The Effect of Organic Trace Mineral Supplementation in the Form of Proteinates on Performance and Sustainability Parameters in Laying Hens: A Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search and Selection Criteria
2.2. Data Extraction
2.3. Statistical Analysis
2.4. Heterogeneity
2.5. Publication Bias
2.6. Life Cycle Assessment
2.6.1. Scope
2.6.2. Production System and Scenarios
2.6.3. Inventory Analysis
2.6.4. Impact Assessment
3. Results and Discussion
3.1. Study Characteristics
3.2. Production Performance and Egg Quality
3.3. Subgroup Analysis
3.4. Simulated Environmental Impact
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFP | Carbon Footprint |
CMA | Comprehensive Meta-Analysis |
Cu | Copper |
CI | Confidence Interval |
DEFRA | Department for Environment, Food and Rural Affairs |
FCR | Feed Conversion Ratio |
Fe | Iron |
GHG | Greenhouse Gas |
GWP | Global Warming Potential |
HDP | Hen-Day Production |
IPCC | Intergovernmental Panel on Climate Change |
ITM | Inorganic Trace Minerals |
LCA | Life Cycle Assessment |
MD | Mean difference |
Mn | Manganese |
OTM | Organic Trace Minerals |
PR | Partial Replacement |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RBV | Relative Bioavailability |
RMD | Raw Mean Difference |
ROI | Return On Investment |
SBM | Soybean Meal |
SD | Standard Deviation |
SMD | Standardised Mean Difference |
TR | Total Replacement |
Zn | Zinc |
References
- Ao, T.; Pierce, J. The replacement of inorganic mineral salts with mineral proteinates in poultry diets. World’s Poult. Sci. J. 2013, 69, 5–16. [Google Scholar] [CrossRef]
- Kong, J.; Qiu, T.; Yan, X.; Wang, L.; Chen, Z.; Xiao, G.; Feng, X.; Zhang, H. Effect of replacing inorganic minerals with small peptide chelated minerals on production performance, some biochemical parameters and antioxidant status in broiler chickens. Front. Physiol. 2022, 13, 1027834. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.H.; Fatima, M. Efficiency Comparison of Organic and Inorganic Minerals in Poultry Nutrition: A Review. PSM Vet. Res. 2018, 3, 53–59. [Google Scholar]
- Brugger, D.; Windisch, W.M. Environmental responsibilities of livestock feeding using trace mineral supplements. Anim. Nutr. 2015, 1, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.M.; Choct, M. Trace mineral nutrition for broiler chickens and prospects of application of organically complexed trace minerals: A review. Anim. Prod. Sci. 2009, 49, 269–282. [Google Scholar] [CrossRef]
- Bhagwat, V.G.; Balamurugan, E.; Rangesh, P. Cocktail of chelated minerals and phytogenic feed additives in the poultry industry: A review. Vet. World 2021, 14, 364–371. [Google Scholar] [CrossRef]
- Santos, V.L.; Silva, J.B.d.; Figueiredo, F.C.d.; Ronchi, C.P.H.; Lecznieski, J. Total Replacement of Inorganic Minerals with Organic Ones Improves the Productive Performance of Broilers. Int. J. Poult. Sci. 2023, 22, 40–45. [Google Scholar] [CrossRef]
- Zhao, J.; Shirley, R.B.; Vazquez-Anon, M.; Dibner, J.J.; Richards, J.D.; Fisher, P.; Hampton, T.; Christensen, K.D.; Allard, J.P.; Giesen, A.F. Effects of chelated trace minerals on growth performance, breast meat yield, and footpad health in commercial meat broilers. J. Appl. Poult. Res. 2010, 19, 365–372. [Google Scholar] [CrossRef]
- Leeson, S.; Caston, L. Using minimal supplements of trace minerals as a method of reducing trace mineral content of poultry manure. Anim. Feed Sci. Technol. 2008, 142, 339–347. [Google Scholar] [CrossRef]
- Byrne, L.; Murphy, R.A. Relative Bioavailability of Trace Minerals in Production Animal Nutrition: A Review. Animals 2022, 12, 1981. [Google Scholar] [CrossRef]
- Byrne, L.; Hynes, M.J.; Connolly, C.D.; Murphy, R.A. Influence of the Chelation Process on the Stability of Organic Trace Mineral Supplements Used in Animal Nutrition. Animals 2021, 11, 1730. [Google Scholar] [CrossRef]
- Suttle, N.F. Mineral Nutrition of Livestock, 5th ed.; CAB International: Wallingford, UK, 2022. [Google Scholar]
- Kleyn, R.J.; Ciacciariello, M. Mineral nutrition in broilers: Where are we at? In Proceedings of the Arkansas Nutrition Conference, Rogers, AR, USA, 31 August–2 September 2021.
