Tinamiphilopsis temmincki sp. n., a New Quill Mite Species from Tataupa Tinamou, and the Early History of Syringophilid Mites †
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mites Collection and Description
2.2. Phylogenetic Analysis
2.2.1. Taxa Selection
2.2.2. Cladistic Analysis
3. Results
3.1. Systematic
3.1.1. Description
Type Material
Type Material Deposition
Differential Diagnosis
Etymology
3.2. Parsimony Analysis
4. Discussion
4.1. Hypotheses on the Early History of Syringophilid Mites
4.2. Distribution of the Primitive Quill Mite Genera on the Host Lineages
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winkler, D.W.; Billerman, S.M.; Lovette, I.J. Tinamous (Tinamidae), ver. 1.0. In Birds of the World; Billerman, S.M., Keeney, B.K., Rodewald, P.G., Schulenberg, T.S., Eds.; Cornell Lab of Ornithology: Ithaca, NY, USA, 2020. [Google Scholar] [CrossRef]
- Clements, J.F.; Schulenberg, T.S.; Iliff, M.J.; Roberson, D.; Fredericks, T.A.; Sullivan, B.L.; Wood, C.L. The eBird/Clements Checklist of Birds of the World. Ver. 2022. Available online: http://www.birds.cornell.edu/clementschecklist/download/ (accessed on 20 May 2023).
- Cabot, J. Order Tinamiformes. In Handbook of the Birds of the World; Ostrich to Ducks; del Hoyo, J., Elliot, A., Sargatal, J., Eds.; Lynx Edicions: Barcelona, Spain, 1992; Volume 1, pp. 112–138. [Google Scholar]
- Davies, S.J.J.F. Ratites and Tinamous. Tinamidae, Rheidae, Dromaiidae, Casuariidae, Apterygidae, Struthionidae; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Cracraft, J. Phylogeny and evolution of the ratites birds. Ibis 1974, 116, 494–521. [Google Scholar] [CrossRef]
- Lee, K.; Feinstein, J.; Cracraft, J. The phylogeny of ratite birds: Resolving conflicts between molecular and morphological data sets. In Avian Molecular Evolution and Systematics; Mindell, D.P., Ed.; Academic Press: San Diego, CA, USA, 1997; pp. 173–211. [Google Scholar]
- Livezey, B.C.; Zusi, R.L. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. J. Linn. Soc. 2007, 149, 1–95. [Google Scholar] [CrossRef]
- Prum, R.O.; Jacob, S.B.; Dornburg, A.; Field, D.J.; Townsend, J.P.; Lemmon, E.M.; Lemmon, A.R. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nat. Lett. 2015, 15697, 569–573. [Google Scholar] [CrossRef]
- Hackett, S.J.; Kimball, R.T.; Reddy, S.; Bowie, R.C.K.; Braun, E.L.; Braun, M.J.; Chojnowski, J.L.; Cox, W.A.; Han, K.L.; Harshman, J.; et al. A phylogenomic study of birds reveals their evolutionary history. Science 2008, 320, 1763–1768. [Google Scholar] [CrossRef]
- Haddrath, O.; Baker, B. Multiple nuclear genes and retroposons support vicariance and dispersal of the palaeognaths, and an Early Cretaceous origin of modern birds. Proc. R. Soc. 2012, 279, 4617–4625. [Google Scholar] [CrossRef]
