Gene Expression of Polymorphonuclear Granulocyte
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hippen, A.R.; DeFrain, J.M.; Linke, P.L. Glycerol and other energy sources for metabolism and production of transition dairy bovine. In Florida Ruminant Nutrition Symposium; University of Florida: Gainesville, FL, USA, 2008; pp. 1–16. [Google Scholar]
- Ingvartsen, K.L. Feeding- and management-related diseases in the transition cow. Anim. Feed. Sci. Technol. 2006, 126, 175–213. [Google Scholar] [CrossRef]
- Goff, J.P.; Horst, R.L. Physiological changes at parturition and their relationship to metabolic disorder. J. Dairy Sci. 1997, 80, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- Moyes, K.M.; Larsen, T.; Friggens, N.C.; Drackley, J.K.; Ingvartsen, K.L. Identification of potential markers in blood for the development of subclinical and clinical mastitis in dairy cattle at parturition and during early lactation. J. Dairy Sci. 2009, 92, 5419–5428. [Google Scholar] [CrossRef]
- Drackley, J.K. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef]
- Vailati-Riboni, M.; Zhou, Z.; Jacometo, C.B.; Minuti, A.; Trevisi, E.; Luchini, D.N.; Loor, J.J. Supplementation with rumen-protected methionine or choline during the transition period influences whole-blood immune response in periparturient dairy cows. J. Dairy Sci. 2017, 100, 3958–3968. [Google Scholar] [CrossRef]
- Paape, M.J.; Bannerman, D.D.; Zhao, X.; Lee, J.W. The bovine neutrophil: Structure and function in blood and milk. Vet. Res. 2003, 34, 527–627. [Google Scholar]
- Meglia, G.E.; Johannisson, A.; Agenäs, S.; Holtenius, K.; Waller, K.P. Effects of feeding intensity during the dry period on leukocyte and lymphocyte sub-populations, neutrophil function, and health in periparturient dairy cows. Vet. J. 2005, 169, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Hayajneh, F.M.F. Antioxidants in dairy cattle health and disease. Bull. UASVM Vet. Med. 2014, 71, 104–109. [Google Scholar]
- Li, C.; Batistel, F.; Osorio, J.S.; Drackley, J.K.; Luchini, D.; Loor, J.J. Peripartal rumen-protected methionine supplementation to higher energy diets elicits positive effects on blood neutrophil gene networks, performance, and liver lipid content in dairy cows. J. Anim. Sci. Biotechnol. 2016, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Torres, R. Role of interleukin-1beta during pain and inflammation. Brain Res. Rev. 2009, 60, 57–64. [Google Scholar] [CrossRef]
- Hakim, J. Consequences of neutrophil adhesion to physiological and pathological targets. Biorheology 1990, 27, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Burvenich, C.; Van Merris, V.; Mehrzad, J.; Diez-Fraile, A.; Duchateau, L. Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res. 2003, 34, 524–564. [Google Scholar] [CrossRef] [PubMed]
- Sordillo, L.M.; Raphael, W. Significance of metabolic stress, lipid mobilization, and inflammation on transition cow disorders. Vet. Clin. N. Am. Food Anim. Pract. 2013, 29, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Gualdrón-Duarte, B.L.; Allen, S.M. Effects of acetic acid or sodium acetate infused into the rumen or abomasum on feeding behavior and metabolic response of cows in the postpartum period. J. Dairy Sci. 2018, 101, 2016–2026. [Google Scholar] [CrossRef]
