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Simple Summary: Both the lack of bird object detection datasets and the scarcity of technical
references for evaluating the performance of object detection models and model lightweighting
present challenges in the application of bird object detection technology. In this study, we have not
only constructed the largest known bird object detection dataset, but also compared the performance
of eight mainstream detection models on bird object detection tasks and proposed a feasible approach
for model lightweighting in bird object detection. Our research results not only provide more accurate
and comprehensive data for the field of bird detection, but also serve as a technical reference for users
in selecting appropriate object detection models.

Abstract: The application of object detection technology has a positive auxiliary role in advancing
the intelligence of bird recognition and enhancing the convenience of bird field surveys. However,
challenges arise due to the absence of dedicated bird datasets and evaluation benchmarks. To address
this, we have not only constructed the largest known bird object detection dataset, but also compared
the performances of eight mainstream detection models on bird object detection tasks and proposed
feasible approaches for model lightweighting in bird object detection. Our constructed bird detection
dataset of GBDD1433-2023, includes 1433 globally common bird species and 148,000 manually
annotated bird images. Based on this dataset, two-stage detection models like Faster R-CNN and
Cascade R-CNN demonstrated superior performances, achieving a Mean Average Precision (mAP) of
73.7% compared to one-stage models. In addition, compared to one-stage object detection models,
two-stage object detection models have a stronger robustness to variations in foreground image
scaling and background interference in bird images. On bird counting tasks, the accuracy ranged
between 60.8% to 77.2% for up to five birds in an image, but this decreased sharply beyond that
count, suggesting limitations of object detection models in multi-bird counting tasks. Finally, we
proposed an adaptive localization distillation method for one-stage lightweight object detection
models that are suitable for offline deployment, which improved the performance of the relevant
models. Overall, our work furnishes an enriched dataset and practice guidelines for selecting suitable
bird detection models.

Keywords: object detection; model lightweighting; adaptive localization distillation; bird monitoring;
bird counting

1. Introduction

Changes in bird species and numbers are important indicators of the health of bird
communities and their habitats. Identification of bird species and quantification of their
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abundance in a target region is one of the key tasks in bird field surveys [1]. However,
currently, bird field monitoring is mainly conducted manually, and there are obvious
limitations in this type of data collection process. (1) Birds have large habitats that are
difficult to cover comprehensively through manual observation. (2) Accurate bird iden-
tification requires personnel with bird-specific knowledge or training, which hinders the
participation of the general public to some extent. (3) Both the small sizes of birds and
the randomness of when and where they occur make bird monitoring costly. Leveraging
computer vision and deep learning technologies holds good promise for partially replacing
manual bird monitoring tasks [2], especially in stationary observation areas. This approach
may effectively reduce the manual effort and resources required for bird field surveys. Deep
learning techniques have been used with significant success in image classification, object
detection, and other fields [3,4]. For example, convolutional neural network classification
methods such as VGGNet [5], GoogleNet [6], and ResNet [7] have been applied to bird
image classification [8,9]. Object detection models like Faster R-CNN [10], YOLO [11,12],
and GFL [13] have been employed for animal object detection tasks. Overall, the current
development of object detection models can be categorized into two main types: two-stage
detectors and one-stage detectors.

Two-stage object detection models involve two distinct stages of operations, where
the first stage generates sparse region proposals, and the second stage performs regression
and classification operations. RCNN [14] was the pioneering method that successfully
introduced deep convolutional neural networks (CNNs) to the field of object detection.
It utilized low-level computer vision algorithms such as Selective Search [15] and Edge
Boxes [16] to generate proposals, and then employed CNNs to extract features for training
support vector machine classifiers and bounding box regressors, achieving good detection
results. Building upon RCNN, SPP-Net [17] introduced spatial pyramid pooling, enabling
effective feature extraction and position invariance for objects of different scales, thereby
improving the accuracy and speed of object detection. Fast RCNN [18] involves spatial pyra-
mid pooling on a shared feature map to extract features for each proposal, achieving better
detection performance than SPP-Net. Faster RCNN [10] integrates the region proposal
process into the Deep ConvNet, thus making the entire detector an end-to-end trainable
model with higher efficiency compared to previous models. Additionally, R-FCN [19] in-
troduced a region-based fully convolutional network to generate region-sensitive features,
and it is capable of handling images of arbitrary sizes and further enhancing detection
efficiency. FPN [20] introduces a top-down lateral connection architecture to generate a
feature pyramid for multi-scale detection, thus improving the accuracy and robustness of
object detection.

Unlike the aforementioned two-stage object detection models, one-stage object detec-
tion methods directly perform classification and regression on dense anchor boxes without
generating a sparse region proposal set. Among them, YOLO [11] and SSD are the most rep-
resentative models in the field of one-stage object detection. YOLO detects objects directly
on dense feature maps, while SSD [21] utilizes multi-scale features to detect objects of differ-
ent scales. Both methods demonstrate fast detection capabilities but tend to perform poorly
in detecting small objects. Subsequently, RetinaNet [22] introduced focal loss to address
the issue of extreme class imbalance in dense object detection. It effectively handles the
imbalance between a large number of background samples and positive samples, thereby
improving the detection performance for small objects. Refinedet [23] introduced anchor
refinement modules and object detection modules to simulate cascade regression on dense
anchor boxes, thereby enhancing the detection performance of one-stage methods. Addi-
tionally, Guided Anchor [24] first employed anchor-guided deformable convolutions to
align the features of the Region Proposal Network (RPN), thereby improving the accuracy
and robustness of one-stage object detection. EfficientDet [25] adopted EfficientNet [26] as
the backbone network and introduced the Bi-directional Feature Pyramid Network (BiFPN)
and the Complete Intersection over Union (CIOU) loss function to enhance the accuracy
and efficiency of object detection. Overall, compared to two-stage object detection models,
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one-stage object detection methods exhibit better operational efficiency but relatively lower
detection accuracy.

Although there are many object detection models available for bird detection tasks,
the problem of bird object detection still requires further research. On one hand, there
is a lack of large-scale and open-source bird detection datasets that cover a wide variety
of bird species. Currently available bird datasets, such as the bird image data provided
by Imagenet, treat birds as a subclass, and the waterbird dataset by Zhou et al. [9] covers
over 500 species. However, these datasets are only suitable for bird image classification
and are not specifically designed for object detection tasks. The COCO dataset, which
serves as a benchmark for evaluating object detection model performance, includes a bird
image subset that does not differentiate bird species. The CUB200-2011 [27] dataset is the
first truly dedicated bird object detection dataset, containing images of 200 bird species
from North America, with nearly 12,000 images. However, this dataset is limited by the
fact that each image only contains a single bird, which does not meet the requirements
of bird counting or multi-bird recognition tasks. Additionally, the bird species in these
datasets are limited to those found in North America, thus lacking a representation of birds
distributed in other parts of the world. Therefore, it is crucial to construct a large-scale bird
detection dataset that encompasses a wider variety of bird species, a broader geographical
distribution, and includes images with multiple birds in a single image. This is necessary
to advance research in bird object detection. On the other hand, the wide range of existing
object detection models has made it challenging for users to select an appropriate model.
These models are often built using different backbone networks, and the differences in
backbone networks can impact the detection model’s performance. Hence, it is necessary
to evaluate the performance differences of current mainstream object detection models
for bird detection tasks via a unified backbone network. This will aid users in making
decisions when selecting suitable object detection models.

