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Simple Summary: Veterinary science is based on data collection at the animal or herd level. Beyond
the variability in the variable in question, the data collected can depend on the device used or the
person performing the measurement. Determination of these sources of variation is crucial to be able
to use these measurements in practice or research. In this manuscript, I review the multiple indicators
that can be used for determining these sources of variability in order to obtain robust indicators that
are useful when trying to quantify test–retest reliability (between multiple measurements by different
devices or operators). I also present the pros and cons of each indicator in the absence of a “one size
fits all” framework to report them adequately depending on the specific context.

Abstract: Reliable indicators of health status (heart rate, rectal temperature, blood marker, etc.) are of
cornerstone importance in the daily practice of veterinary medicine. The reliability of a measurement
assesses the variability that is associated with the variable to be measured itself vs. other sources
of variation (measurement device, person performing the measurement, etc.). Quantitative and
continuous indicators are numerous in practice and the determination of their reliability is a complex
issue. In the absence of a gold standard approach, several indicators of reliability have been described
and can be used depending on several assumptions, study design, and type of measurement. The
aim of this manuscript is, therefore, to determine the applicability of commonly described reliability
indicators. After a description of the different sources of errors of a measurement, a review of the
different indicators that are commonly used in the veterinary field as well as their applicability,
limitations, and interpretations is performed.

Keywords: intra-class correlation coefficient (ICC); Passing–Bablok regression; Deming regression;
Lin’s concordance correlation coefficient

1. Introduction

Veterinary medicine, as with many scientific fields, is based on many observations
associated with the measurement of various physical, clinical, and paraclinical parameters.
The measurement of numerical variables is, therefore, a daily task in veterinary science.
Measuring rectal temperature, animal weight, or a specific blood marker are common tasks
for both clinical and research fields. The objective of any measurement is to determine the
biological variability in the variable under interest, in order to take an action based on its
results. One of the specific challenges is, therefore, to know how the measurement that is
taken is representative of the “true” value of the veterinary patient. In other words, we need
to know if the measure obtained is really representative of the patient’s characteristics vs.
other sources of variation. If the outcome measured is unreliable, practical consequences
will be that the measurement and its change would not be representative of the “true”
patient changes. The associated “noise”, due to unreliability, would exceed the “signal”
(=true variable change) that needs to be captured to take adequate action. In a research
setting, another consequence is that studies focusing on this measurement will be associated
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with a reduction in the study power via increasing the variance of the outcome [1]. Concepts
of reproducibility (two consecutive measurements of the same marker give similar results)
and reliability (how measurements from the same veterinary patient can be distinguished
from the other despite variable sources of measurement error) are very closely related
topics [2]. For these reasons, it is important to assess measurement reliability before
using it as an outcome or as a covariate in any specific study. Quantifying the sources of
variability in a measurement is of primary importance to judge whether it can be suitable
for being used in research and in practice; however, there are multiple ways to assess these
characteristics. The multiplicity of these tools may add confusion for the researchers trying
to assess the reliability of a quantitative measure. The objective of this review manuscript is,
therefore, to outline the important considerations on reliability before applying or using a
new measurement tool or device. A test or measurement is said to be reliable when it gives
the same result in a patient or sample if measured repeatedly using the same or different
devices or operators/technicians [2].

2. Key Concepts for Distinguishing Variability in the Numerical Variable to Be
Measured and Other Sources of Variability

When trying to assess a specific variable (let us say M, that, for example, is the true
rectal temperature of a patient, or the true heart rate of a patient), we obtain a “picture” of
this variable using our measurement device (a specific value, Mm, which is obtained from
a specific thermometer, or the manual counting of the heart beats using a stethoscope by
a specific operator). The measurement Mm of the variable M quantifies the true value of
M (which is not known in most cases) plus a specific error term (ε). This can also be more
formally written as follows (Equation (1)):

Mm = M + ε (1)

This previous equation takes into account the fact that the measurement Mm is just a
specific way to assess the true variable of interest (M). In the classical measurement theory,
the error term ε is supposed to be independent of M and normally distributed around 0
with a variance σ2

ε [2]. The M and Mm values are fixed for any individual at a specific
moment; however, in a specific population where the same measurements are performed,
the independence between M and ε can be translated in terms of variances.

