Applications of Enteroendocrine Cells (EECs) Hormone: Applicability on Feed Intake and Nutrient Absorption in Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Structure of Enteroendocrine Cells Secreting Gut Hormone
Enteroendocrine Cells
3. Feed Intake Control: Mode of Action
3.1. Orexogenic Effects
3.2. Anorexogenic Effects
4. Hormones from Enteroendocrine Cells on Feed Intake Control
4.1. Ghrelin
4.2. Peptide YY (PYY)
4.3. Glucagon-like Peptide (GLP)
4.3.1. Glucagon-like Peptide-1 (GLP-1)
4.3.2. Glucagon-like Peptide-2 (GLP-2)
4.4. Oxyntomodulin (OXM)
4.5. Cholecystokinin (CCK)
4.6. Gastric Inhibitory Polypeptide (GIP)
4.7. Serotonin (5-Hydroxytrptamine, 5-HT)
4.8. Neurotensin (NTS)
5. Regulation of Nutrient Absorption by Gut Hormone
5.1. Carbohydrate Absorption by EEC Hormones
5.2. Fat Absorption by EEC Hormones
5.3. Protein Absorption by EEC Hormones
6. Change of Feed Intake, Nutrient Absorption and Gut Environment in Chickens under Different Stress Conditions
6.1. Disease
6.1.1. Eimeria spp. Challenge
6.1.2. Pathogen Challenge
6.2. Environment
6.2.1. Heat Stress
6.2.2. Stocking Density
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hussain, S.S.; Bloom, S.R. The regulation of food intake by the gut-brain axis: Implications for obesity. Int. J. Obes. 2013, 37, 625–633. [Google Scholar] [CrossRef]
- Honda, K.; Saneyasu, T.; Kamisoyama, H. Gut hormones and regulation of food intake in birds. J. Poult. Sci. 2016, 54, 160100. [Google Scholar] [CrossRef]
- Steinert, R.E.; Feinle-Bisset, C.; Geary, N.; Beglinger, C. Digestive physiology of the pig symposium: Secretion of gastrointestinal hormones and eating control. J. Anim. Sci. 2013, 91, 1963–1973. [Google Scholar] [CrossRef]
- Honda, K. Glucagon-related peptides and the regulation of food intake in chickens. Anim. Sci. J. 2016, 87, 1090–1098. [Google Scholar] [CrossRef]
- McCauley, H.A. Enteroendocrine regulation of nutrient absorption. J. Nutr. 2020, 150, 10–21. [Google Scholar] [CrossRef]
- Kiela, P.R.; Ghishan, F.K. Physiology of intestinal absorption and secretion. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 145–159. [Google Scholar] [CrossRef]
- Xiao, C.; Stahel, P.; Carreiro, A.L.; Buhman, K.K.; Lewis, G.F. Recent advances in triacylglycerol mobilization by the gut. Trends Endocrinol. Metab. 2018, 29, 151–163. [Google Scholar] [CrossRef]
- Auclair, N.; Melbouci, L.; St-Pierre, D.; Levy, E. Gastrointestinal factors regulating lipid droplet formation in the intestine. Exp. Cell. Res. 2018, 363, 1–14. [Google Scholar] [CrossRef]
- Mellitzer, G.; Beucher, A.; Lobstein, V.; Michel, P.; Robine, S.; Kedinger, M.; Gradwohl, G. Loss of enteroendocrine cells in mice alters lipid absorption and glucose homeostasis and impairs postnatal survival. J. Clin. Investig. 2010, 120, 1708–1721. [Google Scholar] [CrossRef]
- Beucher, A.; Gjernes, E.; Collin, C.; Courtney, M.; Meunier, A.; Collombat, P.; Gradwohl, G. The homeodomain-containing transcription factors Arx and Pax4 control enteroendocrine subtype specification in mice. PLoS ONE 2012, 7, e36449. [Google Scholar] [CrossRef]
- Wang, J.; Cortina, G.; Wu, S.V.; Tran, R.; Cho, J.H.; Tsai, M.J.; Bailey, T.J.; Jamrich, M.; Ament, M.E.; Treem, W.R.; et al. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N. Engl. J. Med. 2006, 355, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Cortina, G.; Smart, C.N.; Farmer, D.G.; Bhuta, S.; Treem, W.R.; Hill, I.D.; Martín, M.G. Enteroendocrine cell dysgenesis and malabsorption, a histopathologic and immunohistochemical characterization. Hum. Pathol. 2007, 38, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Honda, K. Peripheral regulation of food intake in chickens: Adiposity signals, satiety signals and others. Worlds Poult. Sci. J. 2021, 77, 301–312. [Google Scholar] [CrossRef]
- Schonhoff, S.E.; Giel-Moloney, M.; Leiter, A.B. Minireview: Development and differentiation of gut endocrine cells. Endocrinology 2004, 145, 2639–2644. [Google Scholar] [CrossRef] [PubMed]
- Gerbe, F.; van Es, J.H.; Makrini, L.; Brulin, B.; Mellitzer, G.; Robine, S.; Romagnolo, B.; Shroyer, N.F.; Bourgaux, J.F.; Pignodel, C.; et al. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J. Cell. Biol. 2011, 192, 767–780. [Google Scholar] [CrossRef]
- Moran-Ramos, S.; Tovar, A.R.; Torres, N. Diet: Friend or foe of enteroendocrine cells: How it interacts with enteroendocrine cells. Adv. Nutr. 2012, 3, 8–20. [Google Scholar] [CrossRef]
- Jenny, M.; Uhl, C.; Roche, C.; Duluc, I.; Guillermin, V.; Guillemot, F.; Jensen, J.; Kedinger, M.; Gradwohl, G. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J. 2002, 21, 6338–6347. [Google Scholar] [CrossRef]
- Rehfeld, J.F. A centenary of gastrointestinal endocrinology. Horm. Metab. Res. 2004, 36, 735–741. [Google Scholar] [CrossRef]
- Breer, H.; Eberle, J.; Frick, C.; Haid, D.; Widmayer, P. Gastrointestinal chemosensation: Chemosensory cells in the alimentary tract. Histochem. Cell. Biol. 2012, 138, 13–24. [Google Scholar] [CrossRef]
- Choi, S.; Lee, M.; Shiu, A.L.; Yo, S.J.; Halldén, G.; Aponte, G.W. GPR93 activation by protein hydrolysate induces CCK transcription and secretion in STC-1 cells. Am. J. Physiol. Gastroint. Liver. Physiol. 2007, 292, G1366–G1375. [Google Scholar] [CrossRef]
- Moran, G.W.; Leslie, F.C.; Levison, S.E.; McLaughlin, J.T. Enteroendocrine cells: Neglected players in gastrointestinal disorders? Ther. Adv. Gastroenterol. 2008, 1, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Liou, A.P.; Chavez, D.I.; Espero, E.; Hao, S.; Wank, S.A.; Raybould, H.E. Protein hydrolysate-induced cholecystokinin secretion from enteroendocrine cells is indirectly mediated by the intestinal oligopeptide transporter PepT1. Am. J. Physiol. Gastroint. Liver. Physiol. 2011, 300, G895–G902. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Everaert, N.; Wang, Y.; Decuypere, E.; Buyse, J. The endocrine control of energy homeostasis in chickens. Gen. Comp. Endocrinol. 2013, 190, 112–117. [Google Scholar] [CrossRef]
- Argente-Arizón, P.; Freire-Regatillo, A.; Argente, J.; Chowen, J.A. Role of non-neuronal cells in body weight and appetite control. Front. Endocrinol. 2015, 6, 42. [Google Scholar]
- Sternson, S.M.; Atasoy, D. Agouti-related protein neuron circuits that regulate appetite. Neuroendocrinology 2014, 100, 95–102. [Google Scholar] [CrossRef]
- Richards, M.P. Genetic regulation of feed intake and energy balance in poultry. Poult. Sci. 2003, 82, 907–916. [Google Scholar] [CrossRef]
- Sohn, J.W. Network of hypothalamic neurons that control appetite. BMB Rep. 2015, 48, 229. [Google Scholar] [CrossRef]
- Becskei, C.; Riediger, T.; Hernádfalvy, N.; Arsenijevic, D.; Lutz, T.A.; Langhans, W. Inhibitory effects of lipopolysaccharide on hypothalamic nuclei implicated in the control of food intake. Brain. Behav. Immun. 2008, 22, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Wren, A.M.; Small, C.J.; Ward, H.L.; Murphy, K.G.; Dakin, C.L.; Taheri, S.; Kennedy, A.R.; Roberts, G.H.; Morgan, D.G.A.; Ghatei, M.A.; et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 2000, 141, 4325–4328. [Google Scholar] [CrossRef]
- Date, Y.; Kojima, M.; Hosoda, H.; Sawaguchi, A.; Mondal, M.S.; Suganuma, T.; Matsukura, S.; Kangawa, K.; Nakazato, M. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 2000, 141, 4255–4261. [Google Scholar] [CrossRef]
- Guan, X.M.; Yu, H.; Palyha, O.C.; McKee, K.K.; Feighner, S.D.; Sirinathsinghji, D.J.; Smith, R.G.; van der Ploeg, L.H.T.; Howard, A.D. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Mol. Brain. Res. 1997, 48, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Englehardt, V.; von Engelhardt, N.; Leng, G.; Smith, R.G.; Dickson, S.L. Growth hormone secretagogue activation of the arcuate nucleus and brainstem occurs via a non-noradrenergic pathway. J. Neuroendocrinol. 2000, 12, 191–197. [Google Scholar]
- Hameed, S.; Dhillo, W.S.; Bloom, S.R. Gut hormones and appetite control. Oral. Dis. 2009, 15, 18–26. [Google Scholar] [CrossRef]
- Cummings, D.E.; Purnell, J.Q.; Frayo, R.S.; Schmidova, K.; Wisse, B.E.; Weigle, D.S. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001, 50, 1714–1719. [Google Scholar] [CrossRef]
- Druce, M.R.; Wren, A.M.; Park, A.J.; Milton, J.E.; Patterson, M.; Frost, G.; Ghatei, M.A.; Small, C.; Bloom, S.R. Ghrelin increases food intake in obese as well as lean subjects. Int. J. Obes. 2005, 29, 1130–1136. [Google Scholar] [CrossRef]
- Tschöp, M.; Smiley, D.L.; Heiman, M.L. Ghrelin induces adiposity in rodents. Nature 2000, 407, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Dhillo, W.S. Appetite regulation: An overview. Thyroid 2007, 17, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Broberger, C.; Johansen, J.; Johansson, C.; Schalling, M.; Hökfelt, T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc. Natl. Acad. Sci. USA 1998, 95, 15043–15048. [Google Scholar] [CrossRef] [PubMed]
- Kola, B.; Korbonits, M. Shedding light on the intricate puzzle of ghrelin’s effects on appetite regulation. J. Endocrinol. 2009, 202, 191–198. [Google Scholar] [CrossRef]