- Smith, J.V.; Braun, E.L.; Kimball, R.T. Ratite nonmonophyly: Independent evidence from 40 novel loci. Syst. Biol. 2013, 62, 35–49. [Google Scholar] [CrossRef]
- Jarvis, E.D.; Mirarab, S.; Aberer, A.J.; Li, B.; Houde, P.; Li, C.; Ho, S.Y.W.; Faircloth, B.C.; Nabholz, B.; Howard, J.T.; et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 2014, 346, 1320–1331. [Google Scholar] [CrossRef]
- Kimball, R.T.; Oliveros, C.H.; Wang, N.; White, N.D.; Barker, F.K.; Field, D.J.; Ksepka, D.T.; Chesser, R.T.; Moyle, R.G.; Braun, M.J.; et al. A Phylogenomic Supertree of Birds. Diversity 2019, 11, 109. [Google Scholar] [CrossRef]
- Bertelli, S.; Giannini, N.P.; Goloboff, P.A. A phylogeny of the tinamous (Aves: Palaeognathiformes) based on integumentary characters. Syst. Biol. 2002, 51, 959–979. [Google Scholar] [CrossRef]
- Bertelli, S.; Chiappe, L.M.; Mayr, G. Phylogenetic interrelationships of living and extinct Tinamidae, volant palaeognathous birds from the New World. Zool. J. Linn. Soc. 2014, 172, 145–184. [Google Scholar] [CrossRef]
- Almeida, F.C.; Porzecanski, A.L.; Cracraft, J.L.; Bertelli, S. The evolution of tinamous (Palaeognathae: Tinamidae) in light of molecular and combined analyses. Zool. J. Linn. Soc. 2021, 195, 106–124. [Google Scholar] [CrossRef]
- Bochkov, A.V.; Mironov, S.V.; Fain, A. Phylogeny and host-parasite relationships of the family Harpirhynchidae (Acari, Prostigmata). Acarina 1999, 7, 69–87. [Google Scholar]
- Bochkov, A.V.; Fain, A. Phylogeny and system of the Cheyletidae (Acari: Prostigmata) special reference to their host-parasite associations. Bull. Inst. R. Sci. Nat. Belgique 2001, 71, 5–36. [Google Scholar]
- Bochkov, A.V.; Klimov, P.B.; Skoracki, M. Morphological phylogenetic conflict in the parasitic mite family Harpirhynchidae (Acariformes: Cheyletoidea) correlates with host associations. Zool. Anz. 2017, 271, 33–48. [Google Scholar] [CrossRef]
- Skoracki, M.; Zabludovskaya, S.A.; Bochkov, A.V. A review of Prostigmata (Acariformes: Trombidiformes) permanently associated with birds. Acarina 2012, 20, 67–107. [Google Scholar]
- Skoracki, M.; Glowska, E.; Bochkov, A.V. Phylogeny of quill mites of the family Syringophilidae (Acari: Prostigmata) based on their external morphology. Eur. J. Entomol. 2013, 110, 663–675. [Google Scholar] [CrossRef]
- Skoracki, M.; Sikora, B. Tinamiphilopsis elegans gen. nov. et sp. nov., a first record of the quill mites (Acari: Syringophilidae) from tinamou birds (Tinamiformes: Tinamidae). Acta Parasitol. 2004, 49, 348–352. [Google Scholar]
- Skoracki, M.; Sikora, B.; Ozminski, M. A new quill mite species (Acari: Syringophilidae) parasitising tinamous (Aves: Tinamiformes). Syst. Parasitol. 2012, 81, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Skoracki, M. Quill mites (Acari: Syringophilidae) of the Palaearctic region. Zootaxa 2011, 2840, 1–416. [Google Scholar] [CrossRef]