In addition to the scarcity of bird object detection datasets and the limitations in
model selection, bird object detection tasks also face challenges in model size. Currently,
in many bird observation sites, auxiliary devices such as wildlife cameras and infrared-
triggered detectors are used in bird monitoring. These devices typically have small form
factors and limited computational capabilities, making it impractical to directly embed
existing large-scale, high-computational-cost object detection models for real-time bird
detection. Therefore, there is a need to deploy lightweight parameter-optimized object
detection models on these low-performance devices and perform dedicated hardware
optimizations. Once the models are deployed, they are often not easy to replace. To con-
tinuously improve the performance of offline models, knowledge distillation techniques
are typically employed to transfer the detection capabilities of the current state-of-the-art
models to lightweight models. In essence, knowledge distillation involves using a high-
performance large model as a teacher to guide the lightweight model in improving its
learning performance. Hinton et al. [28] pioneered the field of knowledge distillation by
using K–L divergence to optimize the probability distribution of class predictions between
the teacher and student, thus enabling the student to learn the probability distribution
information from the teacher’s classification results. Inspired by this research, many
pioneering studies [29–31] in knowledge distillation have emerged. For example, an infor-
mational–theoretical framework [32] has been proposed to guide the student toward the
teacher by maximizing the mutual information between the teacher and student networks.
Subsequently, the value of inter-instance correlations as knowledge has also been demon-
strated [33,34]. Furthermore, DarkRank [35] saw the introduction of a method that transfers
knowledge through cross-sample similarity in metric learning. In the field of object detec-
tion, techniques such as ROI simulation distillation [36], fine-grained feature imitation [37],
and localization distillation [38] have been designed to distill knowledge by focusing on the
regions of interest and bounding box regression distribution, thus achieving good results.
However, current object detection distillation methods still have some limitations when
dealing with errors in the teacher model, as erroneous knowledge can be transferred to
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the student model. Therefore, it is necessary to selectively choose the knowledge from the
teacher model, specifically addressing this issue so as to avoid the propagation of incorrect
knowledge and to ensure a further enhancement of the effectiveness of distillation.

Motivated by the aforementioned challenges, we delved into the construction of bird
detection datasets, the evaluation of object detection models’ performance, and model
lightweighting. The overall flowchart of our research can be observed in the Figure A1.
The main contributions of our study include the following:

1. Addressing the lack of existing bird detection datasets, we have constructed the
largest known bird detection dataset to date, encompassing 1433 common bird
species worldwide.

2. We systematically evaluated the performance of mainstream two-stage and one-stage
object detection models for bird detection tasks within a unified backbone framework.

3. Through experimentation, we have verified that existing mainstream object detection
models perform poorly in bird counting tasks when there are more than five birds in
the same image, and this is due to factors such as bird crowding and occlusion.

4. We propose an adaptive object detection distillation method that avoids the propaga-
tion of erroneous knowledge, thus further improving the detection performance of
lightweight detection models.

2. Materials and Methods
2.1. Construction of a Global Bird Object Detection Dataset

Currently, the commonly used open-source bird object detection dataset is CUB200-
2011, which was composed by the California Institute of Technology. Although this dataset
contains 200 species of birds from North America, it still suffers from limitations such as
limited bird species diversity and a lack of image variability, thus making it difficult to meet
the requirements of real-world bird object detection tasks, especially for tasks involving
multiple bird detection, such as “one image, multiple birds”. To address this, we have
constructed a global bird object detection dataset (GBDD1433-2023), and the process of the
dataset is as illustrated in the Figure 1. Given the diverse and widespread distribution of
bird species worldwide, as well as the availability of free-bird image resources scattered
across the Internet, we utilized web crawling techniques with both the Chinese and En-
glish names of bird species as matching keywords to gather bird images. The collected
bird image dataset inevitably includes quality issues such as low resolution, incomplete
images, and mismatches between images and bird names, thus it requires data cleaning
and processing. Firstly, we removed images with low resolution and manually filtered
out cartoons, paintings, and images with incomplete bird bodies (which could lead to
indistinguishable categories). Next, in collaboration with ornithology experts, we used
detailed avian information from the Avibase website to verify the match between each bird
image and its name. We retained the images that matched, while the mismatched ones
were removed. These steps ensured the correct labeling of each bird image in the dataset.
Finally, using third-party software named “Sprite Annotation”, we added bounding box
annotations to all the images and saved the annotation information in the universal COCO
format (which is widely used in the object detection field), thus resulting in creation the
GBDD1433-2023 dataset. It is important to note that bird species with fewer than 20 images
were not annotated with bounding boxes to minimize the impact of imbalanced sample
quantities on model generalization. However, even though we removed bird species with
fewer than 20 samples, the distribution of bird image quantities still exhibits a long-tailed
pattern (Figure 2).

The constructed GBDD1433-2023 dataset covers 32 orders, 132 families, 572 genera,
and 1433 species of birds, with a total of 148 k diverse and high-quality bird images
manually annotated. It is currently the bird object detection dataset with the largest
coverage of global bird species. This dataset will provide valuable data resources for
researchers involved in fields such as bird intelligence monitoring and deep learning.
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Figure 1. The flowchart on the construction of the bird object detection dataset (GBDD1433-2023).

Figure 2. Overall distribution of the number of pictures of 1433 bird species in the GBDD1433-
2023 dataset.

2.2. Constructing Test Datasets for Evaluating Bird Object Detection

To systematically evaluate the performance of existing object detection techniques in
bird detection, we constructed two bird object detection performance test datasets: the
multimodal bird object detection test dataset (MMBT) and the multi-object bird object
detection test dataset (MOBT). In real-world applications, bird images not only have
complex and diverse background scenes, but also exhibit variations in the scale of the
foreground objects (birds) themselves. The MMBT dataset was designed to evaluate the
sensitivity of object detectors to background noise and variations in the scale of foreground
bird images. Through the use of image cropping and composition techniques, we created
this dataset. During the construction of the MMBT dataset, we randomly selected high-
resolution images of 200 bird species (one image per species) and generated foreground
bird images at nine different pixel scales: 25 × 25, 50 × 50, 75 × 75, 100 × 100, 125 × 125,
150 × 150, 175 × 175, 185 × 185, and 200 × 200. Considering the possible scenarios where
birds may appear, we selected 12 background scene images, including grasslands, tundras,
shrubs, farmlands, and swamps (Figure A2), with a unified pixel scale of 224× 224. Finally,
we combined the different foreground bird images with the background scene images,
resulting in a dataset of nearly 21,000 multimodal bird images (refer to the Figure 3).
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Figure 3. An example of a foreground bird image (bar-headed goose) shown at nine different sizes
combined with nine background images.