- Vizcarra, J.A.; Wright, H.; Vizcarra, A. The effect of passive immunization against ghrelin on feed and water intake in turkeys. Poult. Sci. 2012, 91, 2305–2309. [Google Scholar] [CrossRef]
- Geelissen, S.M.E.; Swennen, Q.; van der Geyten, S.; Kühn, E.R.; Kaiya, H.; Kangawa, K.; Decuypere, E.; Buyse, J.; Darras, V.M. Peripheral ghrelin reduces food intake and respiratory quotient in chicken. Domest. Anim. Endocrinol. 2006, 30, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Kaiya, H.; Saito, E.S.; Tachibana, T.; Furuse, M.; Kangawa, K. Changes in ghrelin levels of plasma and proventriculus and ghrelin mRNA of proventriculus in fasted and refed layer chicks. Domest. Anim. Endocrinol. 2007, 32, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Buyse, J.; Janssen, S.; Geelissen, S.; Swennen, Q.; Kaiya, H.; Darras, V.M.; Dridi, S. Ghrelin modulates fatty acid synthase and related transcription factor mRNA levels in a tissue-specific manner in neonatal broiler chicks. Peptides 2009, 30, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Ocłoń, E.; Pietras, M. Peripheral ghrelin inhibits feed intake through hypothalamo-pituitary-adrenal axis-dependent mechanism in chicken. J. Anim. Feed. Sci. 2011, 20, 118–130. [Google Scholar] [CrossRef]
- Shousha, S.; Nakahara, K.; Kojima, M.; Miyazato, M.; Hosoda, H.; Kangawa, K.; Murakami, N. Different effects of peripheral and central ghrelin on regulation of food intake in the Japanese quail. Gen. Comp. Endocrinol. 2005, 141, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Taofeek, N.; Chimbetete, N.; Ceron-Romero, N.; Verghese, M.; Vizcarra, J. The Effect of Systemic Infusion of Active and Non-Active Ghrelin on Feed Intake, Weight Gain, and Corticosterone Concentrations in Male Broiler Chickens; IPPE: Atlanta, GA, USA, 2020. [Google Scholar]
- Xu, P.; Siegel, P.B.; Denbow, D.M. Genetic selection for body weight in chickens has altered responses of the brain’s AMPK system to food intake regulation effect of ghrelin, but not obestatin. Behav. Brain. Res. 2011, 221, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Adrian, T.E.; Ferri, G.L.; Bacarese-Hamilton, A.J.; Fuessl, H.S.; Polak, J.M.; Bloom, S.R. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 1985, 89, 1070–1077. [Google Scholar] [CrossRef]
- Mentlein, R.; Gallwitz, B.; Schmidt, W.E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1 (7–36) amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem. 1993, 214, 829–835. [Google Scholar] [CrossRef]
- Grandt, D.; Schimiczek, M.; Beglinger, C.; Layer, P.; Goebell, H.; Eysselein, V.E.; Reeve, J.R., Jr. Two molecular forms of peptide YY (PYY) are abundant in human blood: Characterization of a radioimmunoassay recognizing PYY 1–36 and PYY 3–36. Regul. Pept. 1994, 51, 151–159. [Google Scholar] [CrossRef]
- Batterham, R.L.; Cowley, M.A.; Small, C.J.; Herzog, H.; Cohen, M.A.; Dakin, C.L.; Wren, A.M.; Brynes, A.E.; Low, M.J.; Ghatei, M.A.; et al. Gut hormone PYY3-36 physiologically inhibits food intake. Nature 2002, 418, 650–654. [Google Scholar] [CrossRef]
- Corpa, E.S.; McQuade, J.; Krasnicki, S.; Conze, D.B. Feeding after fourth ventricular administration of neuropeptide Y receptor agonists in rats. Peptides 2001, 22, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Raposinho, P.D.; Pierroz, D.D.; Broqua, P.; White, R.B.; Pedrazzini, T.; Aubert, M.L. Chronic administration of neuropeptide Y into the lateral ventricle of C57BL/6J male mice produces an obesity syndrome including hyperphagia, hyperleptinemia, insulin resistance, and hypogonadism. Mol. Cell. Endocrinol. 2001, 185, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Hagan, M.M. Peptide YY: A key mediator of orexigenic behavior. Peptides 2002, 23, 377–382. [Google Scholar] [CrossRef]
- Karra, E.; Chandarana, K.; Batterham, R.L. The role of peptide YY in appetite regulation and obesity. J. Psychol. 2009, 587, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Unniappan, S.; Kieffer, T.J. Leptin extends the anorectic effects of chronic PYY (3-36) administration in ad libitum-fed rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, 51–58. [Google Scholar] [CrossRef]
- Blomqvist, A.G.; Herzog, H. Y-receptor subtypes—How many more? Trends Neurosci. 1997, 20, 294–298. [Google Scholar] [CrossRef]
- Broberger, C.; Landry, M.; Wong, H.; Walsh, J.N.; Hökfelt, T. Subtypes Y1 and Y2 of the neuropeptide Y receptor are respectively expressed in pro-opiomelanocortin-and neuropeptide-Y-containing neurons of the rat hypothalamic arcuate nucleus. Neuroendocrinology 1997, 66, 393–408. [Google Scholar] [CrossRef]
- Keire, D.A.; Mannon, P.; Kobayashi, M.; Walsh, J.H.; Solomon, T.E.; Reeve, J.R., Jr. Primary structures of PYY, [Pro34] PYY, and PYY-(3–36) confer different conformations and receptor selectivity. Am. J. Physiol. Gastroint. Liver. Physiol. 2000, 279, G126–G131. [Google Scholar] [CrossRef]
- Stanić, D.; Brumovsky, P.; Fetissov, S.; Shuster, S.; Herzog, H.; Hökfelt, T. Characterization of neuropeptide Y2 receptor protein expression in the mouse brain. I. Distribution in cell bodies and nerve terminals. J. Comp. Neurol. 2006, 499, 357–390. [Google Scholar] [CrossRef]
- Lumb, K.J.; DeCarr, L.B.; Milardo, L.F.; Mays, M.R.; Buckholz, T.M.; Fisk, S.E.; Pellegrino, C.M.; Ortiz, A.A.; Mahle, C.D. Novel selective neuropeptide Y2 receptor PEGylated peptide agonists reduce food intake and body weight in mice. J. Med. Chem. 2007, 50, 2264–2268. [Google Scholar] [CrossRef]
- Abbott, C.R.; Small, C.J.; Kennedy, A.R.; Neary, N.M.; Sajedi, A.; Ghatei, M.A.; Bloom, S.R. Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY (3–36) on food intake. Brain Res. 2005, 1043, 139–144. [Google Scholar] [CrossRef]
- Cummings, D.E.; Overduin, J. Gastrointestinal regulation of food intake. J. Clin. Investig. 2007, 117, 13–23. [Google Scholar] [CrossRef]
- Conlon, J.M.; O’Harte, F. The primary structure of a PYY-related peptide from chicken intestine suggests an anomalous site of cleavage of the signal peptide in preproPYY. FEBS Lett. 1992, 313, 225–228. [Google Scholar] [CrossRef]
- Ando, R.; Kawakami, S.I.; Bungo, T.; Ohgushi, A.; Takagi, T.; Denbow, D.M.; Furuse, M. Feeding responses to several neuropeptide Y receptor agonists in the neonatal chick. Eur. J. Pharmacol. 2001, 427, 53–59. [Google Scholar] [CrossRef]
- Aoki, K.; Kondo, M.; Okuda, M.; Saneyasu, T.; Honda, K.; Kamisoyama, H. General and comparative endocrinology identification, expression analysis, and functional characterization of peptide YY in chickens (Gallus gallus domesticus). Gen. Comp. Endocrinol. 2017, 242, 1–7. [Google Scholar]
- Aoki, K.; Kondo, M.; Okuda, M.; Saneyasu, T.; Honda, K.; Kamisoyama, H. Identification, expression analysis, and functional characterization of peptide YY in chickens (Gallus gallus domesticus). Gen. Comp. Endocrinol. 2017, 242, 11–17. [Google Scholar]
- Ueno, H.; Yamaguchi, H.; Mizuta, M.; Nakazato, M. The role of PYY in feeding regulation. Regul. Pept. 2008, 145, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Martin Alonso, A. Investigating the Physiological and Pharmacological Effects of the Gut Hormone Peptide YY (PYY). Ph.D. Thesis, Imperial College London, London, UK, 2022. [Google Scholar]
- Jin, S.L.; Han, V.K.M.; Simmons, J.G.; Towle, A.C.; Lauder, J.M.; Lund, P.K. Distribution of glucagonlike peptide I (GLP-I), glucagon, and glicentin in the rat brain: An immunocytochemical study. J. Comp. Neurol. 1988, 271, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Eissele, R.; Göke, R.; Willemer, S.; Harthus, H.P.; Vermeer, H.; Arnold, R.E.; Göke, B. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur. J. Clin. Investig. 1992, 22, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, C.; Göke, R.; Richter, G.; Fehmann, H.C.; Arnold, R.; Göke, B. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion 1995, 56, 117–126. [Google Scholar] [CrossRef]
- Bell, G.I.; Santerre, R.F.; Mullenbach, G.T. Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature 1983, 302, 716–718. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.; Rotondo, A.; Mulé, F.; Tack, J. A comparison of glucagon-like peptides 1 and 2. Aliment. Pharmacol. Ther. 2013, 37, 18–36. [Google Scholar] [CrossRef] [PubMed]
- Baggio, L.L.; Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef]
- Hiramatsu, K. Chicken intestinal L cells and glucagon-like peptide-1 secretion. J. Poult. Sci. 2020, 57, 1–6. [Google Scholar] [CrossRef]
- Drucker, D.J. Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nat. Clin. Pract. Endoc. 2005, 1, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Turton, M.D.; O’shea, D.; Gunn, I.; Beak, S.A.; Edwards, C.M.B.; Meeran, K.; Choi, S.J.; Taylor, G.M.; Health, M.M.; Lambert, P.D.; et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996, 379, 69–72. [Google Scholar] [CrossRef]
- Svendsen, B.; Pedersen, J.; Albrechtsen, N.J.W.; Hartmann, B.; Toräng, S.; Rehfeld, J.F.; Poulsen, S.S.; Holst, J.J. An analysis of cosecretion and coexpression of gut hormones from male rat proximal and distal small intestine. Endocrinology 2015, 156, 847–857. [Google Scholar] [CrossRef]
- Ronveaux, C.C.; de Lartigue, G.; Raybould, H.E. Ability of GLP-1 to decrease food intake is dependent on nutritional status. Physiol. Behav. 2014, 135, 222–229. [Google Scholar] [CrossRef]