σ2
Mm

= σ2
M + σ2

ε (2)

Equation (2), therefore, shows that the variability in the measurement taken in a
specific population has two components that are related to the real difference between
veterinary patients and the random error [1]. The measurement is clinically useful if the
variance of the error (σ2

ε ) is small enough vs. the variance of the specific variable to assess
(σ2

M). This can be more formally written in general terms of reliability in Equation (3):

Reliability =
σ2

M
σ2

Mm

=
σ2

M
σ2

M + σ2
ε

(3)

It can be easily understood that the more reliable the measurement is, the highest part
of the variability observed is due to the true variable to assess (M) vs. all other sources of
error (ε), which tend to 0. This is the simplest model in classical measurement theory [2].
The generalizability theory partitions the variance of error (σ2

ε ) in different error types that
can be observed with the different (1, . . ., l) sources of variation (σ2

ε1
,. . ., σ2

ε l
, and the residual

term σ2
εr

)
.

These general concepts also indicate that reliability lies between 0 and 1 as a ratio of
variance (which is positive). The more reliable the technique, the closer to 1 the reliability is.
In this case, most of the measurement variability is coming from item M and not from the
random error term. When comparing two or more ways to assess the same characteristic
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(let us say M1, M2, . . .) applied to the same population (the same test performed by
different raters, e.g., different veterinarians estimating rectal temperature with the same
thermometer; testing different thermometer models; or testing different raters testing
different thermometers), three general conditions may be observed as defined in classical
measurement theory:

• The tests can be said to be parallel if their means are equal (µ1 = µ2) as well as the
variance of their errors σ2

ε1 = σ2
ε2. This implies that the measurements that are parallel

obtained by the two different measurements or techniques are interchangeable. For
a specific patient, the values of the two different measurements only differ based on
the magnitude of the variance of error σ2

ε . This definition also implies that since the
variance of the two tests is equal, their correlation with a third variable should also
be equal;

• The tests may only differ from a specific constant C: Mm1 = Mm2 + α. In this case,
they are called “essentially tau dependent”. They are called Tau-dependent in the
special case of α = 0. In all these cases, the variance is not assumed to be constant
as for parallel tests. The denomination Tau comes from the way the “Mm” has been
historically written as the Greek letter “τ” in classical test theory;

• The last scenario is when the two tests are linearly dependent, which can be writ-
ten as Mm1 = β × Mm2 + α, where β is any real number. This situation defines
congeneric tests.

As initially mentioned, it is difficult to know a priori what the specific conditions
that we are facing in practice are. Different strategies can be used for validating one of
these three situations. I will not go through a detailed assessment of these three different
definitions in the current manuscript. The reader is referred to specific references on this
topic [3,4]. These different scenarios have been initially created based on psychometric
scales, which were developed to determine constructs that cannot be easily measured with
one specific instrument (e.g., measuring sociability or anxiety in a particular study using
various scoring scales). The specific ε term needs to be further decomposed in terms of
error of measurement device, error due to operator, or any other remaining cause of error,
as developed in the next section.

When trying to assess the differences observed between two different measurement
methods of the same parameter or between two operators/technicians assessing a specific
variable with a numeric parameter, different approaches can be taken [2]. Some discrepancy
is expected due to either random error and/or specific bias. The main issue is, therefore, to
determine to what extent these mechanisms occur due to the variability in the measurement
being taken, in order to correctly interpret the results. In order to illustrate this in the
manuscript, I have used an open-access dataset used for reporting the reliability of two
different veterinarians (operator 1 and operator 2) for the assessment of the maximal depth
of ultrasonographic lung consolidation assessments (in cm) of 50 video loops from feedlot
calves with or without respiratory problems [5]. The data used, as well as the specific
information to reproduce the figures and obtain reliability indicators, are included as
Supplementary Materials. A small positive random error (mean = 0, sd = 0.2 cm) has also
been added, to avoid data points overlapping.

3. Correlation between Two Quantitative Variables (Pearson’s or Spearman’s
Correlation Coefficients) Is Not a Reliability Indicator

Establishing the correlation between two quantitative variables is a commonly per-
formed analysis with either Pearson’s or Spearman’s correlation coefficient determination.
Pearson’s correlation coefficient (R) can first be seen as an intuitive and natural way to
determine a correlation between two variables (Figure 1).