- Sharmin, M.M.; Mizusawa, M.; Hayashi, S.; Arai, W.; Sakata, S.; Yonekura, S. Effects of fatty acids on inducing endoplasmic reticulum stress in bovine mammary epithelial cells. J. Dairy Sci. 2020, 103, 8643–8654. [Google Scholar] [CrossRef]
- Pangprasit, N.; Srithanasuwan, A.; Suriyasathaporn, W.; Pikulkaew, S.; Bernard, J.K.; Chaisri, W. Antibacterial Activities of Acetic Acid against Major and Minor Pathogens Isolated from Mastitis in Dairy Cows. Pathogens 2020, 9, 961. [Google Scholar] [CrossRef]
- Urrutia, N.; Bomberger, R.; Matamoros, C.; Harvatine, K.J. Effect of dietary supplementation of sodium acetate and calcium butyrate on milk fat synthesis in lactating dairy cows. J. Dairy Sci. 2019, 102, 5172–5181. [Google Scholar] [CrossRef]
- Matamoros, C.; Hao, F.; Tian, Y.; Patterson, A.D.; Harvatine, K.J. Interaction of sodium acetate supplementation and dietary fiber level on feeding behavior, digestibility, milk synthesis, and plasma metabolites. J. Dairy Sci. 2022, 105, 8824–8838. [Google Scholar] [CrossRef]
- Garcia, M.; Elsasser, T.H.; Biswas, D.; Moyes, K.M. The effect of citrus-derived oilon bovine blood neutrophil function and gene expression in vitro. J. Dairy Sci. 2015, 98, 918–926. [Google Scholar] [CrossRef]
- Zhang, F.; Nan, X.; Wang, H.; Zhao, Y.; Guo, Y.; Xiong, B. Effects of Propylene Glycol on Negative Energy Balance of Postpartum Dairy Cows. Animals 2020, 10, 1526. [Google Scholar] [CrossRef]
- Cheng, Z.; Wylie, A.; Ferris, C.; Ingvartsen, K.L.; Wathes, D.C.; GplusE Consortium. Effect of diet and nonesterified fatty acid levels on global transcriptomic profiles in circulating peripheral blood mononuclear cells in early lactation dairy cows. J. Dairy Sci. 2021, 104, 10059–10075. [Google Scholar] [CrossRef] [PubMed]
- Scholte, C.M.; Rezamand, P.; Tsai, C.Y.; Amiri, Z.M.; Ramsey, K.C.; McGuire, M.A. The effects of elevated subcutaneous fat stores on fatty acid composition and gene expression of proinflammatory markers in periparturient dairy cows. J. Dairy Sci. 2017, 100, 2104–2118. [Google Scholar] [CrossRef] [PubMed]
- Ingvartsen, K.L.; Moyes, K. Nutrition, immune function, and health of dairy cattle. Animals 2012, 7 (Suppl. S1), 112–122. [Google Scholar] [CrossRef]
- Habel, J.; Sundrum, A. Mismatch of glucose allocation between different life functions in the transition period of dairy cows. Animals 2020, 10, 1028. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Zhao, C.; Hu, P.; Chen, H.; Liu, Z.; Liu, G.; Wang, Z. Correlation between Composition of the Bacterial Community and Concentration of Volatile Fatty Acids in the Rumen during the Transition Period and Ketosis in Dairy Cows. Appl. Environ. Microbiol. 2012, 78, 2386–2392. [Google Scholar] [CrossRef] [PubMed]