- NamKoong, C.; Kim, M.S.; Jang, B.T.; Lee, Y.H.; Cho, Y.M.; Choi, H.J. Central administration of GLP-1 and GIP decreases feeding in mice. Biochem. Biophys. Res. Commun. 2017, 490, 247–252. [Google Scholar] [CrossRef]
- Van Dijk, G.; Thiele, T.E.; Seeley, R.J.; Woods, S.C.; Bernstein, I.L. Glucagon-like peptide-1 and satiety. Nature 1997, 385, 214. [Google Scholar] [CrossRef]
- Meeran, K.; O’Shea, D.; Edwards, C.M.B.; Turton, M.D.; Heath, M.M.; Gunn, I.; Abusnana, S.; Rossi, M.; Small, C.J.; Goldstone, A.P.; et al. Repeated intracerebroventricular administration of glucagon-like peptide-1-(7–36) amide or exendin-(9–39) alters body weight in the rat. Endocrinology 1999, 140, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Verdich, C.; Flint, A.; Gutzwiller, J.P.; Naslund, E.; Beglinger, C.; Hellstrom, P.M.; Long, S.J.; Morgan, L.M.; Holst, J.J.; Astrup, A. A meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on ad libitum energy intake in humans. J. Clin. Endocr. 2001, 86, 4382–4389. [Google Scholar]
- Näslund, E.; Barkeling, B.; King, N.; Gutniak, M.; Blundell, J.E.; Holst, J.J.; Rössner, S.; Hellström, P.M. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int. J. Obes. 1999, 23, 304–311. [Google Scholar] [CrossRef]
- Verdich, C.; Toubro, S.; Buemann, B.; Lysgård Madsen, J.; Juul Holst, J.; Astrup, A. The role of postprandial releases of insulin and incretin hormones in meal-induced satiety—Effect of obesity and weight reduction. Int. J. Obes. 2001, 25, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Moghadam, A.A.; Cordner, Z.A.; Liang, N.C.; Moran, T.H. Long term exendin-4 treatment reduces food intake and body weight and alters expression of brain homeostatic and reward markers. Endocrinology 2014, 155, 3473–3483. [Google Scholar] [CrossRef] [PubMed]
- Ruska, Y.; Szilvásy-Szabó, A.; Kővári, D.; Kádár, A.; Mácsai, L.; Sinkó, R.; Hrabovszky, E.; Gereben, B.; Fekete, C. Expression of glucagon-like peptide 1 receptor in neuropeptide Y neurons of the arcuate nucleus in mice. Brain. Struct. Funct. 2022, 227, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Larsen, P.J.; Tang-Christensen, M.; Jessop, D.S. Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology 1997, 138, 4445–4455. [Google Scholar] [CrossRef]
- Knudsen, L.B.; Secher, A.; Hecksher-Sørensen, J.; Pyke, C. Long-acting glucagon-like peptide-1 receptor agonists have direct access to and effects on pro-opiomelanocortin/cocaine-and amphetamine-stimulated transcript neurons in the mouse hypothalamus. J. Diabetes Investig. 2016, 7, 56–63. [Google Scholar] [CrossRef]
- Péterfi, Z.; Szilvásy-Szabó, A.; Farkas, E.; Ruska, Y.; Pyke, C.; Knudsen, L.B.; Fekete, C. GLP-1 regulates the POMC neurons of the arcuate nucleus both directly and indirectly via presynaptic action. Neuroendocrinology 2021, 111, 986–997. [Google Scholar] [CrossRef]
- Secher, A.; Jelsing, J.; Baquero, A.F.; Hecksher-Sørensen, J.; Cowley, M.A.; Dalbøge, L.S.; Hansen, G.; Grove, K.L.; Pyke, C.; Raun, K.; et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J. Clin. Investig. 2014, 124, 4473–4488. [Google Scholar] [CrossRef]
- Park, S. Neuroendocrine control of food intake. J. Korean Endocr. Soc. 2007, 22, 391–396. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Yamasaki, A.; Karasawa, Y. Comparative study on the distribution of glucagon-like peptide-1 (GLP-1)-immunoreactive cells in the intestine of chicken and ostrich. J. Poult. Sci. 2003, 40, 39–44. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Yamasaki, A.; Shioji, T. Immunohistochemical and morphometrical studies on the distribution of glucagon-like peptide-1 (GLP-1)-immunoreactive cells in the chicken intestine. J. Poult. Sci. 2005, 42, 223–229. [Google Scholar] [CrossRef]
- Nishimura, K.; Hiramatsu, K.; Watanabe, T.; Makino, R.; Sasaki, N.; Kita, K. Amino acid supplementation to diet influences the activity of the L cells in chicken small intestine. J. Poult. Sci. 2015, 52, 221–226. [Google Scholar] [CrossRef]
- Burcelin, R. The incretins: A link between nutrients and well-being. Br. J. Nutr. 2005, 93, 147–156. [Google Scholar] [CrossRef]
- Tachibana, T.; Matsumoto, M.; Furuse, M.; Hasegawa, S.; Yoshizawa, F.; Sugahara, K. Central, but not peripheral, glucagon-like peptide-1 inhibits crop emptying in chicks. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2003, 134, 777–781. [Google Scholar] [CrossRef]
- Honda, K.; Saneyasu, T.; Yamaguchi, T.; Shimatani, T.; Aoki, K.; Nakanishi, K.; Kamisoyama, H. Intracerebroventricular administration of novel glucagon-like peptide suppresses food intake in chicks. Peptides 2014, 52, 98–103. [Google Scholar] [CrossRef]
- Shousha, S.; Nakahara, K.; Nasu, T.; Sakamoto, T.; Murakami, N. Effect of glucagon-like peptide-1 and-2 on regulation of food intake, body temperature and locomotor activity in the Japanese quail. Neurosci. Lett. 2007, 415, 102–107. [Google Scholar] [CrossRef]
- Tachibana, T.; Oikawa, D.; Adachi, N.; Boswell, T.; Furuse, M. Intracerebroventricular injection of glucagon-like peptide-1 changes lipid metabolism in chicks. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 147, 1104–1108. [Google Scholar] [CrossRef]
- Richards, M.P.; McMurtry, J.P. Expression of proglucagon and proglucagon-derived peptide hormone receptor genes in the chicken. Gen. Comp. Endocrinol. 2008, 156, 323–338. [Google Scholar] [CrossRef]
- Huang, G.; Li, J.; Fu, H.; Yan, Z.; Bu, G.; He, X.; Wang, Y. Characterization of glucagon-like peptide 1 receptor (GLP1R) gene in chickens: Functional analysis, tissue distribution, and identification of its transcript variants. Domest. Anim. Endocrinol. 2012, 43, 1–15. [Google Scholar] [CrossRef]
- Nishimura, K.; Hiramatsu, K.; Monir, M.M.; Takemoto, C.; Watanabe, T. Ultrastructural study on colocalization of glucagon-like peptide (GLP)-1 with GLP-2 in chicken intestinal L-cells. J. Vet. Med. Sci. 2013, 75, 1335–1339. [Google Scholar] [CrossRef] [PubMed]
- Sam, A.H.; Troke, R.C.; Tan, T.M.; Bewick, G.A. The role of the gut/brain axis in modulating food intake. Neuropharmacology 2012, 63, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Nagell, C.F.; Wettergren, A.; Pedersen, J.F.; Mortensen, D.; Holst, J.J. Glucagon-like peptide-2 inhibits antral emptying in man, but is not as potent as glucagon-like peptide-1. Scand. J. Gastroenterol. 2004, 39, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J.; Yusta, B. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu. Rev. Physiol. 2014, 76, 561–583. [Google Scholar] [CrossRef]
- Drucker, D.J.; Habener, J.F.; Holst, J.J. Discovery, characterization, and clinical development of the glucagon-like peptides. J. Clin. Investig. 2017, 127, 4217–4227. [Google Scholar] [CrossRef]
- Wismann, P.; Pedersen, S.L.; Hansen, G.; Mannerstedt, K.; Pedersen, P.J.; Jeppesen, P.B.; Vrang, N.; Fosgerau, K.; Jelsing, J. Novel GLP-1/GLP-2 co-agonists display marked effects on gut volume and improves glycemic control in mice. Physiol. Behav. 2018, 192, 72–81. [Google Scholar] [CrossRef]
- Munroe, D.G.; Gupta, A.K.; Kooshesh, F.; Vyas, T.B.; Rizkalla, G.; Wang, H.; Demchshyn, L.; Yang, Z.J.; Kamboj, R.K.; Chen, H.; et al. Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2. Proc. Natl. Acad. Sci. USA 1999, 96, 1569–1573. [Google Scholar] [CrossRef]
- Tang-Christensen, M.; Larsen, P.J.; Thulesen, J.; Rømer, J.; Vrang, N. The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat. Med. 2000, 6, 802–807. [Google Scholar] [CrossRef]
- Lovshin, J.; Estall, J.; Yusta, B.; Brown, T.J.; Drucker, D.J. Glucagon-like peptide (GLP)-2 action in the murine central nervous system is enhanced by elimination of GLP-1 receptor signaling. J. Biol. Chem. 2001, 276, 21489–21499. [Google Scholar] [CrossRef]
- Baldassano, S.; Bellanca, A.L.; Serio, R.; Mule, F. Food intake in lean and obese mice after peripheral administration of glucagon-like peptide 2. J. Endocrinol. 2012, 213, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Guan, X. The CNS glucagon-like peptide-2 receptor in the control of energy balance and glucose homeostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Saneyasu, T.; Shimatani, T.; Aoki, K.; Yamaguchi, T.; Nakanishi, K.; Kamisoyama, H. Intracerebroventricular administration of chicken glucagon-like peptide-2 potently suppresses food intake in chicks. Anim. Sci. J. 2015, 86, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Shimatani, T.; Aoki, K.; Yamaguchi, T.; Kondo, M.; Saneyasu, T.; Kamisoyama, H. Glucagon-like Peptide-2 Functions as an Anorexigenic Peptide not only in the Cebntral Nervous System but also in the Peripheral Circulation in Broiler Chicks. J. Poult. Sci. 2015, 52, 183–187. [Google Scholar] [CrossRef]
- Kewan, A.; Shimatani, T.; Saneyasu, T.; Kamisoyama, H.; Honda, K. Comparison of the effects of intracerebroventricular administration of glucagon-like peptides 1 and 2 on hypothalamic appetite regulating factors and sleep-like behavior in chicks. Neurosci. Lett. 2022, 768, 136362. [Google Scholar] [CrossRef]
