Trace Amounts of Ranavirus Detected in Common Musk Turtles (Sternotherus odoratus) at a Site Where the Pathogen Was Previously Common
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Background on Ranaviruses and Relevant Research in Reptiles
1.2. Introduction to the Study System and Objectives
2. Materials and Methods
2.1. Capture of Turtles and Collection of Tissue Samples
2.2. DNA Extraction and Genetic Testing for Presence of Virus
3. Results
4. Discussion
4.1. Presence of Ranavirus in One Turtle Species at a Very Low Level
4.2. Comparisons of Tissue Samples and Genetic Methods with Previous Studies in This System
4.3. Implications of This Study for Surveillance of Ranavirus in Wild Populations
4.4. Considerations with Respect to Management Practices in Our Study Site
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gray, M.J.; Chinchar, V.G. History and future of ranaviruses. In Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates; Gray, M.J., Chinchar, V.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Chinchar, V.G. Ranaviruses (family Iridoviridae): Emerging cold-blooded killers. Arch. Virol. 2002, 147, 447–470. [Google Scholar] [CrossRef] [PubMed]
- Green, D.E.; Converse, K.A.; Schrader, A.K. Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996-2001. Ann. N. Y. Acad. Sci. 2002, 969, 323–339. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.R.; Kerby, J.L. First detection of ranavirus in amphibians from Nebraska, US. Herpetol. Rev. 2016, 47, 46–50. [Google Scholar]
- Hartmann, A.M.; Maddox, M.L.; Ossiboff, R.J.; Longo, A.V. Sustained ranavirus outbreak causes mass mortality and morbidity of imperiled amphibians in Florida. EcoHealth 2022, 1, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Duffus, A.L.J.; Waltzek, T.B.; Stöhr, A.C.; Allender, M.C.; Gotesman, M.; Whittington, R.J.; Hick, P.; Hines, M.K.; Marschang, R.E. Distribution and host range of ranaviruses. In Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates; Gray, M., Chinchar, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 9–57. ISBN 9783319137551. [Google Scholar]
- Brunner, J.; Storfer, A.; Gray, M.; Hoverman, J. Ranavirus ecology and evolution: From epidemiology to extinction. In Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates; Gray, M.J., Chinchar, V.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 71–104. ISBN 9783319137551. [Google Scholar]
- Brenes, R.; Gray, M.J.; Waltzek, T.B.; Wilkes, R.P.; Miller, D.L. Transmission of ranavirus between ectothermic vertebrate hosts. PLoS ONE 2014, 9, e92476. [Google Scholar] [CrossRef]
- Brenes, R.; Miller, D.L.; Waltzek, T.B.; Wilkes, R.P.; Tucker, J.L.; Chaney, J.C.; Hardman, R.H.; Brand, M.D.; Huether, R.R.; Gray, M.J. Susceptibility of fish and turtles to three ranaviruses isolated from different ectothermic vertebrate classes. J. Aquat. Anim. Health 2014, 26, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Brunner, J.; Olson, D.; Gray, M.; Miller, D.; Duffus, A. Global patterns of ranavirus detections. Facets 2021, 6, 912–924. [Google Scholar] [CrossRef]
- IUCN. The IUCN Red List of Threatened Species. Version 2022-2. Table 1a. 2022. Available online: https://www.iucnredlist.org (accessed on 24 July 2023).