- Urrutia Natalie, L.; Hargadine Kevin, J. Acetate Dose-Dependently Stimulates Milk Fat Synthesis in Lactating Dairy Cows. J. Nutr. 2017, 147, 763–769. [Google Scholar] [CrossRef]
- Sonna, L.A.; Gaffin, S.L.; Pratt, R.E.; Cullivan, M.L.; Angel, K.C.; Lilly, C.M. Selected contribution: Effect of acute heat shock on gene expression by human peripheral blood mononuclear cells. J. Appl. Physiol. 2002, 92, 2208–2220. [Google Scholar] [CrossRef]
- Saad, A.M.; Concha, C.; Åström, G. Alterations in neutrophil phagocytosis and lymphocyte blastogenesis in dairy cows around parturition. J. Vet. Med. 1989, 36, 337–345. [Google Scholar] [CrossRef]
- Wagter, L.C.; Mallard, B.A.; Dekkers, J.C.M.; Leslie, K.E.; Wilkie, B.N. Characterization of immune responsiveness and disease occurrence during the peripartum period. J. Dairy Sci. 1996, 76, 119. [Google Scholar]
- Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defense. Clin. Microbiol. Rev. 2009, 22, 240–273. [Google Scholar] [CrossRef]
- Watts, J.S.; Rezamand, P.; Sevier, D.L.; Price, W.; McGuire, M.A. Short-term effects of dietary trans fatty acids compared with saturated fatty acids on selected measures of inflammation, fatty acid profiles, and production in early lactating Holstein dairy cows. J. Dairy Sci. 2013, 96, 6932–6943. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 2003, 3, 710–720. [Google Scholar] [CrossRef]
- Meade, K.G.; Cormican, P.; Narciandi, F.; Lloyd, A.; O’Farrelly, C. Bovine beta-defensin gene family: Opportunities to improve animal health? Physiol. Genomics 2014, 46, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie-Dyck, S.; Attah-Poku, S.; Juillard, V.; Babiuk, L.A. The synthetic peptides bovine enteric β-defensin (EBD), bovine neutrophil β-defensin (BNBD) 9 and BNBD 3 are chemotactic for immature bovine dendritic cells. Vet. Immunol. Immunopathol. 2011, 143, 87–107. [Google Scholar] [CrossRef]
- Wright, H.L.; Moots, R.J.; Bucknall, R.C.; Edwards, S.W. Neutrophil function in inflammation and inflammatory diseases. Rheumatology 2010, 49, 1618–1631. [Google Scholar] [CrossRef] [PubMed]
- Boulougouris, X.; Rogiers, C.; Van Poucke, M.; De Spiegeleer, B.; Peelman, L.; Duchateau, L.; Burvenich, C. Methylation of selected CpG islands involved in the transcription of myeloperoxidase and superoxide dismutase 2 in neutrophils of periparturient and mid-lactation cows. J. Dairy Sci. 2019, 102, 7421–7434. [Google Scholar] [CrossRef]
- Thomas, C.J.; Schroder, K. Pattern recognition receptor function in neutrophils. Trends Immunol. 2013, 34, 317–328. [Google Scholar] [CrossRef] [PubMed]
- El-Benna, J.; Hurtado-Nedelec, M.; Marzaioli, V.; Marie, J.C.; Gougerot-Pocidalo, M.A.; Dang, P.M.C. Priming of the neutrophil respiratory burst: Role in host defense and inflammation. Immunol. Rev. 2016, 273, 180–193. [Google Scholar] [CrossRef]
- Zhou, Z.; Vailati-Riboni, M.; Trevisi, E.; Drackley, J.K.; Luchini, D.N.; Loor, J.J. Better postpartal performance in dairy cows supplemented with rumen-protected methionine compared with choline during the peripartal period. J. Dairy Sci. 2016, 99, 8716–8732. [Google Scholar] [CrossRef]