Animals 2023, 13, 2793 4 of 14

Animals 2023, 13, x FOR PEER REVIEW 4 of 14 
 

determination. Pearson’s correlation coefficient (R) can first be seen as an intuitive and 

natural way to determine a correlation between two variables (Figure 1). 

 

Figure 1. Correlation between two measurements obtained by two different operators. The linear 

regression of operator 2 (in cm) over operator 1 is indicated as a red line. The perfect identity line is 

indicated as a blue dashed line. The p-value is the level of confidence in the null hypothesis (R = 0, 

no correlation between the 2 measurements), meaning we can safely reject the null hypothesis. 

However, correlations do not assess reliability between the 2 measurements. Spearman’s r is a more 

natural choice in this case, as it is more robust to various types of data distribution (i.e., deviating 

from linear regression assumptions). In this case r = 0.773, p < 2.2 × 10−16. 

These coefficients are assessing correlations, which are different from the reliability. 

Pearson’s R coefficient assesses the strength of the linear correlation between these two 

variables. Pearson’s R, for measuring the association of two different variables M1 and M2 

(n different pairs of measurements), is written as follows in Equation (4): 

R =
𝑛(∑ 𝑀1 × 𝑀2) − (∑ 𝑀1)(∑ 𝑀2)

√[𝑛 ∑ 𝑀1
2 − (∑ 𝑀1)2] × √[𝑛 ∑ 𝑀2

2 − (∑ 𝑀2)2]

 
(4) 

Therefore, it can roughly be understood as the ratio of covariance between the 

variables to the product of these variables’ standard deviation. The R-squared value (R2) 

corresponds to the total proportion of variance of the dependent variable (on the Y-axis), 

which can be explained by the linear regression of the dependent variable on the 

independent variable (on the X-axis). This correlation is different from the reliability since 

highly correlated measures do not mean that these two measurements are interchangeable 

[6]. Pearson’s R is insensitive to the absolute magnitude of the two methods’ differences. 

In cases of essentially Tau-dependent and congeneric tests, despite a perfect Pearson’s R 

value (R = 1), the two tests cannot automatically be used interchangeably. This illustrates 

why it is not a reliability indicator. 

Moreover, Pearson’s R evaluation also depends on the bivariate data distribution and 

can be heavily influenced by outliers. Spearman’s rho (r) coefficient is a rank-order 

coefficient that is robust to any distribution of the two variables being compared. 

Spearman’s r assesses the direction and the strength of direction between the two ranked 

Figure 1. Correlation between two measurements obtained by two different operators. The linear
regression of operator 2 (in cm) over operator 1 is indicated as a red line. The perfect identity line is
indicated as a blue dashed line. The p-value is the level of confidence in the null hypothesis (R = 0, no
correlation between the 2 measurements), meaning we can safely reject the null hypothesis. However,
correlations do not assess reliability between the 2 measurements. Spearman’s r is a more natural
choice in this case, as it is more robust to various types of data distribution (i.e., deviating from linear
regression assumptions). In this case r = 0.773, p < 2.2 × 10−16.

These coefficients are assessing correlations, which are different from the reliability.
Pearson’s R coefficient assesses the strength of the linear correlation between these two
variables. Pearson’s R, for measuring the association of two different variables M1 and M2
(n different pairs of measurements), is written as follows in Equation (4):

R =
n(∑ M1 × M2)− (∑ M1)(∑ M2)√[

n∑ M1
2 − (∑ M1)

2
]
×
√[

n∑ M2
2 − (∑ M2)

2
] (4)

Therefore, it can roughly be understood as the ratio of covariance between the variables
to the product of these variables’ standard deviation. The R-squared value (R2) corresponds
to the total proportion of variance of the dependent variable (on the Y-axis), which can be
explained by the linear regression of the dependent variable on the independent variable
(on the X-axis). This correlation is different from the reliability since highly correlated
measures do not mean that these two measurements are interchangeable [6]. Pearson’s
R is insensitive to the absolute magnitude of the two methods’ differences. In cases of
essentially Tau-dependent and congeneric tests, despite a perfect Pearson’s R value (R = 1),
the two tests cannot automatically be used interchangeably. This illustrates why it is not a
reliability indicator.