- Wirth, W.; Schwarzkopf, L.; Skerratt, L.F.; Ariel, E. Ranaviruses and reptiles. PeerJ 2018, 2018, e6083. [Google Scholar] [CrossRef]
- Cox, N.; Young, B.E.; Bowles, P.; Fernandez, M.; Marin, J.; Rapacciuolo, G.; Böhm, M.; Brooks, T.M.; Hedges, S.B.; Hilton-Taylor, C.; et al. A global reptile assessment highlights shared conservation needs of tetrapods. Nature 2022, 605, 285–290. [Google Scholar] [CrossRef]
- Allender, M.C.; Barthel, A.C.; Rayl, J.M.; Terio, K.A. Experimental transmission of Frog Virus 3–like ranavirus in juvenile chelonians at two temperatures. J. Wildl. Dis. 2018, 54, 716–725. [Google Scholar] [CrossRef]
- Allender, M.C.; Mitchell, M.A.; Torres, T.; Sekowska, J.; Driskell, E.A. Pathogenicity of Frog Virus 3-like virus in Red-eared Slider Turtles (Trachemys scripta elegans) at two environmental temperatures. J. Comp. Pathol. 2013, 149, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Wirth, W.; Ariel, E. Temperature-dependent infection of freshwater turtle hatchlings, Emydura macquarii krefftii, inoculated with a ranavirus isolate (Bohle iridovirus, Iridoviridae). Facets 2020, 5, 821–830. [Google Scholar] [CrossRef]
- Adamovicz, L.; Allender, M.C.; Gibbons, P.M. Emerging infectious diseases of chelonians: An update. Vet. Clin. North Am. Exot. Anim. Pract. 2020, 23, 263–283. [Google Scholar] [CrossRef] [PubMed]
- Goodman, R.M.; Carter, E.D.; Miller, D.L. Influence of herbicide exposure and ranavirus infection on growth and survival of juvenile Red-eared Slider Turtles (Trachemys scripta elegans). Viruses 2021, 13, 1440. [Google Scholar] [CrossRef] [PubMed]
- Allender, M.C.; Fry, M.M.; Irizarry, A.R.; Craig, L.; Johnson, A.J.; Jones, M. Intracytoplasmic inclusions in circulating leukocytes from an Eastern Box Turtle (Terrapene carolina carolina) with iridoviral infection. J. Wildl. Dis. 2006, 42, 677–684. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, C.M.; Piczak, M.L.; Snyman, H.N.; Joseph, T.; Theijin, C.; Chow-Fraser, P.; Jardine, C.M. First report of ranavirus mortality in a Common Snapping Turtle Chelydra serpentina. Dis. Aquat. Org. 2019, 132, 221–227. [Google Scholar] [CrossRef]
- Johnson, A.J.; Pessier, A.P.; Jacobson, E.R. Experimental transmission and induction of ranaviral disease in Western Ornate box turtles (Terrapene ornata ornata) and Red-eared Sliders (Trachemys scripta elegans). Vet. Pathol. 2007, 44, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Ariel, E.; Elliott, E.; Meddings, J.I.; Miller, J.; Santos, M.B.; Owens, L. Serological survey of Australian native reptiles for exposure to ranavirus. Dis. Aquat. Organ. 2017, 126, 173–183. [Google Scholar] [CrossRef]
- Ariel, E.; Wirth, W.; Burgess, G.; Scott, J.; Owens, L. Pathogenicity in six Australian reptile species following experimental inoculation with Bohle iridovirus. Dis. Aquat. Organ. 2015, 115, 203–212. [Google Scholar] [CrossRef]
- La Fauce, K.; Ariel, E.; Munns, S.; Rush, C.; Owens, L. Influence of temperature and exposure time on the infectivity of Bohle iridovirus, a ranavirus. Aquaculture 2012, 354–355, 64–67. [Google Scholar] [CrossRef]
- Johnson, A.J.; Pessier, A.P.; Wellehan, J.F.X.; Childress, A.; Norton, T.M.; Stedman, N.L.; Bloom, D.C.; Belzer, W.; Titus, V.R.; Wagner, R.; et al. Ranavirus infection of free-ranging and captive box turtles and tortoises in the United States. J. Wildl. Dis. 2008, 44, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Winzeler, M.E.; Hamilton, M.T.; Tuberville, T.D.; Lance, S.L. First case of ranavirus and associated morbidity and mortality in an Eastern Mud Turtle Kinosternon subrubrum in South Carolina. Dis. Aquat. Organ. 2015, 114, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Goodman, R.M.; Miller, D.L.; Ararso, Y.T. Prevalence of ranavirus in Virginia turtles as detected by tail-clip sampling versus oral-cloacal swabbing. Northeast. Nat. 2013, 20, 325–332. [Google Scholar] [CrossRef]