- Bargatze, R.F.; Kurk, S.; Butcher, E.C.; Jutila, M.A. Neutrophils roll on adherent neutrophils bound to cytokine-induced endothelial cells via L-selectin on the rolling cells. J. Exp. Med. 1994, 180, 1785–1792. [Google Scholar] [CrossRef]
- Calderwood, D.A.; Zent, R.; Grant, R.; Rees, D.J.G.; Hynes, R.O.; Ginsberg, M.H. The Talin Head Domain Binds to Integrin β Subunit Cytoplasmic Tails and Regulates Integrin Activation. J. Biol. Chem. 1999, 274, 28071–28074. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Ferdous, F.; Montagner, P.; Luchini, D.N.; Correa, M.N.; Loor, J.J. Methionine and choline supply during the peripartal period alter polymorphonuclear leukocyte immune response and immunometabolic gene expression in Holstein cows. J. Dairy Sci. 2018, 101, 10374–10382. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Bu, D.P.; Riboni, M.V.; Khan, M.J.; Graugnard, D.E.; Luo, J.; Cardoso, F.C.; Loor, J.J. Prepartal dietary energy level affects peripartal bovine blood neutrophil metabolic, antioxidant, and inflammatory gene expression. J. Dairy Sci. 2015, 98, 5492–5505. [Google Scholar] [CrossRef]
- Kehrli, M.; Nonnecke, B.; Roth, J. Alterations in bovine neutrophil function during the periparturient period. Am. J. Vet. Res. 1989, 50, 207–214. [Google Scholar] [PubMed]
- Burton, J.L.; Madsen, S.A.; Chang, L.C.; Weber, P.S.; Buckham, K.R.; van Dorp, R.; Hickey, M.C.; Earley, B. Gene expression signatures in neutrophils exposed to glucocorticoids: A new paradigm to help explain “neutrophil dysfunction” in parturient dairy cows. Vet. Immunol. Immunopathol. 2005, 105, 197–219. [Google Scholar] [CrossRef] [PubMed]
Item | % |
---|---|
Alfalfa | 3.76 |
Oat | 12.83 |
Whole corn silage | 39.39 |
Corn | 14.18 |
Soya bean meal | 18.91 |
Cotton seed meal | 1.75 |
DDGS | 4.8 |
Premix 1 | 4.38 |
Total | 100 |
Nutrient levels 2 | |
CP | 16.07 |
EE | 3.84 |
NDF | 33.44 |
ADF | 24.42 |
Ash | 7.28 |
Ca | 0.74 |
P | 0.48 |
NEL, MJ/kg 3 | 3.25 |
Gene | NCBI Accession No. | Sequence | Amplicon Length (bp) |
---|---|---|---|
MCT1 | XM_015463657.2 | F: CAATGCCACCAGCAGTTG | 376 |
R: GCAAGCCCAAGACCTCCAAT | |||
MCT4 | NM_001109980.3 | F: AGCGTCTGAGCCCAGGGAGG | 223 |
R: ACCTCGCGGCTTGGCTTCAC | |||
GPR41 | XM_015458060.2 | F: AACCTCACCCTCTCGGATCT | 214 |
R: GCCGAGTCTTGTACCAAAGC | |||
GPR78 | NM_001075148.1 | F: CGACCCCTGACGAAAGACAA | 198 |
R: AGGTGTCAGGCGATTTTGGT | |||
ATF4 | XM_024991552.1 | F: AGATGACCTGGAAACCATGC | 190 |
R: AGGGGGAAGAGGTTGAAAGA | |||
sXBP1 | NM_001271737.1 | F: TGCTGAGTCCGCAGCAGGTG | 169 |
R: GCTGGCAGACTCTGGGGAAG | |||
NFE2L2 | XM_005202311.4 | F: AAGGGACAAGTTGGAGCTGTT | 145 |
R: AATCCATGTCCCTTGACAGCAG | |||
EIF2A | XM_005211941.4 | F: TCGTCATGTTGCTGAGGTCT | 111 |
R: GCACCATATCCGGGTCTCTT | |||
SOD2 | NM_201527.2 | F: GAGAAGGGTGATGTTACAGCTCAGA | 100 |
R: GGCTCAGATTTGTCCAGAAGATG | |||
NOX1 | XM_024988030.1 | F: GATCTGCAGGGAGATGGGTG | 147 |
R: GCTGCATGACCAGCAAAGTT | |||
FAS | NM_174662.2 | F: AATGCCCACATGGCTGGTAT | 131 |
R: TTTTTCCGTTTGCCAGGAGG | |||
CASP2 | XM_005205863.3 | F: TGCTCCAGCTACAAGAGGTTTT | 140 |