Moreover, Pearson’s R evaluation also depends on the bivariate data distribution and
can be heavily influenced by outliers. Spearman’s rho (r) coefficient is a rank-order coeffi-
cient that is robust to any distribution of the two variables being compared. Spearman’s
r assesses the direction and the strength of direction between the two ranked variables
(Figure 1). The variable values, by themselves, are not used for the calculation but rather
the ranked variable, which makes Spearman’s r more robust, especially for bivariate data
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that clearly deviates from normality. Interpretation of Spearman’s r is a little different
from Pearson’s R. The higher its value, the higher the correlation is between the ranked
variables. It is, therefore, easy to understand that it cannot be interpreted as a way to assess
if the two measurements are interchangeable. Several benchmarks for interpreting these
coefficients in terms of importance of the correlation have been reported; for example, a
negligible (0–0.10), weak (0.10–0.39), moderate (0.40–0.69), strong (0.70–0.89), and very
strong (0.90–1.00) positive correlation [6]. However, it is important to remember that these
benchmarks are arbitrarily defined and not specifically validated. The take-home message
from this section is that the correlation is not equivalent to reliability and that the calculation
of a specific correlation measurement is not enough to state the exchangeability between
these variables.

4. Is There a Difference between Two Measurement Methods, or Two or Plus Different
Raters When Performing Ordinal Measurements?

Beyond the limitations of correlation coefficients, another limitation of the previous ap-
proaches is that comparisons are mostly limited to paired comparisons (two technicians us-
ing the same instrument/technique or two instruments/techniques used by the same tech-
nician or device) and cannot be extended where >2 technicians or instruments/techniques
are to be compared; however, reliability studies are generally trying to assess 1,2,. . .,k raters
and or instruments/techniques. Intra-class correlation (ICC) coefficients have, therefore,
been developed to address this particular need [7]. The ICC coefficients are simply extend-
ing Equation (3), where the error (ε) is partitioned in the different sources of the variance
depending on the study design. This calculation also comes with strong assumptions that
data are normally distributed and variances between the measurements (Mm1, Mm2, . . .,
Mmk) are homoscedastic. The ICC coefficients have also been employed extensively for
comparing different scoring scales used by different raters in the psychology field. Despite
the fact that the scores cannot be considered continuous variables, they generally meet
ICC assumptions. The choice of which particular ICC coefficient to choose is a complex
but important debated topic that has been recently reviewed [8]. Most available statistical
software allows for the calculation of various ICC coefficients and it is important to choose
the reported ICC coefficient correctly and not based on the best obtained value [8].

There are two major observational study designs for these reliability studies, with
either (1) a one-way design, where one rater makes multiple measurements of different
patients, or (2) a two-way design, where multiple raters obtain measurements of each
patient. All raters can assess all patients or some pairs of raters–patients can be missing,
which further defines a complete vs. incomplete study design.

The general framework used is a two-way Analysis Of Variance (ANOVA), where
the total variability can be decomposed between the patients’ (p) measurement difference,
operators’ (r) difference, and residual random error. In this specific context, we can, for
example, determine that a specific measurement Mm be written as follows in Equation (5):

Mrp = µ + µr + µp + µrp (5)

where µ is the mean of Mm in the tested population; µr is the specific quantity of the
operators/technicians; and µp is the specific error term due to the patient’s interaction with
the operator/technician—the veterinary patient effect (µrp)—which also includes a random
part since the veterinary patients are only measured once per operator/technician. The
variance of the measure can, therefore, be partitioned as in Equation (6).

σ2
Mrp

= σ2
r + σ2

p + σ2
rp (6)

In the one-way design, the patient is nested within one specific operator, so the effect
of the operator cannot be distinguished from the patient, known as veterinary–patient
error. (Equation (6) is simplified by removing the σ2

r term, which is confounded in the
operator’s veterinary–patient error). This general framework is then used for defining



Animals 2023, 13, 2793 6 of 14

different types of ICC based on the partition of veterinary–patient variance vs. veterinary–
patient plus error variance (Table 1). The ICC can be differentiated based on (1) agreement
vs. consistency, including or not the variance of the operator effect (σ2

r ); (2) average vs.
single ratings, where the operator-related variance is divided by the number of operators
(k) per patient; and (3) random vs. fixed operators, where a specific part-variance (σ2