- de Vries, M.; de Boer, I.J.M. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Murakami, A.; Franco, J. Effect of Bioplex Poedeiras in diets fed layers on egg quality and stability during storage. In Proceedings of the Alltech 20th International Feed Industry Symposium, Lexington, KY, USA, 23–26 May 2004; Alltech Inc.: Nicholasville, KY, USA, 2004. [Google Scholar]
- Sara, A.; Odagiu, A.; Bentea, M.; Clapa, L. Effect of Eggshell 49™ in hens more than 49 wk of age on egg production and eggshell quality. In Proceedings of the Alltech 24th International Feed Industry Symposium, Lexington, KY, USA, 20–23 April 2008; Alltech Inc.: Nicholasville, KY, USA, 2008. [Google Scholar]
- Schäublin, H.; Wiedmer, H.; Zweifel, R.; Spring, P. Comparison of performance from laying hens fed diets with inorganic or organic trace minerals at reduced levels in floor systems. In Proceedings of the Alltech 24th International Feed Industry Symposium, Lexington, KY, USA, 20–23 April 2008; Alltech Inc.: Nicholasville, KY, USA, 2008. [Google Scholar]
- Nunes, J.; Rossi, P.; Rocha, A.; Anciuti, M.; Maier, J.; Rutz, F. Performance of layers fed Bioplex® minerals. In Proceedings of the Alltech 23rd International Feed Industry Symposium, Lexington, KY, USA, 20–23 May 2007; Alltech Inc.: Nicholasville, KY, USA, 2007. [Google Scholar]
- MacIsaac, J.; Anderson, D.; Butt, S.; Rathgeber, B. Evaluation of a mineral chelate for late-cycle laying hens. Poult. Sci. 2006, 85 (Suppl. S1), 63. [Google Scholar]
- Güçlü, B.K.; Kara, K.; Beyaz, L.; Uyanik, F.; Eren, M.; Atasever, A. Influence of dietary copper proteinate on performance, selected biochemical parameters, lipid peroxidation, liver, and egg copper content in laying hens. Biol. Trace Elem. Res. 2008, 125, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Leeson, S.; Sefton, A.; Jacques, K. Layer excreta mineral content: Bioplex® versus inorganic dietary trace mineral sources. Poult. Sci. 2010, 659 (Suppl. S1). [Google Scholar]
- Sefton, A.; Leeson, S. Mineral content of excreta and eggs from laying hens fed Bioplex® or inorganic minerals. In Proceedings of the Alltech 27th International Feed Industry Symposium, Lexington, KY, USA, 22–25 May 2011; Alltech Inc.: Nicholasville, KY, USA, 2011. [Google Scholar]
- Ao, T.; Pierce, J.; Pescatore, A.; Cantor, A.; Paul, M.; Ford, M. Effects of supplementing different forms and levels of trace minerals in layer diet on the efficacy of phytase. In Proceedings of the 24th World’s Poultry Congress, Salvador, Bahia, Brazil, 5–9 August 2012. [Google Scholar]
- Revell, D.; Zarrinkalam, M.; Hughes, R. Iron content of eggs from hens given diets containing organic forms of iron, serine and methyl group donors, or phytoestogens. Br. Poult. Sci. 2009, 50, 536–542. [Google Scholar] [CrossRef]
- Stefanello, C.; Santos, T.; Murakami, A.; Martins, E.; Carneiro, T. Productive performance, eggshell quality, and eggshell ultrastructure of laying hens fed diets supplemented with organic trace minerals. Poult. Sci. 2014, 93, 104–113. [Google Scholar] [CrossRef]
- Nolan, L.W. Evaluation of Current and Emerging Techniques for Measuring Eggshell Integrity of the Domestic Fowl. Ph.D. Dissertation, University of Kentucky, Lexington, KY, USA, 2019. [Google Scholar]