- Ghatei, M.A.; Uttenthal, L.O.; Christofides, N.D.; Bryant, M.G.; Bloom, S.R. Molecular forms of human enteroglucagon in tissue and plasma: Plasma responses to nutrient stimuli in health and in disorders of the upper gastrointestinal tract. J. Clin. Endocrinol. Metab. 1983, 57, 488–495. [Google Scholar] [CrossRef]
- Dakin, C.L.; Gunn, I.; Small, C.J.; Edwards, C.M.B.; Hay, D.L.; Smith, D.M.; Ghatei, M.A.; Bloom, S.R. Oxyntomodulin inhibits food intake in the rat. Endocrinology 2001, 142, 4244–4250. [Google Scholar] [CrossRef]
- Dakin, C.L.; Small, C.J.; Batterham, R.L.; Neary, N.M.; Cohen, M.A.; Patterson, M.; Ghatei, M.A.; Bloom, S.R. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 2004, 145, 2687–2695. [Google Scholar] [CrossRef]
- Cohen, M.A.; Ellis, S.M.; Le Roux, C.W.; Batterham, R.L.; Park, A.; Patterson, M.; Frost, G.S.; Ghatei, M.A.; Bloom, S.R. Oxyntomodulin suppresses appetite and reduces food intake in humans. J. Clin. Endocr. 2003, 88, 4696–4701. [Google Scholar] [CrossRef]
- Wynne, K.; Park, A.J.; Small, C.J.; Patterson, M.; Ellis, S.M.; Murphy, K.G.; Wren, A.M.; Frost, G.S.; Meeran, K.; Ghatei, M.A.; et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: A double-blind, randomized, controlled trial. Diabetes 2005, 54, 2390–2395. [Google Scholar] [CrossRef]
- Baggio, L.L.; Huang, Q.; Brown, T.J.; Drucker, D.J. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology 2004, 127, 546–558. [Google Scholar] [CrossRef]
- Baldissera, F.G.; Holst, J.J.; Knuhtsen, S.; Hilsted, L.; Nielsen, O.V. Oxyntomodulin (glicentin-(33–69)): Pharmacokinetics, binding to liver cell membranes, effects on isolated perfused pig pancreas, and secretion from isolated perfused lower small intestine of pigs. Regul. Pept. 1988, 21, 151–166. [Google Scholar] [CrossRef]
- Schjoldager, B.T.G.; Baldissera, F.G.A.; Mortensen, P.E.; Holst, J.J.; Christiansen, J. Oxyntomodulin: A potential hormone from the distal gut. Pharmacokinetics and effects on gastric acid and insulin secretion in man. Eur. J. Clin. Investig. 1988, 18, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Cline, M.A.; Bowden, C.N.; Nandar, W.; Rogers, J.O. Central oxyntomodulin causes anorexigenic effects associated with the hypothalamus and alimentary canal in chicks (Gallus gallus). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008, 149, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Saneyasu, T.; Yamaguchi, T.; Shimatani, T.; Aoki, K.; Nakanishi, K.; Kamisoyama, H. Intracerebroventricular administration of chicken oxyntomodulin suppresses food intake and increases plasma glucose and corticosterone concentrations in chicks. Neurosci. Lett. 2014, 564, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Halter, B.; Chowdhury, V.S.; Gilbert, E.R.; Cline, M.A. Oxyntomodulin induces satiety and activates the arcuate nucleus of the hypothalamus in Japanese quail. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2020, 247, 110721. [Google Scholar] [CrossRef] [PubMed]
- Shurlock, T.G.H.; Forbes, J.M. Evidence for hepatic glucostatic regulation of food intake in the domestic chicken and its interaction with gastro-intestinal control. Br. Poult. Sci. 1981, 22, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Lacy, M.P.; van Krey, H.P.; Skewes, P.A.; Denbow, D.M. Effect of intrahepatic glucose infusions on feeding in heavy and light breed chicks. Poult. Sci. 1985, 64, 751–756. [Google Scholar] [CrossRef]
- Honda, K.; Kamisoyama, H.; Saito, N.; Kurose, Y.; Sugahara, K.; Hasegawa, S. Central administration of glucagon suppresses food intake in chicks. Neurosci. Lett. 2007, 416, 198–201. [Google Scholar] [CrossRef]
- Gibbs, J.; Young, R.C.; Smith, G.P. Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature 1973, 245, 323–325. [Google Scholar] [CrossRef]
- Buffa, R.; Solcia, E.; Go, V.L.W. Immunohistochemical identification of the cholecystokinin cell in the intestinal mucosa. Gastroenterology 1976, 70, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Liddle, R.A.; Goldfine, I.D.; Rosen, M.S.; Taplitz, R.A.; Williams, J.A. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J. Clin. Investig. 1985, 75, 1144–1152. [Google Scholar] [CrossRef]
- Moran, T.H.; McHugh, P.R. Cholecystokinin suppresses food intake by inhibiting gastric emptying. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1982, 242, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Kissileff, H.R.; Pi-Sunyer, F.X.; Thornton, J.; Smith, G.P. C-terminal octapeptide of cholecystokinin decreases food intake in man. Am. J. Clin. Nutr. 1981, 34, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Moran, T.H.; Robinson, P.H.; Goldrich, M.S.; McHugh, P.R. Two brain cholecystokinin receptors: Implications for behavioral actions. Brain Res. 1986, 362, 175–179. [Google Scholar] [CrossRef]
- Smith, G.P.; Jerome, C.; Cushin, B.J.; Eterno, R.; Simansky, K.J. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 1981, 213, 1036–1037. [Google Scholar] [CrossRef] [PubMed]
- Melville, L.D.; Smith, G.P.; Gibbs, J. Devazepide antagonizes the inhibitory effect of cholecystokinin on intake in sham-feeding rats. Pharmacol. Biochem. Behav. 1992, 43, 975–977. [Google Scholar] [CrossRef] [PubMed]
- Gutzwiller, J.P.; Drewe, J.; Ketterer, S.; Hildebrand, P.; Krautheim, A.; Beglinger, C. Interaction between CCK and a preload on reduction of food intake is mediated by CCK-A receptors in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, 189–195. [Google Scholar] [CrossRef]
- Tachibana, T.; Matsuda, K.; Kawamura, M.; Ueda, H.; Khan, M.S.I.; Cline, M.A. Feeding-suppressive mechanism of sulfated cholecystokinin (26–33) in chicks. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2012, 161, 372–378. [Google Scholar] [CrossRef]
- Dunn, I.C.; Meddle, S.L.; Wilson, P.W.; Wardle, C.A.; Law, A.S.; Bishop, V.R.; Hindar, C.; Robertson, G.W.; Burt, D.W.; Ellison, S.J.H.; et al. Decreased expression of the satiety signal receptor CCKAR is responsible for increased growth and body weight during the domestication of chickens. Am. J. Physiol. Endocrinol. Metab. 2013, 304, 909–921. [Google Scholar] [CrossRef]
- Jønson, L.; Schoeman, N.; Saayman, H.; Naudé, R.; Jensen, H.; Johnsen, A.H. Identification of ostrich and chicken cholecystokinin cDNA and intestinal peptides. Peptides 2000, 21, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, L.; Lucini, C. An immunohistochemical study on the endocrine cells in the gastrointestinal tract of domestic duck. Eur. J. Basic. Appl. Histochem. 1991, 35, 131–143. [Google Scholar] [PubMed]
- Castaldo, L.; Lucini, C. Ontogenesis of some endocrine cells in the duck gastrointestinal tract. Eur. J. Histochem. 1994, 38, 319–326. [Google Scholar] [PubMed]
- Côté, C.D.; Zadeh-Tahmasebi, M.; Rasmussen, B.A.; Duca, F.A.; Lam, T.K. Hormonal signaling in the gut. J. Biol. Chem. 2014, 289, 11642–11649. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, I.B.; Svensson, S.P.; Monstein, H.J. Molecular cloning of an unusual bicistronic cholecystokinin receptor mRNA expressed in chicken brain: A structural and functional expression study. Regul. Pept. 2003, 114, 37–43. [Google Scholar] [CrossRef]
- Ohkubo, T.; Shamoto, K.; Ogino, T. Structure and tissue distribution of cholecystokinin-1 receptor in chicken. J. Poult. Sci. 2007, 44, 98–104. [Google Scholar] [CrossRef]
- Dupre, J.; Ross, S.A.; Watson, D.; Brown, J.C. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J. Clin. Endocrinol. Metab. 1973, 37, 826–828. [Google Scholar] [CrossRef]
- Andersen, D.K.; Elahi, D.; Brown, J.C.; Tobin, J.D.; Andres, R. Oral glucose augmentation of insulin secretion: Interactions of gastric inhibitory polypeptide with ambient glucose and insulin levels. J. Clin. Investig. 1978, 62, 152–161. [Google Scholar] [CrossRef]
- Usdin, T.B.; Mezey, E.; Button, D.C.; Brownstein, M.J.; Bonner, T.I. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 1993, 133, 2861–2870. [Google Scholar] [CrossRef]
- Seino, Y.; Fukushima, M.; Yabe, D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes. Investig. 2010, 1, 8–23. [Google Scholar] [CrossRef]
- Szalowska, E.; Meijer, K.; Kloosterhuis, N.; Razaee, F.; Priebe, M.; Vonk, R.J. Sub-chronic administration of stable GIP analog in mice decreases serum LPL activity and body weight. Peptides 2011, 32, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Yabut, J.M.; Crane, J.D.; Green, A.E.; Keating, D.J.; Khan, W.I.; Steinberg, G.R. Emerging roles for serotonin in regulating metabolism: New implications for an ancient molecule. Endocr. Rev. 2019, 40, 1092–1107. [Google Scholar] [CrossRef]
- Sohn, J.W.; Xu, Y.; Jones, J.E.; Wickman, K.; Williams, K.W.; Elmquist, J.K. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels. Neuron 2011, 71, 488–497. [Google Scholar] [CrossRef]
- Vlaev, I.; Crockett, M.J.; Clark, L.; Müller, U.; Robbins, T.W. Serotonin enhances the impact of health information on food choice. Cogn. Affect. Behav. Neurosci. 2017, 17, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Tecott, L.H.; Sun, L.M.; Akana, S.F.; Strack, A.M.; Lowenstein, D.H.; Dallman, M.F.; Julius, D. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 1995, 374, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Berglund, E.D.; Liu, C.; Sohn, J.W.; Liu, T.; Kim, M.H.; Lee, C.E.; Vianna, C.R.; Williams, K.W.; Xu, Y.; Elmquist, J.K. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis. J. Clin. Investig. 2013, 123, 5061–5070. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, S.E.; Oh, J.H.; Seo, K.W.; Song, K.H. Leptin, adiponectin and serotonin levels in lean and obese dogs. BMC Vet. Res. 2014, 10, 113. [Google Scholar] [CrossRef]