pr−ε) is
subtracted from the veterinary–patient variance (σ2

p) in the numerator. For this reason, fixed-
operator ICC can only be estimated if the operators are measuring the same veterinary
patient multiple times or if the veterinary patient via the operator–interaction effect is
assumed to be absent. One can easily see from Table 1 that for a specific ICC, agreement
ICC is generally lower than the consistency ICC and that the random-effect ICC is lower
than the fixed-effect ICC. No fixed-effect ICC can be established for one-way designs
in the absence of a distinction between the variance of the operator and the variance of
the veterinary patient, known as the operator interaction, which is confounded. Several
considerations should be taken into account for the selection of the specific ICC, to report
as reviewed by Ten Hove et al. [8]. They proposed a flow chart that helps scientists select
which ICC to report depending on the study design and aim of the reliability assessment.
Basically, consistency examines whether the operators or technicians are classifying the
same subjects with low and high values, even if an absolute difference score is present.
This means that the ranking of the measurements obtained by the different operators or
technicians is comparable, despite some absolute differences in scoring being observed.
The absolute agreement is more interested in assessing how the values given to a specific
veterinary patient by different raters are close and not the relative ranking of patients’
values per se. In short, we are interested in consistency when we are not interested
in the systematic difference between operators/technicians (absolute agreement). Both
indicators (absolute agreement and consistency ICC) can be useful depending on the specific
context of the intended application of the measurement under investigation. The choice
between the random and fixed model in two-way models is associated with the selection
of the operators/technicians. If the operators/technicians are randomly selected from a
population of operators/technicians, or if there is an extrapolation to operators/technicians
with the same characteristics as those used in the study, a random model is preferred. When
focusing only on the specific operators/technicians used for the study, a fixed-rater effect
can be preferred.

Table 1. Intra-class coefficient correlation determination based on the partition of variance associated
with patients (p), k operators/technicians, and (r) sources of variance.

Design Type of ICC 1 Random vs. Fixed
Intra-Class Coefficient

Single Ratings Average Ratings

2-way Absolute (A) Random ICC(A, 1) =
σ2

p

σ2
p + σ2

r + σ2
pr

ICC(A, k) =
σ2

p

σ2
p +

(
σ2

r + σ2
pr
)
/k

Fixed
ICC(A, 1) =

σ2
p − σ2

pr−ε/(k − 1)

σ2
p + σ2

r +
(

σ2
pr−ε + σ2

ε

)
ICC(A, k) =

σ2
p − σ2

pr−ε/(k − 1)

σ2
p +

(
θ2

r +
(

σ2
pr−ε + σ2

ε

)
/k

Consistency (C) Random ICC(C, 1) =
σ2

p

σ2
p + σ2

pr
ICC(C, k) =

σ2
p

σ2
p + σ2

pr/k

Fixed ICC(C, 1) =
σ2

p − σ2
pr−ε/(k − 1)

σ2
p +

(
σ2

pr−ε + σ2
ε

) ICC(C, 1) =
σ2

p − σ2
pr−ε/(k − 1)

σ2
p + σ2

pr/k

1-way ______ Random ICC(1) =
σ2

p

σ2
p + σ2

pr
ICC(k) =

σ2
p

σ2
p + σ2

pr/k
1 ICC: intra-class correlation coefficient. Depending on the variance partitioning and study design, several types
of ICC are distinguished.
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The choice of reporting one or multiple ICCs depends on the type of study and the
questions the authors are trying to answer [8]. Unfortunately, the type of ICC calculated
and reported is uncommonly described in the medical literature [9]. Some ICCs also have
other specific names. For example, ICC(C,k) as the average measure, consistency ICC,
is more commonly known as Cronbach’s alpha (α). This α value is commonly used in
psychometric tests where different questions are supposed to assess the same specific
concepts or construct. A high Cronbach’s α generally indicates that these questions are
measuring the same concept or construct. A specific discussion of Cronbach’s alpha is
outside the scope of this manuscript. The reader is referred to other references on that
specific reliability parameter [1,10].

5. Comparing Two Different Laboratory Measurements (e.g., Metabolite M Measured
Using Two Different Devices or Measured Repeatedly with the Same Device)

The previous ICC approach can be extended to various contexts, especially when
intra- and inter-operator reliability is required. However, when focusing on a comparison
between two different techniques to quantitatively assess a specific marker, as commonly
encountered in laboratory analyses, specific statistical analyses have been mentioned that
can elucidate to what extent a specific technique can be compared to another.