- Grandjean, F. Les segments post-larvaires de l’hystérosoma chez les Oribates (Acariens). Bull. Soc. Zool. Fr. 1939, 64, 273–284. [Google Scholar]
- Kethley, J.B. Acarina: Prostigmata (Actinedida). In Soil Biology Guide; Dindal, D.L., Ed.; John Wiley & Sons: New York, NY, USA, 1990; pp. 667–756. [Google Scholar]
- Grandjean, F. Observations sur les Acariens de la famille des Stigmaeidae. Arch. Sci. Phys. Nat. 1944, 26, 103–131. [Google Scholar]
- Yeates, D.K. Groundplans and exemplars: Paths to the tree of life. Cladistics 1995, 11, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Prendini, L. Species or supraspecific taxa as terminals in cladistic analysis? Ground plans versus exemplars revisited. Syst. Biol. 2001, 50, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Bochkov, A.V. Classification and phylogeny of mites of the superfamily Cheyletoidea (Acari: Prostigmata). Entomol. Obozr. 2002, 81, 488–513. (In Russian) [Google Scholar]
- Bochkov, A.V. Mites of the family Cheyletidae (Acari: Prostigmata): Phylogeny, distribution, evolution and analysis of parasite-host relationship. Parazitologia 2004, 38, 122–138. (In Russian) [Google Scholar]
- Bochkov, A.V.; O’Connor, B.M.; Wauthy, G. Phylogenetic position of the family Myobiidae within the Prostigmata (Acari: Acariformes). Zool. Anz. 2008, 247, 15–45. [Google Scholar] [CrossRef]
- Page, R.D.M. NDE, NEXUS Data Editor 0.5.0; University of Glasgow: Glasgow, Scotland, 2001. [Google Scholar]
- Swofford, D.L. PAUP. Phylogenetic Analysis Using Parsimony (* and Other Methods), Version 4; Sinauer Associates: Sunderland, MA, USA, 2001. [Google Scholar]
- Platnick, N.I.; Humphries, C.J.; Nelson, G.J.; Williams, D.M. Is Farris optimisation perfect? Three-taxon statements and multiple branching. Cladistics 1996, 12, 243–252. [Google Scholar] [CrossRef]
- Farris, J.S. A successive approximations approach to character weighting. Syst. Zool. 1969, 18, 374–385. [Google Scholar] [CrossRef]
- Cracraft, J. Avian evolution, Gondwana biogeography, and the Cretaceous-Tertiary mass extinction event. Proc. R. Soc. 2001, 268B, 459–469. [Google Scholar] [CrossRef]
- Livezey, B.C.; Zusi, R.L. Higher-order phylogenetics of modern Aves based on comparative anatomy. Neth. J. Zool. 2001, 51, 179–205. [Google Scholar] [CrossRef]
- van Tuinen, M.; Sibley, C.G.; Hedges, S.B. The early history of modern birds inferred from DNA sequences of nuclear and mitochondrial ribosomal genes. Mol. Biol. Evol. 2000, 17, 451–457. [Google Scholar] [CrossRef]
- Zmudzinski, M.; Skoracki, M.; Sikora, B. An Updated Checklist of Quill Mites of the Family Syringophilidae (Acariformes: Prostigmata). 2021. Available online: https://figshare.com/articles/dataset/An_updated_checklist_of_quill_mites_of_the_family_Syringophilidae_Acariformes_Prostigmata_/16529574/1 (accessed on 15 June 2023).