- Ceylan, N.; Scheideler, S.E. Effects of the eggshell-49, dietary calcium level and hen age on performance and egg shell quality. In Proceedings of Biotechnology in the Feed Industry. In Proceedings of the Alltech’s 15th Annual Symposium, Lexington, KY, USA, 17–20 May 2015; University Press Nottingham: Nottingham, UK, 2015; pp. 61–73. [Google Scholar]
- Carlos, F.; Solano, A. Evaluation of Bioplex® Layer in Hy-Line Brown hens, at two different ages, from week 23 to 37 and from week 54 to 68 of age. In Proceedings of the Alltech 21st International Feed Industry Symposium, Lexington, KY, USA, 22–25 May 2005; Alltech Inc.: Nicholasville, KY, USA, 2005. [Google Scholar]
- Boruta, A.; Swierczewska, E.; Glebocka, K.; Nollet, L. Trace organic minerals as a replacement of inorganic sources for layers: Effects on productivity and mineral excretion. Rev. Científica Eletrônica Med. Veterinária 2007, 13, 491–494. [Google Scholar]
- Siske, V.; Zeman, L.; Klecker, D. The egg shell: A case study in improving quality by altering mineral metabolism—Naturally. In Proceedings of Alltech’s 16th Annual Symposium, The Future of Food; Lyons, T.P., Jacques, K.A., Eds.; Nottingham University Press: Nottingham, UK, 2000; pp. 327–346. [Google Scholar]
- Xavier, G.; Rutz, F.; Dionello, N.; Goncalves, F.; Zauk, N.; Ribeiro, C. Performance of layers fed diets containing organic selenium, zinc and manganese, during a second cycle of production. In Proceedings of the Alltech 20th International Feed Industry Symposium, Lexington, KY, USA, 23–26 May 2004; Alltech Inc.: Nicholasville, KY, USA, 2004. [Google Scholar]
- Ao, T.; Paul, M.; Macalintal, L.; Pescatore, A.; Cantor, A.; Samuel, R.; Ford, M.; Dawson, K. Total replacement of inorganic microminerals with reduced levels of proteinates in laying hen diets: Impact on productive performance, egg characteristics and bone quality. Poult. Sci. 2016, 95 (Suppl. S1), 156. [Google Scholar]
- Ao, T.; Pescatore, A.; Paul, M.; Nolan, L.; Macalintal, L.; Ford, M.; Dawson, K. Impact of replacing inorganic trace minerals with reduced levels of proteinates in laying hen diets with or without phytase on the performance and egg shell quality of layers in a single lay cycle. In Proceedings of the Poultry Science Forum, Georgia World Congress Center, Atlanta, GA, USA, 29–30 January 2018. [Google Scholar]
- Qiu, J.; Lu, X.; Ma, L.; Hou, C.; He, J.; Liu, B.; Yu, D.; Lin, G.; Xu, J. Low-dose of organic trace minerals reduced fecal mineral excretion without compromising performance of laying hens. Asian Australas. J. Anim. Sci. 2020, 33, 588. [Google Scholar] [CrossRef] [PubMed]
- Yıldız, A.; Cufadar, Y.; Olgun, O. Effects of dietary organic and inorganic manganese supplementation on performance, egg quality and bone mineralisation in laying hens. Rev. Med. Vet. 2011, 162, 482–488. [Google Scholar]
- Idowu, O.; Ajuwon, R.; Oso, A.; Akinloye, O. Effects of zinc supplementation on laying performance, serum chemistry and Zn residue in tibia bone, liver, excreta and egg shell of laying hens. Int. J. Poult. Sci. 2011, 10, 225–230. [Google Scholar] [CrossRef]