- De Voe, R.; Geissler, K.; Elmore, S.; Rotstein, D.; Lewbart, G.; Guy, J. Ranavirus-associated morbidity and mortality in a group of captive eastern box turtles (Terrapene carolina carolina). J. Zoo Wildl. Med. 2004, 35, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Goodman, R.M.; Hargadon, K.M.; Carter, E.D. Detection of ranavirus in Eastern Fence Lizards and Eastern Box Turtles in central Virginia. Northeast. Nat. 2018, 25, 391–398. [Google Scholar] [CrossRef]
- Allender, M.C.; Mitchell, M.A.; McRuer, D.; Christian, S.; Byrd, J. Prevalence, clinical signs, and natural history characteristics of Frog Virus 3-like infections in Eastern Box Turtles (Terrapene carolina carolina). Herpetol. Conserv. Biol. 2013, 8, 308–320. [Google Scholar]
- Bryan, L.K.; Baldwin, C.A.; Gray, M.J.; Miller, D.L. Efficacy of select disinfectants at inactivating ranavirus. Dis. Aquat. Organ. 2009, 84, 89–94. [Google Scholar] [CrossRef]
- Gray, M.J.; Miller, D.L.; Hoverman, J.T. Reliability of non-lethal surveillance methods for detecting ranavirus infection. Dis. Aquat. Organ. 2012, 99, 1–6. [Google Scholar] [CrossRef]
- Gray, M.J.; Brunner, J.L.; Earl, J.E.; Ariel, E. Design and analysis of ranavirus studies: Surveillance and assessing risk. In Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates; Gray, M.J., Chinchar, V.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 209–240. ISBN 9783319137551. [Google Scholar]
- Hall, E.M.; Crespi, E.J.; Goldberg, C.S.; Brunner, J.L. Evaluating environmental DNA-based quantification of ranavirus infection in wood frog populations. Mol. Ecol. Resour. 2016, 16, 423–433. [Google Scholar] [CrossRef]
- Miaud, C.; Arnal, V.; Poulain, M.; Valentini, A.; Dejean, T. eDNA increases the detectability of ranavirus infection in an alpine amphibian population. Viruses 2019, 11, 526. [Google Scholar] [CrossRef]
- Vilaça, S.T.; Grant, S.A.; Beaty, L.; Brunetti, C.R.; Congram, M.; Murray, D.L.; Wilson, C.C.; Kyle, C.J. Detection of spatiotemporal variation in ranavirus distribution using eDNA. Environ. DNA 2020, 2, 210–220. [Google Scholar] [CrossRef]
- Carstairs, S.J. Evidence for low prevalence of ranaviruses in Ontario, Canada’s freshwater turtle population. PeerJ 2019, 2019, e6987. [Google Scholar] [CrossRef] [PubMed]
- Ernst, C.; Lovich, J. Turtles of the United States and Canada, 2nd ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2009; ISBN 9780801891212. [Google Scholar]
- McKnight, D.; Ard, K.; Auguste, R.; Barhadiya, G.; Benard, M.; Boban, P.; Dillon, M.; Downs, C.; DeGregorio, B.; Glorioso, B.; et al. Nocturnal basking in freshwater turtles: A global assessment. Glob. Ecol. Conserv. 2023, 43, e02444. [Google Scholar] [CrossRef]
- Ariel, E.; Nicolajsen, N.; Christophersen, M.B.; Holopainen, R.; Tapiovaara, H.; Bang Jensen, B. Propagation and isolation of ranaviruses in cell culture. Aquaculture 2009, 294, 159–164. [Google Scholar] [CrossRef]
- Grayson, K.; Dorcas, M. Seasonal temperature variation in the Painted Turtle (Chrysemys picta). Herpetologica 2004, 60, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Rosa, G.M.; Sabino-Pinto, J.; Laurentino, T.G.; Martel, A.; Pasmans, F.; Rebelo, R.; Griffiths, R.A.; Stöhr, A.C.; Marschang, R.E.; Price, S.J.; et al. Impact of asynchronous emergence of two lethal pathogens on amphibian assemblages. Sci. Rep. 2017, 7, 43260. [Google Scholar] [CrossRef] [PubMed]
- Bienentreu, J.; Schock, D.; Greer, A.; Lesbarrères, D. Ranavirus amplification in low-diversity amphibian communities. Front. Vet. Sci. 2022, 9, 9–12. [Google Scholar] [CrossRef]