- Shen, Y.B.; Voilqué, G.; Kim, J.D.; Odle, J.; Kim, S.W. Effects of increasing tryptophan intake on growth and physiological changes in nursery pigs. J. Anim. Sci. 2012, 90, 2264–2275. [Google Scholar] [CrossRef]
- Kwon, W.B.; Soto, J.A.; Stein, H.H. Effects of dietary leucine and tryptophan on serotonin metabolism and growth performance of growing pigs. J. Anim. Sci. 2022, 100, skab356. [Google Scholar] [CrossRef]
- Linh, N.T.; Guntoro, B.; Qui, N.H. Immunomodulatory, behavioral, and nutritional response of tryptophan application on poultry. Vet. World. 2021, 14, 2244. [Google Scholar] [CrossRef]
- Monteiro, M.P.; Batterham, R.L. The importance of the gastrointestinal tract in controlling food intake and regulating energy balance. Gastroenterology 2017, 152, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Grunddal, K.V.; Ratner, C.F.; Svendsen, B.; Sommer, F.; Engelstoft, M.S.; Madsen, A.N.; Pedersen, J.; Nøhr, M.K.; Egerod, K.L.; Nawrocki, A.R.; et al. Neurotensin is coexpressed, coreleased, and acts together with GLP-1 and PYY in enteroendocrine control of metabolism. Endocrinology 2016, 157, 176–194. [Google Scholar] [CrossRef]
- Ratner, C.; Skov, L.J.; Raida, Z.; Bächler, T.; Bellmann-Sickert, K.; Le Foll, C.; Sivertsen, B.; Dalbøge, L.S.; Hartmann, B.; Beck-Sickinger, A.G.; et al. Effects of peripheral neurotensin on appetite regulation and its role in gastric bypass surgery. Endocrinology 2016, 157, 3482–3492. [Google Scholar] [CrossRef] [PubMed]
- Gribble, F.M.; Reimann, F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 2019, 15, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Lu, V.B.; Gribble, F.M.; Reimann, F. Nutrient-induced cellular mechanisms of gut hormone secretion. Nutrients 2021, 13, 883. [Google Scholar] [CrossRef]
- Augustin, R.; Mayoux, E. Mammalian sugar transporters. In Glucose Homeostasis; IntechOpen: London, UK, 2014. [Google Scholar]
- Wright, E.M.; Ghezzi, C.; Loo, D.D. Novel and unexpected functions of SGLTs. Physiology 2017, 32, 435–443. [Google Scholar] [CrossRef]
- Wright, E.M.; Hirsch, J.R.; Loo, D.D.; Zampighi, G.A. Regulation of Na+/glucose cotransporters. J. Exp. Biol. 1997, 200, 287–293. [Google Scholar] [CrossRef]
- Singh, S.K.; Bartoo, A.C.; Krishnan, S.; Boylan, M.O.; Schwartz, J.H.; Wolfe, M.M. Glucose-dependent insulinotropic polypeptide (GIP) stimulates transepithelial glucose transport. Obesity 2008, 16, 2412–2416. [Google Scholar] [CrossRef]
- Cheeseman, C.I.; Tsang, R. The effect of GIP and glucagon-like peptides on intestinal basolateral membrane hexose transport. Am. J. Physiol. Gastrointest. Liver Physiol. 1996, 271, 477–482. [Google Scholar] [CrossRef]
- Cheeseman, C.I.; O’neill, D. Basolateral D-glucose transport activity along the crypt-villus axis in rat jejunum and upregulation induced by gastric inhibitory peptide and glucagon-like peptide-2. Exp. Physiol. 1998, 83, 605–616. [Google Scholar] [CrossRef]
- Ogawa, E.; Hosokawa, M.; Harada, N.; Yamane, S.; Hamasaki, A.; Toyoda, K.; Fujimoto, S.; Fujita, Y.; Fukuda, K.; Tsukiyama, K.; et al. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and vintestinal motility in mice. Biochem. Biophys. Res. Commun. 2011, 404, 115–120. [Google Scholar] [CrossRef]
- Smith, K.; Azari, E.K.; LaMoia, T.E.; Hussain, T.; Vargova, V.; Karolyi, K.; Veldhuis, P.P.; Arnoletti, J.P.; de la Fuente, S.G.; Pratley, R.E.; et al. T1R2 receptor-mediated glucose sensing in the upper intestine potentiates glucose absorption through activation of local regulatory pathways. Mol. Metab. 2018, 17, 98–111. [Google Scholar] [CrossRef]
- Powell, D.R.; Smith, M.; Greer, J.; Harris, A.; Zhao, S.; DaCosta, C.; Mseeh, F.; Shadoan, M.K.; Sands, A.; Zambrowicz, B.; et al. LX4211 increases serum glucagon-like peptide 1 and peptide YY levels by reducing sodium/glucose cotransporter 1 (SGLT1)–mediated absorption of intestinal glucose. J. Pharmacol. Exp. Ther. 2013, 345, 250–259. [Google Scholar] [CrossRef]
- Röder, P.V.; Geillinger, K.E.; Zietek, T.S.; Thorens, B.; Koepsell, H.; Daniel, H. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS ONE 2014, 9, e89977. [Google Scholar] [CrossRef] [PubMed]
- Salvador, M.T.; Murillo, M.D.; Rodriguez-Yoldi, M.C.; Alcalde, A.I.; Mesonero, J.E.; Rodriguez-Yoldi, M.J. Effects of serotonin on the physiology of the rabbit small intestine. Can. J. Physiol. Pharm. 2000, 78, 359–366. [Google Scholar] [CrossRef]
- Hirsh, A.J.; Cheeseman, C.I. Cholecystokinin decreases intestinal hexose absorption by a parallel reduction in SGLT1 abundance in the brush-border membrane. J. Biol. Chem. 1998, 273, 14545–14549. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.M.; King, A.; Samuelson, L.C.; Kindel, T.L.; Rider, T.; Jandacek, R.J.; Raybould, H.E.; Woods, S.C.; Tso, P. Cholecystokinin knockout mice are resistant to high-fat diet-induced obesity. Gastroenterology 2010, 138, 1997–2005. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Harada, N.; Ikeguchi-Ogura, E.; Sankoda, A.; Hatoko, T.; Lu, X.; Yasuda, T.; Yamane, S.; Inagaki, N. Gene expression of nutrient-sensing molecules in I cells of CCK reporter male mice. J. Mol. Endocrinol. 2021, 66, 11–22. [Google Scholar] [CrossRef]
- Sandoval, D.A.; D’Alessio, D.A. Physiology of proglucagon peptides: Role of glucagon and GLP-1 in health and disease. Physiol. Rev. 2015, 95, 513–548. [Google Scholar] [CrossRef]
- Campbell, J.E. Targeting the GIPR for obesity: To agonize or antagonize? Potential mechanisms. Mol. Metab. 2021, 46, 101139. [Google Scholar] [CrossRef]
- Sundaresan, S.; Shahid, R.; Riehl, T.E.; Chandra, R.; Nassir, F.; Stenson, W.F.; Liddle, R.A.; Abumrad, N.A. CD36-dependent signaling mediates fatty acid-induced gut release of secretin and cholecystokinin. FASEB J. 2013, 27, 1191–1202. [Google Scholar] [CrossRef] [PubMed]
- Little, T.J.; Isaacs, N.J.; Young, R.L.; Ott, R.; Nguyen, N.Q.; Rayner, C.K.; Horowitz, M.; Feinle-Bisset, C. Characterization of duodenal expression and localization of fatty acid-sensing receptors in humans: Relationships with body mass index. Am. J. Physiol. Gastroint. Liver. Physiol. 2014, 307, 958–967. [Google Scholar] [CrossRef] [PubMed]
- Demenis, C.; McLaughlin, J.; Smith, C.P. Sulfated cholecystokinin-8 promotes CD36—Mediated fatty acid uptake into primary mouse duodenal enterocytes. Front. Physiol. 2017, 8, 660. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Dai, D.; Wang, X.; Ding, Z.; Li, C.; Mehta, J.L. GLP-1 agonists inhibit ox-LDL uptake in macrophages by activating protein kinase A. J. Cardiovasc. Pharmacol. 2014, 64, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, K.; Wang, W.; Wen, Z.; Wang, P.; Liu, L.; Wang, D.W. Glucagon-like peptide-1 ameliorates cardiac lipotoxicity in diabetic cardiomyopathy via the PPAR α pathway. Aging Cell. 2018, 17, e12763. [Google Scholar] [CrossRef]
- Markovic, M.A.; Srikrishnaraj, A.; Tsang, D.; Brubaker, P.L. Requirement for the intestinal epithelial insulin-like growth factor-1 receptor in the intestinal responses to glucagon-like peptide-2 and dietary fat. FASEB J. 2020, 34, 6628–6640. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Parker, M.C.; Ferris, C.F.; Leeman, S.E. Neurotensin stimulates [3H] oleic acid translocation across rat small intestine. Am. J. Physiol. Gastrointest. Liver. Physiol. 1986, 251, 823–829. [Google Scholar] [CrossRef]
- Li, J.; Song, J.; Zaytseva, Y.Y.; Liu, Y.; Rychahou, P.; Jiang, K.; Starr, M.E.; Kim, J.T.; Harris, J.W.; Yiannikouris, F.B.; et al. An obligatory role for neurotensin in high-fat-diet-induced obesity. Nature 2016, 533, 411–415. [Google Scholar] [CrossRef]
- Grenier, E.; Garofalo, C.; Delvin, E.; Levy, E. Modulatory role of PYY in transport and metabolism of cholesterol in intestinal epithelial cells. PLoS ONE 2012, 7, e40992. [Google Scholar] [CrossRef]
- Johnson, L.R. Physiology of the Gastrointestinal Tract; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Ganapathy, V.; Gupta, N.; Martindale, R.G. Protein digestion and absorption. In Physiology of the Gastrointestinal Tract; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1667–1692. [Google Scholar]
- Coon, S.D.; Rajendran, V.M.; Schwartz, J.H.; Singh, S.K. Glucose-dependent insulinotropic polypeptide-mediated signaling pathways enhance apical PepT1 expression in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver. Physiol. 2015, 308, 56–62. [Google Scholar] [CrossRef]
- Cheeseman, C.I. Upregulation of SGLT-1 transport activity in rat jejunum induced by GLP-2 infusion in vivo. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1997, 273, 1965–1971. [Google Scholar] [CrossRef]
- Shin, E.D.; Estall, J.L.; Izzo, A.; Drucker, D.J.; Brubaker, P.L. Mucosal adaptation to enteral nutrients is dependent on the physiologic actions of glucagon-like peptide-2 in mice. Gastroenterology 2005, 128, 1340–1353. [Google Scholar] [CrossRef] [PubMed]