- Idowu, O.; Laniyan, T.; Kuye, O.; Oladele-Ojo, V.; Eruvbetine, D. Effect of copper salts on performance, cholesterol, residues in liver, eggs and excreta of laying hens. Arch. Zootec. 2006, 55, 327–338. [Google Scholar]
- Venglovska, K.; Gresakova, L.; Placha, I.; Ryzner, M.; Cobanova, K. Effects of feed supplementation with manganese from its different sources on performance and egg parameters of laying hens. Czech J. Anim. Sci 2014, 59, 147–155. [Google Scholar] [CrossRef]
- Torki, M.; Akbari, M.; Kaviani, K. Single and combined effects of zinc and cinnamon essential oil in diet on productive performance, egg quality traits, and blood parameters of laying hens reared under cold stress condition. Int. J. Biometeorol. 2015, 59, 1169–1177. [Google Scholar] [CrossRef]
- Li, L.; Zhang, N.; Gong, Y.; Zhou, M.; Zhan, H.; Zou, X. Effects of dietary Mn-methionine supplementation on the egg quality of laying hens. Poult. Sci. 2018, 97, 247–254. [Google Scholar] [CrossRef]
- Stringhini, J.; Santos, B.; Tanure, C.; Oliveira, E.; Castejon, F.; Moreira, J.; Navas, T. Eggshell Quality of Commercial Laying Hens Fed Diets Containing Inorganic or Chelated Micro minerals from 60 to 80 Weeks of Age. In Proceedings of the XXII European Symposium on the Quality of Poultry Meat and the XVI European Symposium on the Quality of Eggs and Egg Products, Nantes, France, 11–13 May 2015. [Google Scholar]
- Kocher, A.; Kumar, A.; Nicholson, S.; Tiller, T. Use of commercial premixes with low levels of organic trace minerals on egg production performance, and egg shell characteristics in layers. In Proceedings of the 31st Annual Australian Poultry Science Symposium, Sydney, NSW, Australia, 16–19 February 2020; p. 17. [Google Scholar]
- Fernandes, J.; Murakami, A.; Sakamoto, M.; Souza, L.; Malaguido, A.; Martins, E. Effects of organic mineral dietary supplementation on production performance and egg quality of white layers. Braz. J. Poult. Sci. 2008, 10, 59–65. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.; Higgins, J.; Rothstein, H. Introduction to Meta-Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, S.G.; McGahan, E.J. Environmental Assessment of an Egg Production Supply Chain Using Life Cycle Assessment; Australian Egg Corporation Limited: Sydney, Australia, 2011. [Google Scholar]
- Leinonen, I.; Williams, A.G.; Wiseman, J.; Guy, J.; Kyriazakis, I. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Egg production systems. Poult. Sci. 2012, 91, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Tallentire, C.W.; Mackenzie, S.G.; Kyriazakis, I. Environmental impact trade-offs in diet formulation for broiler production systems in the UK and USA. Agric. Syst. 2017, 154, 145–156. [Google Scholar] [CrossRef]
- Salami, S.A.; Ross, S.A.; Patsiogiannis, A.; Moran, C.A.; Taylor-Pickard, J. Performance and environmental impact of egg production in response to dietary supplementation of mannan oligosaccharide in laying hens: A meta-analysis. Poult. Sci. 2022, 101, 101745. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IGES: Kanagawa, Japan, 2006. [Google Scholar]