5.1. Lin’s Concordance Correlation Coefficient

When comparing two closely related measurements (M2 (mean µ2; variance σ2
2 ) vs. M1

(µ1; σ2
1 ) as a gold standard), the concordance correlation coefficient (CCC) has been defined

as a way to estimate the perpendicular squared deviation from the forty-five-degree (y = x)
line [11]. The specific calculation of the CCC also accounts for the covariance between M1
and M2 with Cov(M1,M2) = σ12, as presented in Equation (7):

CCC =
σ12

(µ1 − µ2)
2 + σ2

1 + σ2
2

(7)

It can also be demonstrated that the CCC can be further decomposed as a term
proportional to Pearson’s R correlation (Equation (8)):

CCC = R ∗ C = R ∗ 2
v + 1

v + u2
(8)

where v = σ1
σ2

; u = (µ1−µ2)
2

σ1σ2
; v is a scale shift (how far the corresponding slope differs

from the 45◦ line); and u is a location shift (as the intercept different from 0). The CCC is,
therefore, an interesting way to look for the reproducibility of a specific measurement; the
closer it is to 1, the better the reproducibility of the measurement. Specific benchmarks
have been reported for helping its clinical interpretation with poor (CCC < 0.90), moderate
(between 0.90 and <0.95), substantial (between 0.95 and <0.99), and almost-perfect when
higher than 0.99 [12]; however, similar to correlation coefficients R and r, these are empirical
benchmarks. In the dataset reported in Figure 1, the CCC is 0.794 (see Supplementary
Materials).

5.2. Determining the Coefficient of Variation (CV) of a Repeated Measurement

Any measurement comes with a specific error due to the measurement technique.
It is of utmost importance to characterize this type of error, in order to know if the new
measurement method has a variability and if this variability depends on specific values of
the quantity of interest. The coefficient of variation is simply the standard deviation of the
two measurements divided by their mean (CV = σ

µ ).
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When developing the calculation of the CV for k different samples (m11,...,k, m21,...,k),
the CV can be written in a function of the repeated-pair differences (m1i − m2i) and means
( m1i + m2i)/2), as presented in Equation (9):

CV =

√√√√∑k
i=1

(m1i−m2i)
2/2

((m1i+m2i)/2)2

k
(9)

The CV is commonly reported in clinical chemistry as a way to quantify test–retest
reliability; however, it has been largely criticized in recent years as the standard deviation
may naturally increase with the measurement mean [13]. This non-proportionality can be an
important problem, especially when data are not normally (e.g., log-normally) distributed.
Moreover, the CV’s calculation is compromised with measurements with a null mean.
In a recent review of the CV’s limitations by Pélabon et al. [13], the authors specifically
mentioned not using the CV for nominal, ordinal, interval, or different variables.

5.3. Exploring Proportional and Differential Bias Using Robust Approaches

There are different types of errors between two measurements of the same marker
with two different devices. The differences are generally described as a constant error term
and a proportional error term. This can simply be summarized in Equation (10):

MAnalyzer_new = α + β ∗ MAnalyzer_re f + ε (10)

where α is the constant or systematic bias term; and β is the proportional bias. In the
case of β = 1, only a constant bias is present. Robust approaches to compare these two
measurements are the Passing–Bablok [14] and Deming regressions [15]. These approaches
are particularly helpful when data are not normally distributed or heteroskedastic (e.g.,
an increase in variance proportional to the value to be measured), which is frequently
encountered in many different clinical situations.

5.3.1. Deming Regression

The Deming regression is an extension of linear regression that also accounts for the
error of the new and current method (i.e., assuming not only the new method measure-
ment MNew_method has an error (MNew_methodi = MNew_method

∗
i + εnewi) but also that the

comparator method (MCurrent_method) has inherent measurement error (MCurrent_methodi =
MCurrent_method

∗
i + εcurrenti), as represented in Figure 2. The Deming regression assumes

that the errors (enew, ecurrent) of both measures are independent and distributed normally.

An important assumption is also that the ratio of variance ε2
new

ε2
current

is constant. In contrast to

ordinary linear regression, which minimizes the sum of distances between the Y values and
the fitted line, the Deming regression minimizes the distances in both axes (X,Y) directions.
When the data seems largely heteroskedastic (e.g., a proportional increase in variance ratio),
a weighted Deming regression can also be used to allocate specific weights to the data
points (i.e., reciprocal of the squared reference value). The conditions of application for
Deming or weighted Deming regressions should be assessed and tested when relevant [16].