Furthermore, we have constructed the dataset of MOBT to help with evaluating
the capability of object detectors in determining multiple birds in images. In many bird
counting tasks, bird images often exhibit challenges such as mutual occlusion and size
variations, which pose significant challenges for bird detection. However, the majority
of existing bird datasets consist of single bird images, making it impossible to assess the
performance of models in detecting multiple birds. We have created a dataset that includes
bird images with varying numbers of birds (see Figure 4). The dataset consists of a total of
1216 images, and the number of birds in each image has been manually annotated. This
dataset presents a challenging task for existing object detection techniques. It is worth
noting that the images in the two test datasets we constructed, as well as those in the
aforementioned global bird object detection dataset, do not overlap with each other.

Figure 4. Examples of eight bird images with different bird numbers. The red numbers in each
picture indicate the number of birds in that picture.

2.3. Principles of Model Selection and Overview of Selected Models

Continuous development in deep learning has led to a wide variety of object detection
models. Evaluating the performance differences of these models in bird object detection
tasks is helpful for users in choosing appropriate models. Considering the large number
of published object detection algorithms, comparing the performances between all of the
methods is beyond the scope of this paper. Therefore, we selected a subset of mainstream
and representative models for performance evaluation. We set the following principles
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for model selection. Firstly, the selected models should have open-source code and be
widely used in the industry. We did not consider models with closed-source code or
models with limited references. Secondly, given the continual emergence of novel methods
and technologies in the field, the chosen model must have been academically recognized
as a state-of-the-art model at that time. Furthermore, to ensure fairness in the model
environment configuration during performance evaluation, the selected models should be
able to run on the same backbone model.

Based on these principles, for two-stage object detection methods, we have chosen
three representative models: Faster RCNN [10], Cascade RCNN [39], and Libra RCNN [40].
These models have been widely adopted in the industry. For instance, Cascade RCNN,
by leveraging a cascaded multi-model approach, demonstrated state-of-the-art performance
at the time in which it was introduced (it was especially state-of-the-art in addressing class
imbalance and hard sample imbalance issues, and it also surpassed other models, thus
making it an essential reference methodology in the object detection domain. For one-stage
object detection methods, we have selected five representative methods: YOLOv3 [41],
RetinaNet [22], FCOS [42], ATSS [43], and GFL [13]. YOLOv3 has the advantage of efficient
and fast real-time performance and is the most representative and widely applied method
in the YOLO series. RetinaNet is suitable for multi-scale object detection, and it delivers
state-of-the-art detection accuracy for objects of diverse scales. FCOS is specialized in small
object detection and shows sensitivity to smaller-sized objects. ATSS introduces adaptive
training sample selection to handle class imbalance and hard sample imbalance problems,
thus enhancing the detection capability of long-tailed distribution objects. GFL captures
more of the boundary information of objects, thus improving the detection performance
for dense objects. Overall, the selected detection methods have their own advantages.
The following is a brief introduction to the selected models.

2.3.1. Two-Stage Object Detection Methods

Faster RCNN [10]: The earlier proposed Fast RCNN utilized Selective Search for Re-
gion of Interest (RoI) searching, which resulted in slower processing speed. Faster RCNN,
built upon Fast RCNN, introduced the Region Proposal Network (RPN) to automatically
generate RoIs, thus significantly improving the efficiency of proposal generation. Faster
RCNN incorporates the RPN network to assist in generating samples. The algorithm struc-
ture is divided into two parts: first, the RPN network determines whether the candidate
boxes are objects; second, the multi-task loss for classification and localization is used
to determine the object type. The entire network flow can share the feature information
extracted by a convolutional neural network, thus saving computational costs. It addresses
the issue of slow candidate box generation in Fast RCNN, and it avoids the decline in
accuracy caused by excessive candidate box extraction.

Cascade RCNN [39]: This model recognizes a significant difference in the proposals
used during the training and inference stages of the object detection process. Specifically,
the proposals in the training stage undergo a selection process (IOU > threshold) to ensure
higher quality, while the proposals in the inference stage are not filtered and therefore have
lower quality. Consequently, using a detector trained with the former to test the latter’s
proposals can result in a decrease in model performance. To address this issue, Cascade
RCNN proposes a training method that utilizes different IOU thresholds and alleviates
the problem by cascading multiple stages of object detectors, thus further optimizing the
detection results.

Libra RCNN [40]: This method addresses three imbalanced issues in object detection:
the representativeness of sample selection, the sufficient utilization of extracted features,
and the optimality of the object loss function. Libra RCNN incorporates three compo-
nents: IOU-balanced sampling, balanced feature pyramids, and balanced L1 loss. These
components respectively address the three imbalanced issues mentioned above. It ef-
fectively handles the sample distribution problem of different categories and difficulty
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levels in the dataset, thereby improving the detection performance for small objects and
challenging samples.

2.3.2. One-Stage Object Detection Methods

YOLOv3 [41]: Compared to traditional object detection methods, YOLOv3 has the
capability to simultaneously predict bounding boxes and classes for multiple objects in an
image during a single forward pass, making it an efficient solution for object recognition
and tracking. Key features of YOLOv3 include real-time processing, multi-scale feature
fusion, prior boxes and anchor boxes, and multi-scale predictions. YOLOv3 introduces
the concept of prior boxes and anchor boxes, where a set of anchor boxes is predefined
and adjusted based on the sizes of the objects. This allows the model to effectively detect
objects of various sizes and shapes. The use of prior boxes and anchor boxes enables the
model to adapt well to different object sizes, thus improving the detection performance.
Additionally, YOLOv3 performs predictions on feature maps at different scales, allowing it
to detect objects of different sizes and enhancing the model’s ability to make multi-scale
predictions, thereby improving its generalization performance.

RetinaNet [22]: This model primarily addresses the issue of imbalanced positive and
negative samples in the single-stage object detection process. In multi-stage object detection,
methods such as Selective Search and Region Proposal Networks (RPN) can filter out a
large number of background boxes, and then training is performed by selecting positive
and negative samples. However, single-stage object detection algorithms cannot filter out
these background boxes, resulting in a severe imbalance between positive and negative
samples. To tackle this issue, the model introduces Focal loss, which adaptively adjusts
the loss weights during training to focus more on challenging samples. Additionally,
the model proposes the RetinaNet object detection framework, which effectively alleviates
the imbalance in positive and negative sample selection.