- Brubaker, P.L. Glucagon-like peptide-2 and the regulation of intestinal growth and function. Compr. Physiol. 2011, 8, 1185–1210. [Google Scholar]
- Lee, J.; Koehler, J.; Yusta, B.; Bahrami, J.; Matthews, D.; Rafii, M.; Pencharz, P.B.; Drucker, D.J. Enteroendocrine-derived glucagon-like peptide-2 controls intestinal amino acid transport. Mol. Metab. 2017, 6, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Coon, S.D.; Schwartz, J.H.; Rajendran, V.M.; Jepeal, L.; Singh, S.K. Glucose-dependent insulinotropic polypeptide regulates dipeptide absorption in mouse jejunum. Am. J. Physiol. Gastrointest. Liver. Physiol. 2013, 305, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Conway, D.P.; McKenzie, M.E.; Dayton, A.D. Relationship of coccidial lesion scores and weight gain in infections of Eimeria acervulina, E. maxima and E. tenella in broilers. Avian. Pathol. 1990, 19, 489–496. [Google Scholar] [CrossRef]
- Chapman, H.D. Milestones in avian coccidiosis research: A review. Poult. Sci. 2014, 93, 501–511. [Google Scholar] [CrossRef]
- Lillehoj, H.S.; Jang, S.I.; Lee, S.H.; Lillehoj, E.P. Chapter 4: Avian coccidiosis as a prototype intestinal disease—Host protective immunity and novel disease control strategies. In Intestinal Health: Key to Maximise Growth Performance in Livestock; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; p. 79. [Google Scholar]
- Teng, P.Y.; Choi, J.; Tompkins, Y.; Lillehoj, H.; Kim, W. Impacts of increasing challenge with Eimeria maxima on the growth performance and gene expression of biomarkers associated with intestinal integrity and nutrient transporters. Vet. Res. 2021, 52, 81. [Google Scholar] [CrossRef]
- Kipper, M.; Andretta, I.; Lehnen, C.R.; Lovatto, P.A.; Monteiro, S.G. Meta-analysis of the performance variation in broilers experimentally challenged by Eimeria spp. Vet. Parasitol. 2013, 196, 77–84. [Google Scholar] [CrossRef]
- Bozkurt, M.; Aysul, N.; Küçükyilmaz, K.; Aypak, S.; Ege, G.; Catli, A.U.; Aksit, H.; Çöven, F.; Seyrek, K.; Çınar, M. Efficacy of in-feed preparations of an anticoccidial, multienzyme, prebiotic, probiotic, and herbal essential oil mixture in healthy and Eimeria spp.-infected broilers. Poult. Sci. 2014, 93, 389–399. [Google Scholar] [CrossRef]
- Miska, K.B.; Fetterer, R.H. The effect of Eimeria maxima infection on the expression of amino acid and sugar transporters aminopeptidase, as well as the di-and tri-peptide transporter PepT1, is not solely due to decreased feed intake. Poult. Sci. 2018, 97, 1712–1721. [Google Scholar] [CrossRef] [PubMed]
- Abdelhady, A.Y.; El-Safty, S.A.; Hashim, M.; Ibrahim, M.A.; Mohammed, F.F.; Elbaz, A.M.; Abdel-Moneim, A.M.E. Comparative evaluation of single or combined anticoccidials on performance, antioxidant status, immune response, and intestinal architecture of broiler chickens challenged with mixed Eimeria species. Poult. Sci. 2021, 100, 101162. [Google Scholar] [CrossRef]
- Teng, P.Y.; Liu, G.; Choi, J.; Yadav, S.; Wei, F.; Kim, W.K. Effects of levels of methionine supplementations in forms of L-or DL-methionine on the performance, intestinal development, immune response, and antioxidant system in broilers challenged with Eimeria spp. Poult. Sci. 2023, 102, 102586. [Google Scholar] [CrossRef] [PubMed]
- Tompkins, Y.H.; Choi, J.; Teng, P.Y.; Yamada, M.; Sugiyama, T.; Kim, W.K. Reduced bone formation and increased bone resorption drive bone loss in Eimeria infected broilers. Sci. Rep. 2023, 13, 616. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, W. Interactions of microbiota and mucosal immunity in the ceca of broiler chickens infected with Eimeria tenella. Vaccines 2022, 10, 1941. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Teng, P.Y.; Singh, A.K.; Choi, J.; Kim, W.K. Influence of Brassica spp. rapeseed and canola meal, and supplementation of bioactive compound (AITC) on growth performance, intestinal-permeability, oocyst shedding, lesion score, histomorphology, and gene expression of broilers challenged with E. maxima. Poult. Sci. 2022, 101, 101583. [Google Scholar] [CrossRef]
- Yadav, S.; Teng, P.Y.; Dos Santos, T.S.; Gould, R.L.; Craig, S.W.; Fuller, A.L.; Pazdro, R.; Kim, W.K. The effects of different doses of curcumin compound on growth performance, antioxidant status, and gut health of broiler chickens challenged with Eimeria species. Poult. Sci. 2020, 99, 5936–5945. [Google Scholar] [CrossRef]
- Morris, B.C.; Danforth, H.D.; Caldwell, D.J.; Pierson, F.W.; McElroy, A.P. Intestinal mucosal mast cell immune response and pathogenesis of two Eimeria acervulina isolates in broiler chickens. Poult. Sci. 2004, 83, 1667–1674. [Google Scholar] [CrossRef]
- Kim, E.; Leung, H.; Akhtar, N.; Li, J.; Barta, J.R.; Wang, Y.; Yang, C.; Kiarie, E. Growth performance and gastrointestinal responses of broiler chickens fed corn-soybean meal diet without or with exogenous epidermal growth factor upon challenge with Eimeria. Poult. Sci. 2017, 96, 3676–3686. [Google Scholar] [CrossRef]
- Lal, K.; Bromley, E.; Oakes, R.; Prieto, J.H.; Sanderson, S.J.; Kurian, D.; Hunt, L.; Yates III, J.R.; Wastling, J.M.; Sinden, R.E.; et al. Proteomic comparison of four Eimeria tenella life-cycle stages: Unsporulated oocyst, sporulated oocyst, sporozoite and second-generation merozoite. Proteomics 2009, 9, 4566–4576. [Google Scholar] [CrossRef]
- Cowper, B.; Matthews, S.; Tomley, F. The molecular basis for the distinct host and tissue tropisms of coccidian parasites. Mol. Biochem. Parasitol. 2012, 186, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rochell, S.J.; Parsons, C.M.; Dilger, R.N. Effects of Eimeria acervulina infection severity on growth performance, apparent ileal amino acid digestibility, and plasma concentrations of amino acids, carotenoids, and α1-acid glycoprotein in broilers. Poult. Sci. 2016, 95, 1573–1581. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.Y.; Yadav, S.; de Souza Castro, F.L.; Tompkins, Y.H.; Fuller, A.L.; Kim, W.K. Graded Eimeria challenge linearly regulated growth performance, dynamic change of gastrointestinal permeability, apparent ileal digestibility, intestinal morphology, and tight junctions of broiler chickens. Poult. Sci. 2020, 99, 4203–4216. [Google Scholar] [CrossRef] [PubMed]
- Adedokun, S.A.; Ajuwon, K.M.; Romero, L.F.; Adeola, O. Ileal endogenous amino acid losses: Response of broiler chickens to fiber and mild coccidial vaccine challenge. Poult. Sci. 2012, 91, 899–907. [Google Scholar] [CrossRef]
- Amerah, A.M.; Ravindran, V. Effect of coccidia challenge and natural betaine supplementation on performance, nutrient utilization, and intestinal lesion scores of broiler chickens fed suboptimal level of dietary methionine. Poult. Sci. 2015, 94, 673–680. [Google Scholar] [CrossRef]
- Kiarie, E.G.; Leung, H.; Akbari Moghaddam Kakhki, R.; Patterson, R.; Barta, J.R. Utility of feed enzymes and yeast derivatives in ameliorating deleterious effects of coccidiosis on intestinal health and function in broiler chickens. Front. Vet. Sci. 2019, 6, 473. [Google Scholar] [CrossRef]
- Teng, P.Y.; Yadav, S.; Shi, H.; Kim, W.K. Evaluating endogenous loss and standard ileal digestibility of amino acids in response to the graded severity levels of E. maxima infection. Poult. Sci. 2021, 100, 101426. [Google Scholar] [CrossRef]
- Teng, P.Y.; Choi, J.; Yadav, S.; Marshall, B.; Castro, F.L.S.; Ferrel, J.; Kim, W.K. Evaluation of a dacitic (rhyolitic) tuff breccia use on performance, inflammatory, and antioxidant responses in broilers mildly challenged with Eimeria spp. Poult. Sci. 2023, 102, 102697. [Google Scholar] [CrossRef]
- Fetterer, R.H.; Miska, K.B.; Jenkins, M.C.; Wong, E.A. Expression of nutrient transporters in duodenum, jejunum, and ileum of Eimeria maxima-infected broiler chickens. Parasitol. Res. 2014, 113, 3891–3894. [Google Scholar] [CrossRef]
- Miska, K.B.; Fetterer, R.H. The mRNA expression of amino acid and sugar transporters, aminopeptidase, as well as the di-and tri-peptide transporter PepT1 in the intestines of Eimeria infected broiler chickens. Poult. Sci. 2017, 96, 465–473. [Google Scholar] [CrossRef]
- Su, S.; Miska, K.B.; Fetterer, R.H.; Jenkins, M.C.; Wong, E.A. Expression of digestive enzymes and nutrient transporters in Eimeria-challenged broilers. Exp. Parasitol. 2015, 150, 13–21. [Google Scholar] [CrossRef]
- Castro, F.L.; Teng, P.Y.; Yadav, S.; Gould, R.L.; Craig, S.; Pazdro, R.; Kim, W.K. The effects of L-Arginine supplementation on growth performance and intestinal health of broiler chickens challenged with Eimeria spp. Poult. Sci. 2020, 99, 5844–5857. [Google Scholar] [CrossRef] [PubMed]
- Castro, F.L.S.; Tompkins, Y.H.; Pazdro, R.; Kim, W.K. The effects of total sulfur amino acids on the intestinal health status of broilers challenged with Eimeria spp. Poult. Sci. 2020, 99, 5027–5036. [Google Scholar] [CrossRef]