R: AGCAGTGAACAGAAGGAGGTG | |||
BAK1 | XM_024983575.1 | F: CCAGAACCTAGCAGCACCAT | 176 |
R: ATACCGCTCTCAAACAGGCT | |||
SELL | NM_174182.1 | F: CTCTGCTACACAGCTTCTTGTAAACC | 104 |
R: CCGTAGTACCCCAAATCACAGTT | |||
ITGB2 | NM_175781.1 | F: CCAGGTTATTCTATGGGCTCATG | 102 |
R: CCATACAAAATGTAGGCAATTCCTT | |||
ICAM1 | NM_174348.2 | F: AGAATTAGCGCTGACCTCTGTTAAG | 100 |
R: CGGACACATCTCAGTGACTAAACAA | |||
TLN1 | NM_001205428.1 | F: TTCCTGCCCAAGGAGTATGTG | 100 |
R: AGCGTACCTTGGCCTCAATCT | |||
ASK1 | NM_001144081.2 | F: GCTATGGAAAGGCAGCAGA | 160 |
R: TCTGCTGACATGGACTCTGG | |||
MMP9 | NM_174744.2 | F: CCCGGATCAAGGATACAGCC | 177 |
R: GGGCGAGGACCATACAGATG | |||
LAP | NM_203435.4 | F: TGTCTGCTGGGTCAGGATTTAC | 131 |
R:TACTTGGGCTCCGAGACAGG | |||
XBP1 | NM_001034727 | F: CCGGAAGAAAGCTCGAATG | 96 |
R: TCTCGTAAAACGTGATTTTCTAACAA | |||
TAP | NM_174776.1 | F: GAGGCTCCATCACCTGCTC | 88 |
R: GCTTACAGGATTTCCTACTCCTTG | |||
NFKB1 | NM_001076409.1 | F: TTCAACCGGAGATGCCACTAC | 95 |
R: ACACACGTAACGGAAACGAAATC | |||
HSP70 | NM_203322.3 | F: GTGCAGGAGGCGGAAAAGTA | 183 |
R: GGAAATCACCTCCTGGCACT | |||
ALOX5 | NM_001192792.2 | F: GAGAGATGGGCAAGCGAAGT | 114 |
R: GGGTTCCACTCCATCCATCG | |||
CCL2 | NM_174006.2 | F: GCTCGCTCAGCCAGATGCAA | 117 |
R: GGACACTTGCTGCTGGTGACTC | |||
Housekeeping genes | |||
GAPDH | NM_001034034.2 | F: TTGTCTCCTGCGACTTCAACA | 103 |
R:TCGTACCAGGAAATGAGCTTGAC | |||
β-actin | AY141970.1 | F: GACCCAGATCATGTTCGAGA | 145 |
R: CTCATAGATGGGCACCGTGT | |||
RPS9 | NM_001101152.2 | F: CCTCGACCAAGAGCTGAAG | 64 |
R: CTCATAGATGGGCACCGTGT |
Composition | Usage Amount (µL) |
---|---|
2 × ChamQ Universal SYBR qPCR Master Mix | 10 |
PCR Forward Primer (10 µM) | 0.8 |
PCR Reverse Primer (10 µM) | 0.8 |
DNA template | 2 |
RNase-free ddH2O | 6.4 |
Item | Treatment | SEM | p-Value | |
---|---|---|---|---|
CON (n = 12) | NaAc (n = 12) | |||
Erythrocyte System | ||||
Red blood cell count (RBC) # (1012/L) | 6.24 | 6.24 | 0.22 | 0.984 |
Hematocrit (HCT) # (%) | 29.09 | 29.17 | 0.98 | 0.935 |
Hemoglobin (HGB) # (g/dL) | 10.09 | 9.83 | 0.28 | 0.356 |
Mean corpuscular volume (MCV) # (fL) | 46.65 | 46.88 | 0.847 | 1.19 |
Mean corpuscular hemoglobin (MCH) # (pg) | 16.21 | 15.80 | 0.37 | 0.283 |
Mean corpuscular hemoglobin concentration (MCHC) # (g/dL) | 34.71 | 33.71 | 0.34 | 0.008 |
Red blood cell distribution width(RDW) # (%) | 24.32 | 25.59 | 0.90 | 0.171 |
Leukocyte system | ||||
White blood cell count (WBC) # (109/L) | 7.64 | 8.65 | 0.76 | 0.196 |
Neutrophili granulocyte (NEU) # (109/L) | 3.81 | 4.22 | 0.579 | 0.487 |
NEU (%) | 49.22 | 48.10 | 3.02 | 0.716 |
Lymphocyte (LYM) # (109/L) | 2.70 | 2.89 | 0.208 | 0.368 |
LYM (%) | 36.33 | 34.05 | 2.40 | 0.353 |
Eosinophils (EOS) # (109/L) | 0.15 | 0.24 | 0.104 | 0.346 |
EOS (%) | 1.88 | 2.65 | 1.03 | 0.462 |
Monocyte (MONO) # (109/L) | 0.94 | 1.27 | 0.128 | 0.018 |
MONO (%) | 12.08 | 14.87 | 1.09 | 0.018 |
Basophil (BASO) # (109/L) | 0.05 | 0.03 | 0.028 | 0.533 |
BASO (%) | 0.52 | 0.32 | 0.27 | 0.469 |
Item | Treatment | SEM | p-Value | |
---|---|---|---|---|
CON (n = 12) | NaAc (n = 12) | |||