- Vellinga, T.V.; Blonk, H.; Marinussen, M.; van Zeist, W.-J.; Starmans, D. Methodology Used in FeedPrint: A Tool Quantifying Greenhouse Gas Emissions of Feed Production and Utilization; 2013. Wageningen UR Livestock Research, Wageningen, the Netherlands. Version 2020.00. Available online: http:/webapplicaties.wur.nl/software/feedprintNL/index.asp (accessed on 1 October 2022).
- DEFRA. UK Government GHG Conversion Factors for Company Reporting; DEFRA: Norwich, UK, 2020. [Google Scholar]
- DEFRA. The Fertiliser Manual (RB209); DEFRA: Norwich, UK, 2010. [Google Scholar]
- Hoxha, A.; Christensen, B. The Carbon Footprint of Fertiliser Production: Regional Reference Values; International Fertiliser Society: Colchester, UK, 2019. [Google Scholar]
- IPCC. Changes in atmospheric constituents and in radiative forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Ao, T.; Pierce, J.; Pescatore, A.; Cantor, A.; Dawson, K.; Ford, M. Effects of feeding reduced levels of trace mineral proteinates (Bioplex (R)) to brown layer pullets during development. Poult. Sci. 2008, 87, 114–115. [Google Scholar]
- Ao, T.; Pierce, J.; Pescatore, A.; Cantor, A.; Dawson, K.; Ford, M. Effects of feeding reduced levels of organic minerals (Bioplex®) on the development of white layer pullets. Poult. Sci. 2009, 88, 197. [Google Scholar]
- Ao, T.; Pierce, J.L.; Pescatore, A.J.; Cantor, A.H.; Dawson, K.A.; Ford, M.J.; Paul, M. Effects of feeding different concentration and forms of zinc on the performance and tissue mineral status of broiler chicks. Br. Poult. Sci. 2011, 52, 466–471. [Google Scholar] [CrossRef]
- Samuel, R.S.; Ao, T.; Paul, M.A.; Ford, M.J.; Brennan, K.M.; Spry, M.L.; Pescatore, A.J.; Cantor, A.H.; Pierce, J.L. Early-life trace mineral nutrition affects growth performance and mineral deposition in broilers through 21 days. In Proceedings of the IPSF & IPPE, Atlanta, GA, USA, 24–26 January 2012; p. 53. [Google Scholar]
- Tavares, T.; Mourão, J.L.; Kay, Z.; Spring, P.; Vieira, J.; Gomes, A.; Vieira-Pinto, M. The effect of replacing inorganic trace minerals with organic Bioplex® and Sel-Plex® on the performance and meat quality of broilers. J. Appl. Anim. Nutr. 2013, 2, e10. [Google Scholar] [CrossRef]
- Wang, G.; Liu, L.J.; Tao, W.J.; Xiao, Z.P.; Pei, X.; Liu, B.J.; Wang, M.Q.; Lin, G.; Ao, T.Y. Effects of replacing inorganic trace minerals with organic trace minerals on the production performance, blood profiles, and antioxidant status of broiler breeders. Poult. Sci. 2019, 98, 2888–2895. [Google Scholar] [CrossRef]
- Nollet, L.; van der Klis, J.D.; Lensing, M.; Spring, P. The Effect of Replacing Inorganic With Organic Trace Minerals in Broiler Diets on Productive Performance and Mineral Excretion. J. Appl. Poult. Res. 2007, 16, 592–597. [Google Scholar] [CrossRef]
- Vieira, R.; Ferket, P.; Malheiros, R.; Hannas, M.; Crivellari, R.; Moraes, V.; Elliott, S. Feeding low dietary levels of organic trace minerals improves broiler performance and reduces excretion of minerals in litter. Br. Poult. Sci. 2020, 61, 574–582. [Google Scholar] [CrossRef]
- Vieira, R.A.; Malheiros, R.; Albino, L.F.T.; Hannas, M.I.; Crivellari, R.; Borges, L.L.; Ferket, P. Replacing dietary inorganic trace minerals with lower concentrations of organic trace minerals can improve broiler performance. Poult. Sci. 2014, 93 (Suppl. S1). [Google Scholar]