FCOS [42]: FCOS introduces a creative anchor-free solution for object detection. In-
stead of relying on predefined anchors, FCOS predicts the distances from each pixel to
the top, bottom, left, and right boundaries of the corresponding object box. Firstly, if an
anchor falls within multiple object boxes, the model selects the smallest object box as the
regression target. Secondly, to address the issue of predicting an excessive number of object
boxes, the model proposes the concept of center-ness. It learns a center-ness score for
each position, which is multiplied by the predicted class score during the non-maximum
suppression process to filter out the predicted object boxes. With these strategies, FCOS
enhances its ability to detect small objects.

ATSS [43]: ATSS further explores the fundamental difference between anchor-based
and anchor-free methods, which lies in the difference in sample selection for positive and
negative examples. To address this, ATSS proposes an adaptive training sample selection
method that bridges the gap between anchor-based and anchor-free detectors. Overall,
the ATSS approach improves the detection performance of one-stage detectors without
introducing any additional overhead.

GFL [13]: Existing bounding box estimation methods have not taken into account the
ambiguity and uncertainty present in the datasets. To address these problems, the GFL
model integrates quality estimation into the class prediction vectors, thus forming a joint
representation, which represents the bounding box positions with a vector that captures ar-
bitrary distributions. The improved representation eliminates the risk of inconsistency and
accurately characterizes the flexible distribution of real data. However, it includes continu-
ous labels, which go beyond the scope of Focal Loss. Therefore, the model further proposes
the Generalized Focal Loss (GFL), which extends the Focal Loss from a discrete form to a
continuous form for successful optimization, thus achieving higher inference speeds.

2.4. The Self-Adaptive Localization Distillation Method

Knowledge distillation is a technique that utilizes a high-performance large model,
known as the teacher, to guide a lightweight model, known as the student, in improving
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its learning performance. Knowledge distillation allows the transfer of knowledge and
experience from the teacher model to the student model, thus enabling the student model
to better generalize and adapt to various samples without requiring changes to its structure.
Therefore, knowledge distillation is commonly used in practical applications to enhance
the performance of lightweight models. Previous knowledge distillation (KD) methods [44]
mainly focused on feature mimicry rather than logit mimicry, resulting in lower efficiency
in extracting localization information. The Localization Distillation (LD) method, for the
first time, demonstrated that logit mimicry can outperform feature mimicry, and that it can
significantly improve distillation performance by effectively distilling target localization
information. In the LD method, the definition of the localization distillation loss is shown
in the Equation (1).

Le
LD = H(S(ZS, τ), S(ZT , τ)) (1)

In the Equation (1), the distribution of bounding boxes quantifies the continuous
regression range [emin, emax] into a uniform discrete variable e = [e1, e2, . . . , en] ∈ Rn, with n
sub-intervals, where e1 = emin and en = emax. ZS and ZT represent the n logits predicted by
the student and teacher, respectively. ZS and ZT are the input to the generalized SoftMax
function S(·, τ), which is performed to obtain their corresponding probability distributions.
· represents a placeholder to indicate that data can be entered here. It is imperative to note
that when τ = 1, it corresponds to the standard SoftMax function. As τ approaches 0, it
tends toward the Dirac distribution. On the other hand, as τ approaches infinity, it decays
to a uniform distribution. Empirically, setting τ > 1 serves to smooth the distribution,
thereby enabling the probability distribution to encapsulate richer information [38]. Finally,
the output is obtained through the cross-entropy loss H(·).

Although the LD method effectively enhances the performance of lightweight models,
LD is still a knowledge distillation method. Therefore, the LD method inherently suffers
from the limitation that even the best teacher model cannot provide completely accurate
knowledge for the student model to learn, and that the transmission of incorrect knowledge
can restrict the effectiveness of distillation. To alleviate this issue, we extended the LD
method and propose a self-adaptive localization distillation (SLD) method, which reduces
the transmission of erroneous knowledge. The core principle of the SLD method is to
reinforce the student model’s inclination to learn from the teacher model when the teacher
model accurately localizes objects, and to guide the student model to learn from ground
truths when the teacher model inaccurately localizes objects. To achieve this, we introduced
the confidence parameter C to measure the degree of accurate localization by the teacher
model for the current target. The confidence parameter C can adjust the magnitude of the
loss values generated by the student and teacher models during distillation. A higher value
of C encourages the student model to lean toward learning from the teacher model, while a
lower value does the opposite [45]. The construction of the confidence parameter involves
two components: scoring by the teacher model and scoring by the student model. Firstly,
we define the student confidence parameter c1 based on the student model’s IOU score for
the current bounding box. The composition of c1 is shown in the Equation (2).

c1 =

{
k1, Siou > Savg
k2, Siou < Savg

(2)

In the equation, Siou represents the student model’s IOU score for the current bounding
box, and Savg is the average IOU score of the student model’s predictions for all bounding
boxes when trained independently. When Siou is smaller than the average, indicating that
the student model performs poorly in learning ground truths for that particular object, we
consider strengthening the weight c1 toward learning from the teacher model, with a value
of k1. Conversely, when Siou is larger than the average, we weaken the weight c1 toward
learning from the teacher model for that object, with a value of k2.
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Next, we define the teacher’s confidence parameter c2 based on the teacher model’s
IOU score for the current bounding box. The construction of c2 is given by the Equation (3):

c2 =

{
k2, Tiou > Tavg
k1, Tiou < Tavg

(3)

In the formula, Tiou represents the IOU score of the current bounding box predicted
by the teacher model, and Tavg is the average IOU score of all bounding boxes when the
teacher model is trained independently. When Tiou is less than the average, we consider that
the teacher model does not perform well in learning from ground truths for this particular
object, and the weight c1 should be set as k1 to encourage the student model to learn from
ground truths. Conversely, when Tiou is greater than or equal to the average, the weight c1
should be set as k2 to strengthen the student model’s learning from the teacher model for
this object. Experimental results have shown that setting k1 as 0.5 and k2 as 2.0 yields the
best performance for the model.

The confidence parameter C is composed of c1 and c2, as shown in Formula (4),
where Mul denotes element-wise multiplication. The final Self-Adaptive Localization
Distillation (SLD) loss function is obtained by multiplying the confidence parameter with
the localization distillation function, as shown in the Formula (5). The overall training
framework of SLD is illustrated in the Figure 5.

C = Mul(c1, c2), (4)

LSLD = C · Le
LD. (5)

Figure 5. The overall training proccess of Self-Adaptive Localization Distillation (SLD).