5.3.2. Passing–Bablok Regression

Despite the fact that the Deming regression approach has less restrictive assumptions
than the linear model, it still relies on assumptions of the constant or the proportional
variance of both measurements. When these assumptions do not hold, the Passing–Bablok
approach could be used due to its robustness. The objective of the Passing–Bablok re-
gression is roughly to determine if α and β in Equation (10) are different from 0 and 1,
respectively, based on 95% CI, including these values or not. A specific assumption is
that the relationship between the two measurements is linear, as generally verified by a
cumulative sum control chart (CUSUM) test. This method also assumes that measurement
errors in both methods have the same distribution (which is not necessarily normal) and a



Animals 2023, 13, 2793 9 of 14

constant ratio of variance. The estimation of β is based on the shifted median of all slopes,
formed by possible data point pairs (shifted only means that the numbers of pairs with
slope < −1 are accounted for correcting the median). This approach is considered robust to
various data distributions and error distributions [14]. The Passing–Bablok estimates are
robust to outliers (Figure 2) and can be used in various contexts where Deming regression
assumptions are not satisfied.
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Figure 2. Different indicators of linear relationship between 2 measurement methods of the same
variable. Linear (full line), Passing–Bablok (dashed line), Deming (dotted line), and weighted Deming
regression (two-dashed line) lines are indicated.

5.4. Agreement (Bland–Altman) Plot

The relationship between two closely related continuous variables (e.g., two measure-
ments of the same metabolite using a reference analyzer and a new one, or measurement of
a specific measurement using the same ultrasound unit by two different raters Mm1 and
Mm2, respectively) can be further evaluated using a specific approach firstly described by
Bland and Altman in their seminal article [17]. This analysis quantifies the agreement by
defining the limits of agreements, mean, and standard deviation of the bias. This approach
has been extensively used in medicine because it is visually and clinically intuitive [18]. The
agreement plot indicates the difference between the two measurements (Y-axis: (Mm1–Mm2)
vs. the mean of the two measurements (X-axis: (Mm1 + Mm2)/2). The difference should
lie between +/− 2 standard deviations of the mean difference (upper and lower limits of
agreement). The graphical appearance of the Bland–Altman analysis contains, therefore,
three different lines and their associated confidence intervals (mean bias, and the upper and
lower limits of agreements), as presented in Figure 3. It can be easily seen if the cloud of
dots is homogenously spread around the horizontal mean bias line or if the dots’ repartition
differs when the mean measurement increases. In the latter case, the definition of a mean
bias is not meaningful. It is also important to consider that this approach is not meaningful
for ordinal scores because of the absence of clinical meaning of both the mean bias and
limits of agreement. The ordinal scoring preferred for assessing reliability is to determine
the ICC as previously emphasized.
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Figure 3. Agreement (Bland–Altman) plot. This figure summarizes the difference between both
measurements (Mm1–Mm2) as a function of the mean measurement (in the absence of one of the
techniques, Mm1 or Mm2, to be considered as a gold standard test). The mean bias and its associated
95% CI are presented in blue. The lower and upper limits of agreement are also highlighted, as well
as their associated 95% confidence intervals (red and green, respectively).

The Bland–Altman approach estimates the average bias and constant limits of agree-
ment (i.e., three parallel lines); however, this calculation is based on important assumptions
that have been recently reviewed by Taffé [18]. The first assumption is that the bias is
constant across the measurement ranges since the “average” bias is calculated. Then, the
errors are also assumed to be constant across the measurement ranges, which needs to be
consistently verified. Finally, the measurement error variances are supposed to be the same
for both methods. For these reasons, it is important to know these limitations to put in
perspective the potential applications of the Bland–Altman plot. The agreement plot was
further extended, accounting for non-constant bias; therefore, allowing proportional and
differential bias, which were further obtained from the slope (β) and intercept (α) of the
bias regression in Equation (11) (Figure 4).

Mm1 − Mm2 = α + β ∗
[
(Mm1 + Mm2)

2

]
+ error (11)

The differential and proportional biases are then defined in Equations (12) and (13):

Differential bias =
2 ∗ α

2 − β
(12)

Proportional bias = −2 + β

β − 2
(13)

Variation in the limits of agreement was also allowed with non-parallel limits-of-
agreement lines.
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Figure 4. Adjusted agreement plot allowing differential and proportional bias (blue line) and asso-
ciated proportional limits of agreement lines (upper and lower dashed blue lines). The grey circles
represent the data points.