- Xie, H.; Rath, N.C.; Huff, G.R.; Huff, W.E.; Balog, J.M. Effects of Salmonella typhimurium lipopolysaccharide on broiler chickens. Poult. Sci. 2000, 79, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Vandeplas, S.; Dauphin, R.D.; Thiry, C.; Beckers, Y.; Welling, G.W.; Thonart, P.; Thewis, A. Efficiency of a Lactobacillus plantarum-xylanase combination on growth performances, microflora populations, and nutrient digestibilities of broilers infected with Salmonella typhimurium. Poult. Sci. 2009, 88, 1643–1654. [Google Scholar] [CrossRef]
- Marcq, C.; Cox, E.; Szalo, I.M.; Thewis, A.; Beckers, Y. Salmonella typhimurium oral challenge model in mature broilers: Bacteriological, immunological, and growth performance aspects. Poult. Sci. 2011, 90, 59–67. [Google Scholar] [CrossRef]
- Adhikari, P.; Yadav, S.; Cosby, D.E.; Cox, N.A.; Jendza, J.A.; Kim, W.K. Research Note: Effect of organic acid mixture on growth performance and Salmonella typhimurium colonization in broiler chickens. Poult. Sci. 2020, 99, 2645–2649. [Google Scholar] [CrossRef]
- Choi, J.; Marshall, B.; Ko, H.; Shi, H.; Singh, A.K.; Thippareddi, H.; Holladay, S.; Gogal, R.M., Jr.; Kim, W.K. Antimicrobial and immunomodulatory effects of tannic acid supplementation in broilers infected with Salmonella typhimurium. Poult. Sci. 2022, 101, 102111. [Google Scholar] [CrossRef]
- Moharreri, M.; Vakili, R.; Oskoueian, E.; Rajabzadeh, G. Effects of microencapsulated essential oils on growth performance and biomarkers of inflammation in broiler chickens challenged with Salmonella enteritidis. J. Saudi Soc. Agric. Sci. 2022, 21, 349–357. [Google Scholar] [CrossRef]
- Jazi, V.; Foroozandeh, A.D.; Toghyani, M.; Dastar, B.; Koochaksaraie, R.R. Effects of Pediococcus acidilactici, mannan-oligosaccharide, butyric acid and their combination on growth performance and intestinal health in young broiler chickens challenged with Salmonella typhimurium. Poult. Sci. 2018, 97, 2034–2043. [Google Scholar] [CrossRef]
- Rajani, J.; Dastar, B.; Samadi, F.; Karimi Torshizi, M.A.; Abdulkhani, A.; Esfandyarpour, S. Effect of extracted galactoglucomannan oligosaccharides from pine wood (Pinus brutia) on Salmonella typhimurium colonisation, growth performance and intestinal morphology in broiler chicks. Br. Poult. Sci. 2016, 57, 682–692. [Google Scholar] [PubMed]
- Gan, L.; Fan, H.; Mahmood, T.; Guo, Y. Dietary supplementation with vitamin C. ameliorates the adverse effects of Salmonella enteritidis—Challenge in broilers by shaping intestinal microbiota. Poult. Sci. 2020, 99, 3663–3674. [Google Scholar] [CrossRef] [PubMed]
- Zhen, W.; Shao, Y.; Gong, X.; Wu, Y.; Geng, Y.; Wang, Z.; Guo, Y. Effect of dietary Bacillus coagulans supplementation on growth performance and immune responses of broiler chickens challenged by Salmonella enteritidis. Poult. Sci. 2018, 97, 2654–2666. [Google Scholar] [CrossRef]
- Omrani, A.H.; Mousavi, S.N.; Foroudi, F.; Jafarabadi, G.A.; Hosseini, S.A.; Alahyaribeik, S. The effects of probiotic and threonine application on the carcass yield, internal organ development, intestinal morphology and cecal microbiota of broilers challenged with Clostridium perfringens. Res. Vet. Sci. 2023, 160, 1–10. [Google Scholar] [CrossRef]
- Shini, S.; Zhang, D.; Aland, R.C.; Li, X.; Dart, P.J.; Callaghan, M.J.; Speight, R.E.; Bryden, W.L. Probiotic Bacillus amyloliquefaciens H57 ameliorates subclinical necrotic enteritis in broiler chicks by maintaining intestinal mucosal integrity and improving feed efficiency. Poult. Sci. 2020, 99, 4278–4293. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Tahir, M.; Naz, S.; Khan, N.A.; Ullah Khan, R. In vitro efficacy and ameliorating effect of Moringa oleifera on growth, carcass, stress and digestibility of nutrients in Escherichia coli-infected broilers. J. Appl. Anim. Res. 2020, 50, 118–124. [Google Scholar] [CrossRef]
- Hite, J.L.; Cressler, C.E. Parasite-mediated anorexia and nutrition modulate virulence evolution. Integr. Comp. Biol. 2019, 59, 1264–1274. [Google Scholar] [CrossRef]
- Taylor, J.; Sakkas, P.; Kyriazakis, I. Starving for nutrients: Anorexia during infection with parasites in broilers is affected by diet composition. Poult. Sci. 2022, 101, 101535. [Google Scholar] [CrossRef]
- Bottje, W.G.; Harrison, P.C. Effect of carbonated water on growth performance of cockerels subjected to constant and cyclic heat stress temperatures. Poult. Sci. 1985, 64, 1285–1292. [Google Scholar] [CrossRef]
- Al-Fataftah, A.R.; Abdelqader, A. Effects of dietary Bacillus subtilis on heat-stressed broilers performance, intestinal morphology and microflora composition. Anim. Feed Sci. Technol. 2014, 198, 279–285. [Google Scholar] [CrossRef]
- Yi, D.; Hou, Y.; Tan, L.; Liao, M.; Xie, J.; Wang, L.; Ding, B.; Yang, Y.; Gong, J. N-acetylcysteine improves the growth performance and intestinal function in the heat-stressed broilers. Anim. Feed Sci. Technol. 2016, 220, 83–92. [Google Scholar] [CrossRef]
- Castro, F.L.S.; Kim, Y.; Xu, H.; Kim, W.K. The effect of total sulfur amino acid levels on growth performance and bone metabolism in pullets under heat stress. Poult. Sci. 2020, 99, 5783–5791. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ou, J.; Luo, Z.; Kim, I.H. Effect of dietary β-1, 3-glucan supplementation and heat stress on growth performance, nutrient digestibility, meat quality, organ weight, ileum microbiota, and immunity in broilers. Poult. Sci. 2020, 99, 4969–4977. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Xiao, K.; Ke, Y.L.; Jiao, L.F.; Hu, C.H.; Diao, Q.Y.; Shi, B.; Zou, X.T. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poult. Sci. 2014, 93, 581–588. [Google Scholar] [CrossRef]
- Habashy, W.S.; Milfort, M.C.; Fuller, A.L.; Attia, Y.A.; Rekaya, R.; Aggrey, S.E. Effect of heat stress on protein utilization and nutrient transporters in meat-type chickens. Int. J. Biometeorol. 2017, 61, 2111–2118. [Google Scholar] [CrossRef]
- Bonnet, S.; Geraert, P.A.; Lessire, M.; Carre, B.; Guillaumin, S. Effect of high ambient temperature on feed digestibility in broilers. Poult. Sci. 1997, 76, 857–863. [Google Scholar] [CrossRef]
- Turcotte, L.P.; Srivastava, A.K.; Chiasson, J.L. Fasting increases plasma membrane fatty acid-binding protein (FABPPM) in red skeletal muscle. Mol. Cell. Biochem. 1997, 166, 153–158. [Google Scholar] [CrossRef]
- Orhan, C.; Tuzcu, M.; Deeh, P.B.D.; Sahin, N.; Komorowski, J.R.; Sahin, K. Organic chromium form alleviates the detrimental effects of heat stress on nutrient digestibility and nutrient transporters in laying hens. Biol. Trace Elem. Res. 2019, 189, 529–537. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, H.; Sheikhahmadi, A.; Wang, Y.; Jiao, H.; Lin, H.; Song, Z. Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens (Gallus gallus domesticus). Int. J. Biometeorol. 2015, 59, 127–135. [Google Scholar] [CrossRef]
- Quinteiro-Filho, W.M.; Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Sakai, M.; Sá, L.R.M.D.; Ferreira, A.J.P.; Palermo-Neto, J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult. Sci. 2010, 89, 1905–1914. [Google Scholar] [CrossRef]
- Song, X.; Luo, J.; Fu, D.; Zhao, X.; Bunlue, K.; Xu, Z.; Qu, M. Traditional Chinese medicine prescriptions enhance growth performance of heat stressed beef cattle by relieving heat stress responses and increasing apparent nutrient digestibility. Asian-Austral. J. Anim. Sci. 2014, 27, 1513. [Google Scholar] [CrossRef] [PubMed]
- Varasteh, S.; Braber, S.; Akbari, P.; Garssen, J.; Fink-Gremmels, J. Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PLoS ONE 2015, 10, e0138975. [Google Scholar] [CrossRef]
- Abdelqader, A.; Al-Fataftah, A.R. Effect of dietary butyric acid on performance, intestinal morphology, microflora composition and intestinal recovery of heat-stressed broilers. Livest. Sci. 2016, 183, 78–83. [Google Scholar] [CrossRef]
- Liu, L.; Fu, C.; Yan, M.; Xie, H.; Li, S.; Yu, Q.; He, S.; He, J. Resveratrol modulates intestinal morphology and HSP70/90, NF-κB and EGF expression in the jejunal mucosa of black-boned chickens on exposure to circular heat stress. Food Funct. 2016, 7, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, X.H.; Yang, L.; Chen, X.Y.; Jiang, R.S.; Jin, S.H.; Geng, Z.Y. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poult. Sci. 2017, 96, 4325–4332. [Google Scholar] [CrossRef]
- He, X.; Lu, Z.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Chronic heat stress alters hypothalamus integrity, the serum indexes and attenuates expressions of hypothalamic appetite genes in broilers. J. Therm. Biol. 2019, 81, 110–117. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Zhou, Y.; Feng, J.; Zhang, M. Effects of heat stress on gut-microbial metabolites, gastrointestinal peptides, glycolipid metabolism, and performance of broilers. Animals 2021, 11, 1286. [Google Scholar] [CrossRef]
- He, X.; Lu, Z.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Effects of chronic heat exposure on growth performance, intestinal epithelial histology, appetite-related hormones and genes expression in broilers. J. Sci. Food Agric. 2018, 98, 4471–4478. [Google Scholar] [CrossRef]
- Mtileni, B.J.; Nephawe, K.A.; Nesamvuni, A.E.; Benyi, K. The influence of stocking density on body weight, egg weight, and feed intake of adult broiler breeder hens. Poult. Sci. 2007, 86, 1615–1619. [Google Scholar] [CrossRef]