3. Results and Analysis
3.1. Experimental Setup and Evaluation Metrics

In the subsequent experiments of model performance evaluation, we primarily evalu-
ated the selected eight object detection models using two datasets: the publicly available
benchmark dataset COCO and our self-built GBDD1433-2023 dataset. The COCO dataset
consists of approximately 320,000 manually annotated images covering 90 common object
categories, including humans, birds, vehicles, and household items. By using the COCO
dataset, we can effectively evaluate the detection capabilities of the selected models for
diverse objects. The GBDD1433-2023 dataset, specifically designed for bird detection, is
the largest bird detection dataset known to date. This dataset enables us to evaluate the
performance differences among the eight selected models in bird detection tasks, thus
assisting users in selecting appropriate object detection models.

To ensure a fair comparison of different object detection models, all the object detec-
tion models in the paper were implemented based on the MMdetection framework [46].
The backbone network of all models was set to ResNet50, and similar training strategies
were employed. During the model training and evaluation process, 80% of the data were
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used as training samples, and the remaining 20% were used as test samples. The models
were trained end-to-end via the SGD optimizer, with a learning rate of 0.02 and a weight
decay coefficient of 0.0001. The batch size was set to 8, and a total of 24 epochs were trained.
The training was conducted on NVIDIA RTX3090Ti GPUs.

The detection performance of the object detection model was evaluated using the
Mean Average Precision (mAP) metric. mAP represents the average area under the Preci-
sion–Recall curve for all categories at a specified Intersection over Union (IOU) threshold.
IOU refers to the overlap ratio between the detection box and the ground truth box, which
can be used to measure the degree of match between the detection result and the real object.
Typically, the higher the mAPx value at a given IOU threshold x (ranging from 0 to 1),
the better the model’s detection performance. To calculate mAP, one must first compute
the Precision and Recall values for each category and then plot the Precision–Recall curve.
For each category, the area under its Precision–Recall curve is calculated to obtain the
Average Precision (AP) for that category, which measures the detection performance of a
single category. The average of the APs for all categories results in the mAP, which is the
mean value of AP for all categories. The formulas for computing Precision and Recall are
as follows:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

Among them, TP (True Positives) represents the number of positive samples correctly
detected, FP (False Positives) represents the number of negative samples incorrectly de-
tected as positive, and FN (False Negatives) stands for the number of positive samples that
were not detected. Next, by calculating the area under each point on the Precision–Recall
curve (using the trapezoidal area method) and summing them up, we obtained the AP.
The formula for calculating AP is as follows:

AP = ∑
n
(Rn − Rn−1)Pn (8)

Among them. Rn and Pn are Recall and Precision at the nth point, respectively. Finally,
for calculating the overall mAP, we utilized the following:

mAP =
1
C

C

∑
c=1

APc (9)

where C is the number of categories and APc is the AP of the cth category. mAP50 represents
the mean average precision when the IOU threshold is 0.5, while mAP75 represents the
mean average precision when the IOU threshold is 0.75. Moreover, in subsequent model
sensitivity experiments and bird counting experiments, we used the Accuracy metric
(i.e., the ratio of correctly identified samples to the total number of samples) to evaluate
model performance.

3.2. Performance Comparison of Object Detection Models based on the COCO and
GBDD1433-2023 Datasets

We conducted a performance comparison of eight object detection models on the
COCO dataset, and the results of this are presented in Table 1. Taking into account the mAP,
mAP50, and mAP75 evaluation metrics, the detection accuracy for the eight object detection
models ranged from 36.5% to 40.3%, 55.4% to 59.5%, and 39.1% to 44.0%, respectively.
Overall, the two-stage detection model, Cascade RCNN, exhibited the best performance
among the eight models. The one-stage detection models, ATSS and GFL, performed
slightly lower, while the other four models performed better than the RetinaNet model but
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lower than the top two models. The RetinaNet model exhibited the lowest performance
among all the models. In terms of model size, the two-stage detection models were generally
larger than the one-stage detection models, especially the Cascade RCNN model with the
largest model size of 265.0 M.

Table 1. Performance comparison of eight object detection models based on the COCO dataset. The
bolded numbers represent optimal performance.

Model Backbone mAP (%) mAP50 (%) mAP75 (%) Model Size (M)

Two Stage
Faster RCNN ResNet50 37.4 58.1 40.4 159.5

Cascade RCNN ResNet50 40.3 58.6 44.0 265.0
Libra RCNN ResNet50 38.3 59.5 41.9 160.5

One Stage

YOLOv3 ResNet50 39.1 56.9 41.9 175.9
ATSS ResNet50 39.4 57.6 42.8 123.5
GFL ResNet50 40.2 58.4 43.3 124.0

FCOS ResNet50 38.7 57.4 41.8 123.5
RetinaNet ResNet50 36.5 55.4 39.1 145.1

Further evaluation of the abovementioned eight object detection models was con-
ducted on the GBDD1433-2023 dataset, and the results are shown in Table 2. Compared to
the detection performance on the COCO dataset, the performance of the eight object detec-
tion models were significantly improved on the GBDD1433-2023 dataset. Among them,
the mAP values of the eight detection models ranged from 68.5% to 74.0%, with an average
increase of 86.8%; the mAP50 values ranged from 90.6% to 92.4%, with an average increase
of 58.7%; and the mAP75 values ranged from 80.4% to 85.0%, with an average increase of
99.0%. This clearly demonstrates that our self-built GBDD1433-2023 dataset effectively
enhances the performance of the eight detection models in bird detection tasks. In terms
of detection accuracy, the three two-stage detection models performed relatively better
than the other five one-stage detection models. In terms of individual model performance,
the two-stage detection model of Cascade RCNN exhibited the best performance among the
eight models, with mAP, mAP50, and mAP75 values of 74.0%, 92.4%, and 85.0%, respectively.
Among the five one-stage models on the GBDD1433-2023 dataset, ATSS performed the best,
followed by the GFL model. Regarding the model’s running efficiency, as measured by the
FPS metric, the two-stage detection models (average FPS value of 20.5) demonstrated lower
efficiency compared to the one-stage detection models (average FPS value of 25.83). This
indicates that two-stage models have higher detection accuracy but relatively lower run-
ning efficiency, while one-stage detection models have relatively lower detection accuracy
but higher running efficiency.

Finally, we further compare the visualization effects of three representative models,
Cascade RCNN, ATSS, and GFL on the GBDD1433-2023 dataset (Figure 6). From the visual
comparison, it can be observed that Cascade RCNN achieves the best object detection
performance. However, when faced with bird occlusion (Figure 6D), it fails to detect
the entire bird. ATSS exhibits similar visualization effects to Cascade RCNN, but it also
struggles to detect the complete bird when occluded (Figure 6D), albeit with a smaller
detection area compared to Cascade RCNN. GFL shows relatively poor visualization results
as it fails to detect the occluded bird (Figure 6D).
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Table 2. Performance comparison of the eight object detection models based on the GBDD1433-
2023 dataset. The bolded numbers represent optimal performance.