- Vieira, R.A.; Ribeiro, V.; de Araujo, W.A.G.; Salquero, S.C.; Teixeira Albino, L.F.; Hannas, M.I. The effects of chelated, organic trace minerals and selenium yeast on broiler performance. J. Poult. Sci. 2013, 92. [Google Scholar]
- Doleman, B.; Freeman, S.C.; Lund, J.N.; Williams, J.P.; Sutton, A.J. Funnel plots may show asymmetry in the absence of publication bias with continuous outcomes dependent on baseline risk: Presentation of a new publication bias test. Res. Synth. Methods 2020, 11, 522–534. [Google Scholar] [CrossRef] [PubMed]
- Anestis, V.; Papanastasiou, D.K.; Bartzanas, T.; Giannenas, I.; Skoufos, I.; Kittas, C. Effect of a dietary modification for fattening pigs on the environmental performance of commercial pig production in Greece. Sustain. Prod. Consum. 2020, 22, 162–176. [Google Scholar] [CrossRef]
- Giannenas, I.; Bonos, E.; Anestis, V.; Filioussis, G.; Papanastasiou, D.K.; Bartzanas, T.; Papaioannou, N.; Tzora, A.; Skoufos, I. Effects of Protease Addition and Replacement of Soybean Meal by Corn Gluten Meal on the Growth of Broilers and on the Environmental Performances of a Broiler Production System in Greece. PLoS ONE 2017, 12, e0169511. [Google Scholar] [CrossRef]
Reference | Study Location | Breed/Strain | Age of Hens (wk) | Number of Hens per Treatment | Treatment Comparison 1 | Supplementary OTM/ITM | Study Duration (wk) |
---|---|---|---|---|---|---|---|
Murakami and Franco [18] | Brazil | Lohmann | 32 | 160 | Basal | Zn, Mn | 20 |
Sara, Odagiu [19] | Romania | Roso SL hybrid | 49 | 78 | Basal | Zn, Mn, Cu | 23 |
Schäublin, Wiedmer [20] | Switzerland | - | 21 | 1872 | TR | Cu, Fe, Mn, Zn | 60 |
Nunes, Rossi [21] | Brazil | Hisex Brown | 30 | 64 | TR | Zn, Mn, Cu, Fe | 12 |
MacIsaac, Anderson [22] | Canada | White Leghorn | 55 | 72 | Basal | Zn, Mn, Cu, Fe | 12 |
Güçlü, Kara [23] | Turkey | Bovans | 30 | 18 | Basal | Cu | 4 |
Leeson, Sefton [24] | Canada | Lohmann | 18 | 360 | TR | Zn, Mn, Cu | 52 |
Sefton and Leeson [25] | Canada | Lohmann | 36 | 36 | TR | Zn, Mn, Cu, Fe | 6.6 |
Ao, Pierce [26] | USA | Hy-Line Brown | 16 | 96 | TR | Zn, Mn, Cu, Fe | 44 |
Revell, Zarrinkalam [27] | Australia | Hisex Brown | 34 | 12 | Basal, TR | Fe | 6 |
Stefanello, Santos [28] | Brazil | Hy-Line W36 | 47 | 40 | Basal, TR | Zn, Mn, Cu | 15 |
Nolan [29] | USA | Hy-Line W36 and Hy-Line Brown | 29 | 48 | Basal, TR | Zn | 36 |
Ceylan and Scheideler [30] | USA | Hy-Line W36 | 20 | 36 | Basal | Zn, Mn | 40 |
Carlos and Solano [31] (trial 1) | Peru | Hy-Line | 27 | 4000 | PR | Zn, Mn, Cu, Fe | 10 |
Carlos and Solano [31] (trial 2) | Peru | Hy-Line | 54 | 3525 | PR | Zn, Mn, Cu, Fe | 14 |
Boruta, Swierczewska [32] | Poland | Hy-Line | 30 | 48 | PR | Zn, Mn, Cu, Fe | 40 |
Siske, Zeman [33] (trial 1) | Czech Republic | Isa Brown | 17 | 213 | PR | Zn, Mn | 50 |
Siske, Zeman [33] (trial 2) | Czech Republic | Isa Brown | 17 | 160 | PR | Zn, Mn | 55 |
Siske, Zeman [33] (trial 3) | Czech Republic | Isa Brown | 53 | 320 | Basal | Zn, Mn, Cu | 19 |
Xavier, Rutz [34] | Brazil | Isa Brown | 77 | 64 | Basal | Zn, Mn | 24 |
Ao, Paul [35] | USA | Hy-Line W36 | 17 | 84 | TR | Zn, Mn, Cu, Fe | 53 |
Ao, Pescatore [36] 2 | USA | Hy-Line Brown | - | 120 | TR | Zn, Mn, Cu, Fe | 80 |