- Simitzis, P.E.; Kalogeraki, E.; Goliomytis, M.; Charismiadou, M.A.; Triantaphyllopoulos, K.; Ayoutanti, A.; Niforou, K.; Hager-Theodorides, A.L.; Deligeorgis, S.G. Impact of stocking density on broiler growth performance, meat characteristics, behavioural components and indicators of physiological and oxidative stress. Bri. Poult. Sci. 2012, 53, 721–730. [Google Scholar] [CrossRef]
- Ligaraba, T.J.; Benyi, K.; Baloyi, J.J. Effects of genotype and stocking density on broiler performance under three feeding regimes. Trop. Anim. Health Prod. 2016, 48, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Astaneh, I.Y.; Chamani, M.; Mousavi, S.N.; Sadeghi, A.A.; Afshar, M.A. Effects of stocking density on performance and immunity in Ross 308 broiler chickens. Kafkas Üniversitesi Vet. Fakültesi Derg. 2018, 24, 483–489. [Google Scholar]
- Feddes, J.J.; Emmanuel, E.J.; Zuidhoft, M.J. Broiler performance, body weight variance, feed and water intake, and carcass quality at different stocking densities. Poult. Sci. 2002, 81, 774–779. [Google Scholar] [CrossRef]
- Uzum, M.H.; Toplu, H.O. Effects of stocking density and feed restriction on performance, carcass, meat quality characteristics and some stress parameters in broilers under heat stress. Rev. Med.Vet. 2013, 164, 546–554. [Google Scholar]
- Shakeri, M.; Zulkifli, I.; Soleimani, A.F.; O’Reilly, E.L.; Eckersall, P.D.; Anna, A.A.; Kumari, S.; Eckersall, P.D.; Abdullah, F.F.J. Response to dietary supplementation of L-glutamine and L-glutamate in broiler chickens reared at different stocking densities under hot, humid tropical conditions. Poult. Sci. 2014, 93, 2700–2708. [Google Scholar] [CrossRef]
- Kridtayopas, C.; Rakangtong, C.; Bunchasak, C.; Loongyai, W. Effect of prebiotic and synbiotic supplementation in diet on growth performance, small intestinal morphology, stress, and bacterial population under high stocking density condition of broiler chickens. Poult. Sci. 2019, 98, 4595–4605. [Google Scholar] [CrossRef] [PubMed]
- Kamel, N.F.; Hady, M.M.; Ragaa, N.M.; Mohamed, F.F. Effect of nucleotides on growth performance, gut health, and some immunological parameters of broiler chicken exposed to high stocking density. Livest. Sci. 2021, 253, 104703. [Google Scholar] [CrossRef]
- Worthington, J.J.; Samuelson, L.C.; Grencis, R.K.; McLaughlin, J.T. Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion. PLoS Pathog. 2013, 9, e1003122. [Google Scholar] [CrossRef]
- O’Hara, J.R.; Skinn, A.C.; MacNaughton, W.K.; Sherman, P.M.; Sharkey, K.A. Consequences of Citrobacter rodentium infection on enteroendocrine cells and the enteric nervous system in the mouse colon. Cell. Microbiol. 2006, 8, 646–660. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez, R.; Vigliano, F.; Quiroga, M.I.; Nieto, J.M.; Bosi, G.; Domeneghini, C. Immunohistochemical study on the neuroendocrine system of the digestive tract of turbot, Scophthalmus maximus (L.), infected by Enteromyxum scophthalmi (Myxozoa). Fish Shellfish. Immunol. 2007, 22, 252–263. [Google Scholar] [CrossRef]
- Keller, J.; Binnewies, U.; Rösch, M.; Juul Holst, J.; Beglinger, C.; Andresen, V.; Layer, P. Gastric emptying and disease activity in inflammatory bowel disease. Eur. J. Clin. Investig. 2015, 45, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
Cell Type | Hormone | Location | Function | Reference |
---|---|---|---|---|
X or A/ P or D1 | Ghrelin | Stomach and proximal intestine | Stimulation of food intake | [18,19] |
G | Gastrin | Stomach | Gut motility and pancreatic enzyme release | |
D | STT | Stomach and intestine | Inhibition of GI hormone | |
EC | Serotonin | Stomach and intestine | Inhibition or stimulation of food intake Stimulation of gut motility | |
I | CCK | Proximal intestine | Inhibition of food intake and stimulation of the gallbladder | |
K | GIP | Stimulation of insulin and gastric acid secretion, nutrient sensing | ||
S | Secretin | Inhibition of gastric acid secretion and motility | ||
N | NTS | Distal intestine | Stimulation of gastric acid and bile secretion | |
L | GLP-1, GLP-2, PYY, OXM, NTS | Inhibition of food intake, gastric acid secretion, and response in glucose absorption |
Species | Location | Dosage | Function/Effects | Reference |
---|---|---|---|---|
Rat | ICV | 1.2 µmol/kg BW | ↑ Feed intake and body weight gain | [36] |
ICV | 3 nmol | ↑ Feed intake, GH hormone, ACTH hormone, and TSH hormone | [29] | |
IP | 30 nmol | ↑ Feed intake and GH hormone | ||
Human (Lean vs. Obese) | IV | 5.0 pmol/kg BW | ↑ More food intake in obese | [35] |
Laying hen | IV | 0.6 nmol/100 g BW | ↔ feed intake and expression of mRNA in proventriculus | [42] |
Broiler | IV | 1.0 nmol/100 g BW | ↓ Feed intake/↔ heat production | [41] |
Broiler | IV | 1.0 nmol/chick | ↑ Feed intake for 30 min after injection, and then no effect of feed intake | [43] |
Broiler | IP | 0.5–2.0 nmol/100 g BW | ↓ Feed intake | [44] |
Broiler | IV | 1 nM/100 g BW | ↓ Feed intake | [46] |
Japanese quail | IP | 0.5–1.0 nmol/chick | ↑ Feed intake | [45] |
3.0 nmol/chick | ↓ Feed intake | |||
ICV | 0.5–1.0 nmol/chick | ↓ Feed intake |
Species | Location | Dosage | Function/Effects | Reference |
---|---|---|---|---|
Rat | ICV | 0–1175 pmol | ↑ Feed intake | [52] |
Rat | IV | 0.3–10.0 µg/100 g BW | ↓ Feed intake | [51] |
Mice | IA | |||
Human | IV | 0.8 pmol/kg BW | ↓ Calorie intake | |
Mouse | ICV | 5.0 nmol/day | ↑ Feed and water intake ↑ Body weight gain | [53] |
Rat | IV | 25 nmol/kg BW | ↓ Feed intake | [56] |
Broiler | ICV | 59 or 118 pmol | ↑ Feed intake | [65] |
Broiler | IV | 3–6 nmol/kg BW | ↓ Feed intake | [66] |
Species | Location | Dosage | Function/Effects | Reference |
---|---|---|---|---|
Rat | ICV | 10 µL | ↓ Feed intake/↑ c-fos in PVN (Exendin (9–39) injection as GLP-1-receptor antagonist inhibits effects of GLP-1 on feed intake) | [78] |
IP | 100 µg/kg BW | ↓ Feed intake | [80] | |
Mouse | ICV | 1–3 nmol/kg | ↓ Feed intake and body weight ↑ POMC expression in ARC | [81] |
Human (Obese) | IV | 0.75 pmol/kg BW | ↓ Appetite, food intake, and body weight gain ↓ Plasma glucose and Gastric emptying | [85] |
Laying hens | ICV | 15–60 pmol/kg BW | ↓ Crop emptying/↔ Feed intake ↓ Feed intake (IP injection in unpublished paper) | [98] |
IP | 120–3000 pmol/kg BW | ↔ Crop emptying/Feed intake | ||
ICV | 1 pmol/kg of BW | ↓ Feed intake and plasma glucose | [99] | |
ICV | 5 pmol | ↓ Feed intake | [101] | |
Broiler | ICV | 5 pmol | ↔ Feed intake | |
Japanese quail | ICV, IP | 0.5–1.0 nmol/kg BW | ↓ Feed intake and body temperature | [100] |
Species | Location | Dosage | Function/Effects | Reference |
---|---|---|---|---|
Japanese quail | ICV | 0.01–1.0 nmol/kg of BW | ↔ Feed intake and body temperature | [100] |
IP | 0.5–5.0 nmol/kg BW | |||
Rat | ICV | 10 µg | ↓ Feed intake | [111] |
Mouse | ICV | - | ↓ Feed intake | [112] |
Mouse | IP | 0.30 µg/g BW | ↓ Feed intake and gastric emptying rate | [113] |
Laying hen | ICV | 30–300 pmol | ↓ Linearly feed intake and concentration of glucose | [115] |
Broiler | ICV | 30 pmol | ↓ Feed intake | |
Broiler | ICV | 30–300 pmol | ↓ Feed intake | [116] |
10 pmol | ||||
IP | 1.5 nmol/kg BW | ↓ Feed intake |
Species | Location | Dosage | Function/Effects | Reference |
---|---|---|---|---|
Rat | ICV | 3 nmol | ↓ Feed intake | [119] |
IPVN | 1 nmol | |||
Rat | IP | 100 nmol/kg BW | ↓ Feed intake and body weight | [120] |
IA | 1 nmol | ↓ Feed intake | ||
Human | IV | 3 pmol/kg BW | ↓ Energy intake and ghrelin | [121] |
400 nmol | ↓ Energy intake and body weight gain | [122] | ||
Broiler | ICV | 0–2.68 nmol | ↓ Linearly feed intake and water intake | [126] |
Laying hen | ICV | 0.1–1.0 nmol | ↓ Feed intake ↑ Plasma glucose and corticosterone | [127] |
Japanese quail | ICV, IP | 0.32–1.30 nmol | ↓ Feed intake and water intake ↑ c-Fos activity in ARC | [128] |
Species | Location | Dosage | Function/Effects | Reference |
---|---|---|---|---|
Human | IV | 4 ng/kg BW | ↓ Food intake | [136] |
Rat | IP | 16 µg/kg BW | ↓ Feed intake | [139] |
Human | IV | 0.75 µg/mL | ↓ food intake ↑ Food intake by CCK antagonist | [140] |
Laying hen | IP | 60–300 nmol/kg BW | ↓ Feed intake ↑ Corticosterone by 300 nmol/kg BW in IP injection and 1 nmol ICV injection | [141] |
ICV | 0.2–1.0 nmol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, W.K. Applications of Enteroendocrine Cells (EECs) Hormone: Applicability on Feed Intake and Nutrient Absorption in Chickens. Animals 2023, 13, 2975. https://doi.org/10.3390/ani13182975
Lee J, Kim WK. Applications of Enteroendocrine Cells (EECs) Hormone: Applicability on Feed Intake and Nutrient Absorption in Chickens. Animals. 2023; 13(18):2975. https://doi.org/10.3390/ani13182975
Chicago/Turabian StyleLee, Jihwan, and Woo Kyun Kim. 2023. "Applications of Enteroendocrine Cells (EECs) Hormone: Applicability on Feed Intake and Nutrient Absorption in Chickens" Animals 13, no. 18: 2975. https://doi.org/10.3390/ani13182975
APA StyleLee, J., & Kim, W. K. (2023). Applications of Enteroendocrine Cells (EECs) Hormone: Applicability on Feed Intake and Nutrient Absorption in Chickens. Animals, 13(18), 2975. https://doi.org/10.3390/ani13182975