Model Backbone mAP (%) mAP50 (%) mAP75 (%) FPS (f/s)

Two Stage
Faster RCNN ResNet50 73.8 92.3 84.9 23.9

Cascade RCNN ResNet50 74.0 92.4 85.0 20.5
Libra RCNN ResNet50 73.4 92.1 83.9 23.5

One Stage

YOLOv3 ResNet50 70.8 91.6 82.1 30.1
ATSS ResNet50 73.2 91.7 84.4 29.8
GFL ResNet50 71.8 91.3 83.5 28.9

FCOS ResNet50 68.5 90.6 80.4 27.3
RetinaNet ResNet50 72.5 91.0 82.9 25.8

Figure 6. Visualized comparison of Cascade RCNN, ATSS, and GFL on the GBDD1433-2023. The
subfigures of (A–D) represent the detection results of the models for four different scenarios.

3.3. Model Robustness Analysis

The proportions of bird objects and the natural backgrounds they inhabit in real-
world applications are complex and diverse, posing challenges for the application of object
detection models. Evaluating the sensitivity of object detection models to different scenes
and variations in bird object scales is of significant value in advancing the application of
object detection models in the intelligent monitoring of wild birds.

To address this, we first trained the aforementioned eight object detection models
using our self-built GBDD1433-2023 dataset, and we then evaluated the performance of
these models using our self-built multi-modal bird object detection test dataset. We assessed
the model performance using the accuracy rate metric, which is calculated as the number
of bird images correctly detected divided by the total number of images. The experimental
results showed that the two-stage object detection models (Faster RCNN, Cascade RCNN,
and Libra RCNN) achieved a mean detection accuracy rate of over 90% in all 12 scene cases
(Table 3). Among other things, the detection accuracy was 99%, even in the presence of
interference from other animals. In comparison to the two-stage object detection models,
the average detection accuracy rate of the one-stage object detection models (except YOLO-
v3) was 87% across the 12 scene cases, indicating that the two-stage models exhibit stronger
adaptability and anti-interference capabilities in different scenes compared to the one-stage
models. Furthermore, the performance of the detection models was influenced by scene
variations. In nine of the scene cases, such as grassland, farmland, mountain, and forest
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lands, the average detection accuracy rate of the eight detection models exceeded 90%,
while in three scene cases including coastlines, riverbanks, and branches, the average
detection accuracy rate decreased to 87.1%. Compared to grassland, farmland, mountain,
and forest areas, the backgrounds of coastlines, riverbanks, and branches can be more
complex. For instance, coastlines and riverbanks may have elements like ripples and
reflections that could visually blur the shape or color of birds. Similarly, branches with
leaves, fruits, or other elements can also pose visual challenges.

We further evaluated the performance of the eight object detection models under the
nine bird object scales (25× 25, 50× 50, 75× 75, 100× 100, 125× 125, 150× 150, 175 × 175,
185 × 185, and 200 × 200). The experimental results (Table 4) showed that, similar to the
previous results, the two-stage detection models generally outperformed the one-stage
detection models in terms of detection performance. Moreover, the overall performance
of the detection models improved as the bird object scale increased. For example, at a
bird object scale of 25 × 25, the average detection accuracy rate of the eight models was
60.9%, while at a scale of 50 × 50, the average detection accuracy rate increased to 89.2%.
When the bird object scale exceeded 75 × 75, the average detection accuracy rate of the
eight models exceeded 91.8%. This indicates that the performance of the above eight object
detection models could be improved in detecting small objects. For small object detection,
the two-stage model has an average detection accuracy of 65.0 for 25 × 25 objects, which is
significantly better than the 58.4 of the one-stage model. This indicates that the two-stage
model generally performs better in small object detection. However, its larger model
parameter size, to some extent, limits its practical application value.

3.4. Performance Comparison of Different Models in Bird Counting Tasks

Bird counting is an important task in bird field monitoring and surveys. Traditionally,
this task has been carried out manually, which is time-consuming and labor-intensive. Eval-
uating the detection performance of object detection models for automatic bird counting
tasks can contribute to the development of intelligent monitoring techniques for bird popu-
lations. We trained the aforementioned eight object detection models on the GBDD1433-
2023 dataset and evaluated their detection performance using our self-constructed multi-
object bird test dataset. Additionally, we used the counting accuracy metric (number
of correctly detected birds/total number of observed birds) to characterize the model
performance. The experimental results (Table 5) show that the average accuracy of the
two-stage detection models was 62.1% in five different bird count scenarios (N = 2, N = 3,
N = 4, N = 5, and N > 5), which is higher than the mean accuracy of the one-stage models
(57.0%). Furthermore, as the number of birds increased, the counting accuracy of the eight
detection models showed a downward trend. For example, when the bird count was N = 2,
the counting accuracy of the eight models ranged from 74.1% to 77.2%; whereas for N > 5,
the accuracy of the eight models decreased from 20.5% to 43.4%. Additionally, the visual-
ized bird counting results of the three best-performing models in the bird counting task
(Cascade RCNN, ATSS, and RetinaNet) also confirmed that the detection performance of
the models was poorer when N > 5 (Figure 7). This clearly indicates that object detection
models are not suitable for bird counting tasks when there are a large number of birds.
We believe the main reason for this is that when the number of birds in a picture is too
high, many bird objects are obscured due to factors such as bird movement, flock density,
and shooting angles. As a result, the object detection network cannot accurately detect
the objects.
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Table 3. The Impact of Scene Changes on the Performances of the Eight Object Detection Models.

Model Grassland Farmland Mountain
Peak Forest Shrubland Seaside Tree

Branch River Bank Tundra Reed
Swamp Mudflat Interference

Faster RCNN 97.6 96.6 98.9 91.1 97.5 91.6 91.7 94.3 91.7 96.8 98.0 99.5
Cascade RCNN 96.9 92.4 94.1 92.2 95.3 98.1 86.8 90.8 89.8 93.6 93.6 99.6

Libra RCNN 94.5 95.3 90.2 90.3 97.2 94,1 90.1 92.3 93.2 93.2 91.4 99.2
YOLOv3 93.0 96.2 94.3 95.3 96.3 94.9 91.4 94.0 95.0 95.9 95.9 99.2

ATSS 86.0 84.6 91.3 89.2 87.4 85.5 89.3 80.6 90.9 93.1 90.0 89.3
GFL 86.4 87.7 77.8 85.8 79.7 68.5 82.3 73.7 83.4 90.1 80.1 82.2

FCOS 87.4 88.0 85.9 87.6 84.4 79.1 84.8 80.6 85.8 91.4 83.8 78.2
RetinaNet 88.4 88.2 93.9 89.3 89.0 89.6 87.2 87.4 90.1 92.7 87.5 74.1

Mean 91.3 91.1 90.8 90.1 90.8 86.8 87.9 86.7 90.0 93.4 90.0 90.2

Table 4. The impact of bird target scale variation on the performances of the eight object detection models.