Qiu, Lu [37] | China | Hy-Line White | 50 | 135 | TR | Zn, Mn, Cu, Fe | 8 |
Yıldız, Cufadar [38] | Turkey | H&N Brown Nick | 49 | 15 | TR | Mn | 12 |
Idowu, Ajuwon [39] 2 | Nigeria | Brown Yaffa | - | 60 | Basal, TR | Zn | 10 |
Idowu, Laniyan [40] | Nigeria | Black Harco | 30 | 30 | Basal, TR | Cu | 10 |
Venglovska, Gresakova [41] | Slovakia | Lohmann Brown | 23 | 24 | Basal, TR | Mn | 8 |
Torki, Akbari [42] | Iran | Lohmann LSL-Lite | 42 | 30 | Basal | Zn | 8 |
Li, Zhang [43] | China | Jinghong-1 | 53 | 96 | TR | Mn | 10 |
Stringhini, Santos [44] | Brazil | Bovans White | 60 | 96 | PR, TR | Zn, Mn, Cu, Fe | 20 |
Kocher, Kumar [45] | Australia | Isa Brown | 64 | 70 | TR | Zn, Mn, Cu, Fe | 30 |
Fernandes, Murakami [46] | Brazil | Hy-Line W36 | 67 | 64 | Basal | Zn, Mn | 16 |
Trace Mineral | ITM Treatments (mg/kg) | OTM Treatments (mg/kg) | ||||||
---|---|---|---|---|---|---|---|---|
Mean | Minimum | Maximum | SD | Mean | Minimum | Maximum | SD | |
Zn | 77.7 | 12.5 | 140.0 | 38.3 | 53.9 | 10.0 | 140.0 | 44.4 |
Mn | 61.4 | 15.0 | 125.0 | 29.9 | 45.8 | 10.0 | 125.0 | 29.2 |
Cu | 38.4 | 1.3 | 250.0 | 73.0 | 27.1 | 0.6 | 150.0 | 50.9 |
Fe | 70.6 | 11.3 | 450.0 | 104.2 | 45.0 | 2.5 | 450.0 | 108.6 |
Item | N | Mean | Minimum | Maximum | SD |
---|---|---|---|---|---|
Productive performance | |||||
Feed intake (g/day/hen) | 71 | 114.91 | 80.43 | 145.00 | 12.09 |
Hen-day production (%) | 92 | 84.22 | 66.29 | 98.11 | 7.09 |
FCR (g feed/kg egg) | 63 | 2117.48 | 1480.00 | 4300.00 | 509.13 |
FCR (g feed/dozen eggs) | 42 | 1813.21 | 1120.0 | 3450.00 | 544.74 |
Egg quality | |||||
Egg mass (g/hen/day) | 45 | 57.59 | 45.46 | 63.77 | 4.46 |
Egg weight (g) | 87 | 64.71 | 56.51 | 68.91 | 3.06 |
Egg loss (%) | 49 | 1.27 | 0.22 | 4.73 | 0.91 |
Eggshell thickness (mm) | 43 | 0.35 | 0.11 | 0.50 | 0.08 |
Eggshell strength (kgf) | 58 | 3.72 | 2.53 | 4.49 | 0.52 |
Eggshell weight (g) | 41 | 8.45 | 5.47 | 9.77 | 1.65 |
Eggshell percentage (%) | 43 | 8.60 | 6.81 | 14.60 | 1.15 |
Haugh unit | 40 | 79.20 | 39.27 | 98.52 | 12.10 |
Item | Effect Size Estimates | Heterogeneity Tests | |||||
---|---|---|---|---|---|---|---|
N | Control Mean (SD) | RMD (95% CI) | SE | p-Value | I2 (%) | p-Value | |
Productive performance | |||||||
Feed intake (g/day/hen) | 71 | 115.06 (11.45) | −0.66 (−2.23, 0.91) | 0.80 | 0.412 | 99.98 | <0.001 |
Hen-day production (%) | 92 | 83.63 (7.91) | 2.07 (1.83, 2.31) | 0.12 | <0.001 | 99.67 | <0.001 |
FCR (g feed/kg egg) | 63 | 2143.73 (606.45) | −51.28 (−75.39, −27.18) | 12.30 | <0.001 | 98.50 | <0.001 |
FCR (g feed/dozen eggs) | 42 | 1869.21 (570.15) | −22.82 (−39.42, −6.23) | 8.47 | 0.007 | 80.89 | <0.001 |
Egg quality | |||||||
Egg mass (g/hen/day) | 45 | 57.13 (4.41) | 0.50 (0.13, 0.88) | 0.19 | 0.008 | 79.25 | <0.001 |
Egg weight (g) | 87 | 64.41 (2.73) | 0.48 (0.20, 0.77) | 0.15 | 0.001 | 89.29 | <0.001 |
Egg loss (%) | 49 | 1.58 (1.04) | −0.62 (−0.73, −0.51) | 0.06 | <0.001 | 98.65 | <0.001 |
Eggshell thickness (mm) | 43 | 0.34 (0.08) | 0.01 (0.01, 0.02) | 0.00 | <0.001 | 97.06 | <0.001 |
Eggshell strength (kgf) | 58 | 3.65 (0.49) | 0.14 (0.07, 0.21) | 0.04 | <0.001 | 94.28 | <0.001 |