Short-chain fatty acid transports | ||||
MCT1 | 1.03 | 1.95 | 0.46 | 0.07 |
MCT4 | 1.05 | 2.36 | 0.42 | 0.01 |
GPR41 | 1.14 | 0.93 | 0.23 | 0.38 |
Oxidative stress | ||||
CCL2 | 1.28 | 7.90 | 2.92 | 0.03 |
NFE2L2 | 1.04 | 2.83 | 0.72 | 0.03 |
SOD2 | 1.08 | 1.59 | 0.21 | 0.02 |
NOX1 | 1.13 | 2.54 | 0.68 | 0.05 |
Adhesion | ||||
SELL | 1.12 | 1.63 | 0.38 | 0.19 |
ITGB2 | 1.05 | 2.02 | 0.69 | 0.19 |
ICAM1 | 1.06 | 1.79 | 0.37 | 0.07 |
TLN1 | 1.06 | 1.12 | 0.23 | 0.80 |
Antimicrobial | ||||
MMP9 | 1.14 | 2.51 | 0.77 | 0.09 |
LAP | 1.12 | 2.35 | 0.55 | 0.04 |
XBP1 | 1.02 | 2.05 | 0.41 | 0.03 |
TAP | 1.03 | 7.22 | 1.98 | 0.01 |
Endoplasmic reticulum stress | ||||
GRP78 | 1.08 | 1.52 | 0.31 | 0.17 |
ATF4 | 1.07 | 1.05 | 0.17 | 0.92 |
sXBP1 | 1.15 | 1.30 | 0.29 | 0.61 |
EIF2A | 1.08 | 1.45 | 0.26 | 0.16 |
ASK1 | 1.11 | 16.81 | 7.66 | 0.06 |
HSP70 | 1.13 | 2.07 | 0.55 | 0.11 |
Item | Treatment | SEM | p-Value | |
---|---|---|---|---|
CON (n = 12) | NaAc (n = 12) | |||
Short-chain fatty acid transports | ||||
MCT1 | 1.99 | 1.50 | 0.92 | 0.60 |
MCT4 | 1.07 | 1.30 | 0.21 | 0.27 |
GPR41 | 3.16 | 1.44 | 2.03 | 0.40 |
Antimicrobial | ||||
LAP | 1.15 | 0.05 | 0.18 | <0.001 |
XBP1 | 1.29 | 3.14 | 0.60 | 0.007 |
MMP9 | 1.15 | 1.45 | 0.47 | 0.52 |
TAP | 1.35 | 0.82 | 0.34 | 0.13 |
Oxidative stress | ||||
NFE2L2 | 1.07 | 0.89 | 0.22 | 0.41 |
SOD2 | 1.50 | 2.02 | 0.49 | 0.30 |
NOX1 | 1.25 | 0.68 | 0.35 | 0.11 |
CCL2 | 1.39 | 1.09 | 0.86 | 0.73 |
Apoptosis and survival | ||||
FAS | 1.52 | 1.92 | 0.52 | 0.45 |
CASP2 | 1.79 | 3.02 | 1.07 | 0.26 |
BAK1 | 1.76 | 3.70 | 1.25 | 0.14 |
Adhesion | ||||
TLN1 | 1.20 | 2.10 | 0.29 | 0.006 |
ITGB2 | 1.08 | 3.04 | 0.52 | 0.002 |
ICAM1 | 1.33 | 1.28 | 0.41 | 0.90 |
SELL | 1.51 | 2.92 | 0.59 | 0.02 |
Inflammation | ||||
ALOX5 | 1.30 | 3.70 | 1.42 | 0.11 |
NFKB1 | 1.37 | 4.22 | 2.19 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, C.; Tan, D.; Meng, Z.; Jiang, M.; Lin, M.; Zhao, G.; Zhan, K. The Effects of Sodium Acetate on the Immune Functions of Peripheral Mononuclear Cells and Polymorphonuclear Granulocytes in Postpartum Dairy Cows. Animals 2023, 13, 2721. https://doi.org/10.3390/ani13172721
Yuan C, Tan D, Meng Z, Jiang M, Lin M, Zhao G, Zhan K. The Effects of Sodium Acetate on the Immune Functions of Peripheral Mononuclear Cells and Polymorphonuclear Granulocytes in Postpartum Dairy Cows. Animals. 2023; 13(17):2721. https://doi.org/10.3390/ani13172721
Chicago/Turabian StyleYuan, Cong, Dejin Tan, Zitong Meng, Maocheng Jiang, Miao Lin, Guoqi Zhao, and Kang Zhan. 2023. "The Effects of Sodium Acetate on the Immune Functions of Peripheral Mononuclear Cells and Polymorphonuclear Granulocytes in Postpartum Dairy Cows" Animals 13, no. 17: 2721. https://doi.org/10.3390/ani13172721
APA StyleYuan, C., Tan, D., Meng, Z., Jiang, M., Lin, M., Zhao, G., & Zhan, K. (2023). The Effects of Sodium Acetate on the Immune Functions of Peripheral Mononuclear Cells and Polymorphonuclear Granulocytes in Postpartum Dairy Cows. Animals, 13(17), 2721. https://doi.org/10.3390/ani13172721