Model 25 × 25 50 × 50 75 × 75 100 × 100 125 × 125 150 × 150 175 × 175 185 × 185 200 × 200

Faster RCNN 62.9 95.3 96.5 98.1 98.2 99.2 99.3 99.2 99.4
Cascade RCNN 67.3 96.3 96.9 98.4 98.6 99.1 99.1 99.3 99.7

Libra RCNN 65.1 96.9 96.7 98.1 98.7 99.1 99.2 99.7 99.6
YOLOv3 60.5 96.2 97.4 97.5 97.8 97.9 98.7 98.7 99.2

ATSS 63.4 86.8 88.2 88.4 88.2 89.1 93.7 95.1 94.3
GFL 56.1 71.5 79.6 90.3 95.2 97.1 96.4 95.8 94.3

FCOS 58.3 83.9 88.5 93.9 96.5 97.5 97.55 97.3 96.8
RetinaNet 53.6 86.0 90.3 93.8 98.0 99.7 99.7 99.7 99.3

Mean 60.9 89.2 91.8 94.8 96.5 97.3 98.0 98.0 97.0
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Figure 7. Visualized comparison of the three models of Cascade RCNN, ATSS, and RetinaNet on bird
counting task.

Table 5. Counting Accuracy of the Eight Object Detection Models for Different Bird Quantities.

Model Mean (%) N = 2 N = 3 N = 4 N = 5 N > 5

Two-Stage
Faster RCNN 61.1 75.6 74.6 70.2 62.6 23.9

Cascade RCNN 63.0 77.2 75.8 71.8 63.9 20.5
Libra RCNN 62.3 74.1 73.4 69.6 63.3 23.5

One-Stage

YOLOv3 55.8 70.5 69.9 66.7 60.8 38.9
ATSS 59.3 75.7 73.5 66.3 63.4 43.4
GFL 54.9 71.5 70.1 66.1 61.3 37.9

FCOS 56.8 74.5 72.9 67.1 60.2 38.3
RetinaNet 58.4 75.2 72.7 65.4 62.9 44.1

3.5. Self-Adaptive Localization Distillation Experiment and Analysis

Due to the limitations of computational resources on edge devices, lightweight de-
tection models are commonly used for deployment. To improve the performance of
lightweight detection models, this paper proposes an self-adaptive localization distil-
lation (SLD) framework. We selected four single-stage detection models, namely GFL,
FCOS, ATSS, and RetinaNet to validate the effectiveness of SLD. In the experiment, we
used ResNet101 as the teacher model’s backbone and ResNet50 as the backbone for the
lightweight student model. We evaluated the impact of three knowledge distillation strate-
gies (/: no distillation, LD: localization distillation, and SLD: self-adaptive localization
distillation) on model performance when using the benchmark detection dataset COCO.
The specific experimental results are shown in Table 6.

The experimental results indicate that, compared to the two previous strategies (no
distillation and LD), the adoption of the SLD strategy improves the performances of
the four single-stage detection models to some extent. On average, the SLD strategy
increases the mAP of the student models by 2.5%, which is 0.4% higher than the LD strategy.
In terms of individual model performance, the SLD strategy shows the largest performance
improvement on RetinaNet, increasing its mAP value by 2.8%. This improvement surpasses
the 2.5% improvement achieved by the LD strategy. This is mainly because RetinaNet has
lower initial performance compared to the other three models, thus making it easier to
achieve performance gains. Additionally, considering the differences in the mAP50 and
mAP75 metrics among the four detection models, it is evident that the SLD strategy has
a more pronounced effect on mAP75, which represents more precise localization. This
phenomenon is particularly significant in the experiments with RetinaNet. For example,
compared to LD, using SLD leads to no improvement in mAP50 for the RetinaNet model,
but it achieves a 0.5% performance improvement in the more fine-grained mAP75, thus
resulting in an overall improvement in mAP. This indicates that, in the self-adaptive



Animals 2023, 13, 2924 17 of 23

localization distillation strategy, it is effective to use real labels as the teacher during
training when the student model encounters situations where the teacher model itself
has poor recognition performance. This further indicates that SLD can help students
choose more suitable teachers based on the current samples, thereby further improving
the performance of the student model in precise detection (challenging samples). Overall,
the aforementioned experimental results confirm the effectiveness of our designed adaptive
localization distillation in improving the performance of lightweight detection models,
thus surpassing traditional distillation methods.

Table 6. LD vs. SLD ablation experiments on the COCO dataset. In the table, R101 and R50 represent
the backbone network ResNet101 and ResNet50, respectively. The bolded numbers represent the
optimal performance.

Teacher Student / LD SLD (Ours) mAP (%) mAP50 (%) mAP75 (%)

ATSS-R101 ATSS-R50 X 39.4 57.6 42.8
ATSS-R101 ATSS-R50 X 41.6 59.3 45.3
ATSS-R101 ATSS-R50 X 42.1 59.5 45.8

GFL-R101 GFL-R50 X 40.2 58.4 43.3
GFL-R101 GFL-R50 X 42.1 60.3 45.6
GFL-R101 GFL-R50 X 42.4 60.5 46.1

FCOS-R101 FCOS-R50 X 38.7 57.4 41.8
FCOS-R101 FCOS-R50 X 40.6 58.4 44.1
FCOS-R101 FCOS-R50 X 41.0 58.5 44.5

RetinaNet-R101 RetinaNet-R50 X 36.5 55.4 39.1
RetinaNet-R101 RetinaNet-R50 X 39.0 56.4 42.4
RetinaNet-R101 RetinaNet-R50 X 39.3 56.4 42.9

4. Discussion

Birds, as important indicator species of ecosystems, provide crucial information about
the health of ecological systems through their species and population changes. Additionally,
data on bird species and population serve as fundamental information for research on
bird ecology and biodiversity conservation. Traditionally, these data have been primarily
collected through field surveys conducted by professional scientists and trained bird en-
thusiasts [47–49]. However, this data acquisition method is generally time-consuming and
labor-intensive. With the development of computer vision and deep learning technologies,
object detection techniques hold the potential to provide a low-cost and efficient means of
data acquisition for bird surveys, thus enabling researchers to conveniently access key infor-
mation on bird population dynamics, migration patterns, and habitat conditions [50–52].