- Tornabene, B.; Blaustein, A.; Briggs, C.; Calhoun, D.; Johnson, P.; McDevitt-Galles, T.; Rohr, J.; Hoverman, J. The influence of landscape and environmental factors on ranavirus epidemiology in a California amphibian assemblage. Freshw. Biol. 2018, 63, 639–651. [Google Scholar] [CrossRef]
- Todd-Thompson, M. Seasonality, Variation in Species Prevalence, and Localized Disease for Ranavirus in Cades Cove (Great Smoky Mountains National Park) Amphibians. Diploma Thesis, University of Tennessee, Knoxville, TN, USA, 2010. [Google Scholar]
- Price, S.J.; Garner, T.W.J.; Nichols, R.A.; Balloux, F.; Ayres, C.; Mora-Cabello De Alba, A.; Bosch, J. Collapse of amphibian communities due to an introduced ranavirus. Curr. Biol. 2014, 24, 2586–2591. [Google Scholar] [CrossRef]
- Cusaac, J.; Carter, E.; Woodhams, D.; Robert, J.; Spatz, J.; Howard, J.; Lillard, C.; Graham, A.; Hill, R.; Reinsch, S.; et al. Emerging pathogens and a current-use pesticide: Potential impacts on Eastern Hellbenders. J. Aquat. Anim. Health 2021, 33, 24–32. [Google Scholar] [CrossRef]
- Dressel, C. The Effects of Pesticide Interactions Malathion and Glyphosate with an Emerging Viral Disease in Tiger Salamanders (Ambystoma tigrinum). Diploma Thesis, Washington State University, Pullman, WA, USA, 2007. [Google Scholar]
- Forson, D.; Storfer, A. Effects of atrazine and iridovirus infection on survival and life-history traits of the long-toed salamander (Ambystoma macrodactylum). Environ. Toxicol. Chem. 2006, 25, 168–173. [Google Scholar] [CrossRef]
- Kerby, J.L.; Hart, A.J.; Storfer, A. Combined effects of virus, pesticide, and predator cue on the larval tiger salamander (Ambystoma tigrinum). Ecohealth 2011, 8, 46–54. [Google Scholar] [CrossRef]
- Kerby, J.L.; Storfer, A. Combined effects of atrazine and chlorpyrifos on susceptibility of the Tiger Salamander to Ambystoma tigrinum virus. Ecohealth 2009, 6, 91–98. [Google Scholar] [CrossRef]
- North, A.; Hodgson, D.; Price, S.; Griffiths, A. Anthropogenic and ecological drivers of amphibian disease (ranavirosis). PLoS ONE 2015, 10, e0127037. [Google Scholar] [CrossRef] [PubMed]
Chalgrove | Tadpole Hole | Both Ponds Combined | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pos | Neg | Tot | Pos | Neg | Tot | Pos | Neg | Tot | Detection Rate | |
Chrysemys picta picta | ||||||||||
First captures only | 0 | 41 | 41 | 0 | 40 | 40 | 0 | 81 | 81 | 0.0% |
First captures + recaptures | 0 | 57 | 57 | 0 | 48 | 48 | 0 | 105 | 105 | 0.0% |
Sternotherus odoratus | ||||||||||
First captures only | 3 | 83 | 86 | 0 | 39 | 39 | 3 | 122 | 125 | 2.4% |
First captures + recaptures | 4 | 95 | 99 | 0 | 45 | 45 | 4 | 140 | 144 | 2.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goodman, R.M.; Carman, H.R.; Mahaffy, R.P.; Cabrera, N.S. Trace Amounts of Ranavirus Detected in Common Musk Turtles (Sternotherus odoratus) at a Site Where the Pathogen Was Previously Common. Animals 2023, 13, 2951. https://doi.org/10.3390/ani13182951
Goodman RM, Carman HR, Mahaffy RP, Cabrera NS. Trace Amounts of Ranavirus Detected in Common Musk Turtles (Sternotherus odoratus) at a Site Where the Pathogen Was Previously Common. Animals. 2023; 13(18):2951. https://doi.org/10.3390/ani13182951
Chicago/Turabian StyleGoodman, Rachel M., Henry R. Carman, R. Paul Mahaffy, and Nathan S. Cabrera. 2023. "Trace Amounts of Ranavirus Detected in Common Musk Turtles (Sternotherus odoratus) at a Site Where the Pathogen Was Previously Common" Animals 13, no. 18: 2951. https://doi.org/10.3390/ani13182951
APA StyleGoodman, R. M., Carman, H. R., Mahaffy, R. P., & Cabrera, N. S. (2023). Trace Amounts of Ranavirus Detected in Common Musk Turtles (Sternotherus odoratus) at a Site Where the Pathogen Was Previously Common. Animals, 13(18), 2951. https://doi.org/10.3390/ani13182951