- Sangster, G.; Braun, E.L.; Johansson, U.S.; Kimball, R.T.; Mayr, G.; Suh, A. Phylogenetic definitions for 25 higher-level clade names of birds. Avian. Res. 2022, 13, 100027. [Google Scholar] [CrossRef]
- Bochkov, A.V. New observations on phylogeny of cheyletoid mites (Acari: Prostigmata: Cheyletoidea). Proc. Zool. Inst. (St. Petersburg) 2008, 312, 54–73. [Google Scholar] [CrossRef]
- Bochkov, A.V. A review of mites of the parvorder Eleutherengona (Acariformes: Prostigmata)—Permanent parasites of mammals. Acarina 2009, 1, 1–149. [Google Scholar]
- Bochkov, A.V.; Skoracki, M. A new cheyletid mite Metacheyletia ngaii n. sp. (Acariformes: Cheyletidae) from quills of Corythaixoides leucogaster (Musophagidae) from Tanzania. Acarologia 2011, 51, 93–97. [Google Scholar] [CrossRef]
- Skoracki, M. New data on the species Metacheyletia degenerata Fain and Bochkov (Acariformes: Cheyletidae). Ann. Parasitol. 2016, 62, 349–350. [Google Scholar] [CrossRef] [PubMed]
- Dabert, M.; Witalinski, W.; Kazmierski, A.; Olszanowski, Z.; Dabert, J. Molecular phylogeny of acariform mites (Acari, Arachnida): Strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol. Phyl. Evol. 2010, 56, 222–241. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J.A.; Tambussi, C.P.; Noriega, J.I.; Erickson, G.M.; Ketcham, R.A. Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 2005, 433, 305–308. [Google Scholar] [CrossRef]
- Brown, J.W.; Rest, J.S.; García-Moreno, J.; Sorenson, M.D.; Mindell, D.P. Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biol. 2008, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Jetz, W.; Thomas, G.H.; Joy, J.B.; Hartmann, K.; Mooers, A.O. The global diversity of birds in space and time. Nature 2012, 491, 444–448. [Google Scholar] [CrossRef]
- Mayr, G.; Pohl, B.; Peters, D.S. A well-preserved Archaeopteryx specimen with theropod features. Science 2005, 310, 1483–1486. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhou, Z.; Wang, X. Exceptional dinosaur fossils show ontogenetic development of early feathers. Nature 2010, 464, 1338–1341. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; You, H.; Du, K.; Han, F. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 2011, 475, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Godefroit, P.; Cau, A.; Dong-Yu, H.; Escuillié, F.; Wenhao, W.; Dyke, G. A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds. Nature 2013, 498, 359–362. [Google Scholar] [CrossRef]
- Fahrenholz, H. Ectoparasiten und abstammungslehre. Zool. Anz. 1913, 41, 371–374. [Google Scholar]
- Eichler, W. Wirtsspezifitat und stammesgeschichliche Gleichläufigkeit (Fahrenholzsche Regel) bei Parasiten im allgemeinen und bei Mallophagen im besonderen. Zool. Anz. 1940, 132, 254–262. [Google Scholar]
- Brooks, D.R. Testing the content and extent of host-parasite coevolution. Syst. Zool. 1979, 28, 299–307. [Google Scholar] [CrossRef]
- Barker, S.C. Phylogeny and classification, origins, and evolution of host associations of lice. Int. J. Parasitol. 1994, 24, 1285–1291. [Google Scholar] [CrossRef]
- Page, R.D.M. Tangled trees. In Phylogeny, Cospeciation and Coevolution; The University of Chicago Press: Chicago, IL, USA, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skoracki, M.; Fajfer, M.; Hromada, M.; Hušek, J.; Sikora, B. Tinamiphilopsis temmincki sp. n., a New Quill Mite Species from Tataupa Tinamou, and the Early History of Syringophilid Mites. Animals 2023, 13, 2728. https://doi.org/10.3390/ani13172728
Skoracki M, Fajfer M, Hromada M, Hušek J, Sikora B. Tinamiphilopsis temmincki sp. n., a New Quill Mite Species from Tataupa Tinamou, and the Early History of Syringophilid Mites. Animals. 2023; 13(17):2728. https://doi.org/10.3390/ani13172728
Chicago/Turabian StyleSkoracki, Maciej, Monika Fajfer, Martin Hromada, Jan Hušek, and Bozena Sikora. 2023. "Tinamiphilopsis temmincki sp. n., a New Quill Mite Species from Tataupa Tinamou, and the Early History of Syringophilid Mites" Animals 13, no. 17: 2728. https://doi.org/10.3390/ani13172728
APA StyleSkoracki, M., Fajfer, M., Hromada, M., Hušek, J., & Sikora, B. (2023). Tinamiphilopsis temmincki sp. n., a New Quill Mite Species from Tataupa Tinamou, and the Early History of Syringophilid Mites. Animals, 13(17), 2728. https://doi.org/10.3390/ani13172728