However, the application of object detection technology in bird surveys and monitor-
ing research faces challenges due to the lack of available large-scale bird object detection
datasets and limited technical references for evaluating detection model performance and
model lightweighting performance in bird detection tasks. To address these challenges,
we conducted in-depth research on bird object detection dataset construction, detection
model performance comparisons, and model lightweighting. We have successfully built the
GBDD1433-2023 dataset, which is currently the most comprehensive bird object detection
dataset worldwide as it achieves a detection accuracy metric mAP50 of over 90% for the
eight mainstream object detection models. This dataset not only provides professional bird
basic datasets for researchers in the fields of deep learning and bird studies, but it also
promotes the application of object detection technology in intelligent bird recognition, thus
reducing the human and material resources required for researchers to construct bird object
detection datasets from scratch.

There was a higher improvement in the performance of these eight object detection
models on the GBDD1433-2023 datasets than that on the COCO dataset (Tables 1 and 2).
This can be explained due to the following reasons: (1) Although the GBDD1433-2023
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dataset covers 1433 bird species, it primarily consists of a single-bird object class with high
shape similarity among different bird species, thus making it easier for the models to learn
shape features. (2) The COCO dataset includes more than 90 object classes with highly
diverse appearances, which not only increases the difficulty for detection models to learn
features for each category, but also leads to higher false detection rates and decreased detec-
tion performance. In summary, by constructing a manually annotated dataset specifically
for bird object detection tasks, we can ensure that the dataset only contains relevant bird
samples, thus reducing the influence of other species and background interference, as well
as aiding in attaining a more accurate bird detection model performance.

By evaluating the sensitivity of the eight mainstream object detection models to scene
variations and bird object scale changes, we found that the two-stage detection models
outperformed single-stage detection models (Tables 3 and 4). Furthermore, in terms of
individual model performance, the two-stage Cascade RCNN model generally exhibited
the best performance [53], while YOLOv3 and ATSS performed better among the single-
stage detection models [54]. The superior performance of the Cascade RCNN model can
be attributed to its multi-stage cascaded architecture, which combines the strengths of
multiple two-stage models [53]. However, this model also has drawbacks, including a large
number of model parameters (up to 265M) and low computational efficiency (20.5 f/s).
The YOLOv3 model showed a good performance in scene variation experiments, which
can be attributed to its operational strategy. YOLOv3 divides the image into multiple
grids and predicts multiple bounding boxes and class probabilities for each grid, thus
enabling location-sensitive detection [55]. Therefore, even if the bird background changes,
YOLOv3 can accurately detect the objects by predicting their positions and classes within
each grid, and this is achieved without being affected by the background. Additionally,
the single-stage ATSS method performed well in multiple experiments due to the following
reasons [43]: (1) The ATSS model adopts an anchor-free detection framework, and this can
better adapt to objects of different sizes and shapes. (2) The ATSS model uses Focal Loss to
alleviate the class imbalance problem, thus enabling better differentiation of difficult and
easy samples, as well as improving the model’s accuracy. (3) The ATSS model employs
a multi-scale feature fusion strategy, thus enabling for a better handling of objects with
different scales, as well as in achieving superior capability in detecting small objects.

The proposed SLD framework provides an effective method for optimizing the perfor-
mance of lightweight detection models. By introducing the concept of adaptive localization
distillation, we are able to leverage the knowledge from the teacher model and the ground
truth labels to guide the learning of the lightweight student model, thereby improving
its performance and accuracy. This is of great significance for deploying efficient detection
models on resource-constrained devices. In addition to adaptive localization distillation,
combining other model compression and pruning techniques is also an effective approach
through which to enhance the performance of lightweight models. Future research can explore
the integration of adaptive localization distillation with other model compression techniques
to further reduce the model’s parameters and computational complexity, thereby improving
efficiency and performance. Overall, regarding the selection of object detection models for
bird object detection and counting tasks, we provide the following recommendations:

1. Two-stage object detection models (such as Cascade RCNN) exhibit high detection
accuracy but slower runtime efficiency, making them suitable for scenarios that require
high bird detection precision but not real-time detection. On the other hand, one-stage
object detection models (like ATSS) have lower detection accuracy but faster runtime
efficiency, making them suitable for applications such as real-time bird recognition
and counting.

2. The performance of object detection models is influenced by changes in application
scenarios and the characteristics of the actual devices. When bird detection scenarios
or devices result in the relatively weak performance of detection models, increasing
the number of training samples of bird species can be considered.
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3. Small object detection remains a common challenge in the field of object detection.
When a significant portion of bird objects in the application scenario are small, it
is important to optimize the performance of object detection models. For exam-
ple, improvements in network architecture, better data augmentation techniques,
and multi-scale feature fusion can be explored to enhance the accuracy of small bird
object detection.

4. When the number of birds in the scene exceeds five, the counting accuracy of the object
detection model is significantly affected by factors such as crowding and occlusion
among the birds. It is recommended to consider using density estimation methods
(such as CAP [56]) to address bird counting issues.

5. Conclusions

We have constructed the largest bird detection dataset to date, covering a wide range
of common bird species globally. Utilizing this dataset, we have achieved a detection
performance improvement of over 90% in terms of the mAP50 metric for eight mainstream
object detection models that were specifically applied to bird detection tasks. Through a
systematic evaluation of the current object detection models’ sensitivity to scene variations
and changes in bird object scales, as well as their accuracy in bird counting tasks, we have
not only confirmed the superior performance of two-stage detection models over single-
stage detection models in bird detection tasks, but also discovered that object detection
models are not suitable for bird counting tasks when the number of birds in images
exceeds five. Our research results not only provide accurate and comprehensive data
support for the field of bird detection, but also serve as a technical reference for users
in selecting appropriate object detection models. Based on our research findings, when
users prioritize detection accuracy over model computational efficiency, they can opt for
two-stage detection models. Conversely, when users emphasize model runtime efficiency,
particularly in the deployment of detection models on terminal devices, they can consider
applying self-adaptive localization distillation to improve the performance of single-stage
models. Given the vast number of bird species worldwide and the continuous emergence of
new object detection technologies, we will continue to expand the scale of the bird detection
dataset and evaluate the performance of additional object detection models in the future.
These efforts will provide comprehensive data and technical support for bird intelligence
recognition and monitoring research, thereby promoting the advancement of avian ecology
conservation and biodiversity studies.
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Abbreviations
The following abbreviations are used in this manuscript:

GBDD1433-2023 Global bird object detection dataset of 1433 species constructed in 2023
MMBT Multimodal bird object detection test dataset
MOBT Multi-object bird object detection test dataset
SLD Self-adaptive localization distillation

Appendix A

Figure A1. The overall flowchart.

Figure A2. The 12 background images used in the Multimodal Bird Object Detection Test
dataset (MMBT).
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