Despite the improvement of exploration of the variability in differences, a limitation of
the traditional Bland–Altman analysis is that it does not allow for exploring each measure-
ment separately. Most of the time, as previously reported in the measurement theory, none
of the two measurements can be considered as truly assessing the trait under investigation.
Both Mm1 and Mm2 are trying to assess the true M value with specific errors. The work from
Taffé extends on Bland and Altman’s since the mean of (Mm1 + Mm2)/2 used by default in
the Bland–Altman analysis is not an unbiased estimate of M [19]. In his seminal work, Taffé
proposed an empirical Bayesian method to compute the best linear unbiased prediction
(BLUP) of M [20]. In other cases, using one of the measures, Mm1 or Mm2 values, as an
unbiased estimate of M only works if one of the two measurements can be considered as a
perfect reference standard test, which is not often the case.

Basically, the approach from Taffé extends the differential (α1, α2) and proportional
(β1, β2) bias of Mm1 and Mm2 to determine the true M value [Equations (14) and (15)].

Mm1 = α1 + β1 ∗ M + ε1 (14)

Mm2 = α2 + β2 ∗ M + ε2 (15)

We previously assumed that the specific measurement error was normally distributed
around a 0 mean and constant variance (σ2

ε ); however, the constant variance assumption
can be relaxed, allowing variation with the specific measure under interest (σ2

M), therefore,
indicating that the variance depends on the quantity of M. Briefly, the lower (or higher,
respectively) M is, the lower (or higher, respectively) its variance is expected to be.

Finally, when one of the two methods does not have any measurement error, the
BA method should not be performed as recently demonstrated [19]. In this case, the BA
method will produce biased estimates of the difference between methods. A simple linear
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regression of the error between the second method over the method of reference could then
be performed.

6. Discussion

As I have shown in the current review, reproducibility, agreement, and reliability are
complex concepts that can be assessed using various methods that are complementary
and depend on the objective of the researchers, the variable to assess, the study design, as
well as the prior definition of what is acceptable from a clinical or a research perspective.
Despite the fact that several benchmarks have been reported, they are empirical and
the researchers should define what is acceptable depending on the variable measured.
Most of the parameters and tests available to determine reliability are also based on
several assumptions that need to be known to select the appropriate method. I did not
address the specific issue of sample size determination to test an a priori hypothesis of
reliability; however, this is of utmost importance to perform sample size determination
before planning a study, to be able to interpret correctly the results from agreement and
reliability analyses [21]. Knowing to what extent the variability in a measurement is
associated with the real variation in the trait to measure vs. due to measurement error
is of utmost importance for being able to interpret correctly the observed values of the
parameter of interest.

I propose a general framework to help the veterinary practitioner or veterinary re-
searcher cope with these complex concepts depending on the type variable they are trying
to assess in Figure 5. Despite our primary focus being on the reliability assessment of
quantitative measurements, ordinal measurements such as scoring systems are also com-
monly used in veterinary medicine and their reliability assessment depends on the use
of ICC [1–3]. Using other methods such as agreement plots is not recommended because
establishing a mean bias cannot be interpreted in ordinal scales.
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Figure 5. Proposed framework for deciding which reliability indicator to use when trying to assess
quantitative or ordinal measurement in veterinary medicine. The blue arrows indicate the natural
choices whereas the dotted arrows indicate suboptimal choices due to limitations of the indicators vs.
intended use.
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7. Conclusions

As I have shown in the current review, agreement and reliability are complex concepts
that can be assessed using various methods that are complementary and depend on the
measurement of interest, the objective of the researchers, as well as the prior definition of
what is acceptable from a clinical or a research perspective. Most of the parameters and
tests available are also based on several assumptions that need to be known to select the
appropriate method. I did not address the specific issue of sample size determination to
test an a priori hypothesis of reliability; however, this is of utmost importance to perform
sample size determination before planning a study to be able to interpret correctly the
results from agreement and reliability analysis. Knowing to what extent the variability
in a measurement is associated with the real variation in the trait to measure vs. due
to measurement error is of utmost importance for being able to interpret correctly the
observed values of the parameters of interest.
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