Eggshell weight (g) | 41 | 8.37 (1.71) | 0.20 (0.12, 0.27) | 0.04 | <0.001 | 83.36 | <0.001 |
Eggshell percentage (%) | 43 | 8.53 (1.09) | 0.15 (0.07, 0.22) | 0.04 | <0.001 | 95.58 | <0.001 |
Haugh unit | 40 | 78.86 (12.75) | 0.89 (0.49, 1.29) | 0.20 | <0.001 | 89.73 | <0.001 |
Item | Effect Size Estimates | Heterogeneity Tests | |||||
---|---|---|---|---|---|---|---|
N | Control Mean (SD) | RMD (95% CI) | SE | p-Value | I2 (%) | p-Value | |
Productive performance | |||||||
Feed intake (g/day/hen) | 17 | 108.12 (13.59) | −2.12 (−5.66, 1.42) | 1.81 | 0.241 | 99.21 | <0.001 |
Hen-day production (%) | 28 | 79.63 (7.82) | 3.09 (0.55, 5.63) | 1.30 | 0.017 | 99.19 | <0.001 |
FCR (g feed/kg egg) | 20 | 2011.40 (600.67) | −9.82 (−67.66, 48.03) | 29.51 | 0.739 | 94.85 | <0.001 |
FCR (g feed/dozen eggs) | 14 | 1811.21 (539.64) | −62.68 (−126.21, 0.84) | 32.41 | 0.053 | 83.55 | <0.001 |
Egg quality | |||||||
Egg mass (g/hen/day) | 9 | 53.50 (4.67) | 0.69 (−0.35, 1.74) | 0.53 | 0.193 | 86.20 | <0.001 |
Egg weight (g) | 25 | 63.52 (3.42) | 0.25 (−0.45, 0.94) | 0.35 | 0.486 | 93.37 | <0.001 |
Egg loss (%) | 9 | 2.13 (1.26) | −1.07 (−1.56, −0.59) | 0.25 | <0.001 | 99.10 | <0.001 |
Eggshell thickness (mm) | 16 | 0.35 (0.08) | 0.02 (0.01, 0.03) | 0.01 | <0.001 | 98.62 | <0.001 |
Eggshell strength (kgf) | 10 | 3.38 (0.31) | 0.11 (−0.09, 0.32) | 0.10 | 0.272 | 93.35 | <0.001 |
Eggshell weight (g) | 5 | 6.89 (1.71) | 0.69 (0.29, 1.10) | 0.21 | 0.001 | 96.12 | <0.001 |
Eggshell percentage (%) | 17 | 8.58 (1.43) | 0.27 (0.09, 0.44) | 0.09 | 0.003 | 97.00 | <0.001 |
Haugh unit | 17 | 81.77 (10.12) | 1.35 (0.52, 2.17) | 0.42 | 0.001 | 79.43 | <0.001 |
Item | Effect Size Estimates | Heterogeneity Tests | |||||
---|---|---|---|---|---|---|---|
N | Control Mean (SD) | RMD (95% CI) | SE | p-Value | I2 (%) | p-Value | |
Productive performance | |||||||
Feed intake (g/day/hen) | 51 | 116.76 (9.93) | −0.05 (−1.91, 1.82) | 0.95 | 0.963 | 99.99 | <0.001 |
Hen-day production (%) | 57 | 85.06 (7.62) | 1.52 (1.16, 1.88) | 0.18 | <0.001 | 99.71 | <0.001 |
FCR (g feed/kg egg) | 41 | 2201.44 (620.89) | −73.09 (−107.24, −38.94) | 17.42 | <0.001 | 98.82 | <0.001 |
FCR (g feed/dozen eggs) | 25 | 1865.60 (619.92) | −19.32 (−37.14, −1.49) | 9.10 | 0.034 | 81.12 | <0.001 |
Egg quality | |||||||
Egg mass (g/hen/day) | 36 | 58.04 (3.91) | 0.50 (0.09, 0.90) | 0.21 | 0.017 | 76.07 | <0.001 |
Egg weight (g) | 53 | 64.81 (2.47) | 0.76 (0.43, 1.08) | 0.17 | <0.001 | 84.82 | <0.001 |
Egg loss (%) | 33 | 1.38 (0.91) | −0.57 (−0.75, −0.40) | 0.09 | <0.001 | 97.42 | <0.001 |
Eggshell thickness (mm) | 21 | 0.32 (0.09) | 0.01 (0.01, 0.02) | 0.00 | <0.001 | 92.77 | <0.001 |
Eggshell strength (kgf) | 43 | 3.76 (0.51) | 0.15 (0.07, 0.24) | 0.04 | <0.001 | 94.92 | <0.001 |
Eggshell weight (g) | 32 | 8.89 (1.43) | 0.11 (0.06, 0.16) | 0.03 | <0.001 | 4.34 | 0.397 |
Eggshell percentage (%) | 25 | 8.46 (0.82) | 0.07 (−0.01, 0.143) | 0.04 | 0.070 | 93.81 | <0.001 |
Haugh unit | 23 | 76.70 (14.22) | 0.52 (0.10, 0.95) | 0.22 | 0.016 | 88.60 | <0.001 |
Study Factors | Feed Intake (g/day/hen) | Hen-Day Production (%) | Feed Conversion Ratio (g feed/kg egg) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient | SE | p-Value | R2 (%) | Coefficient | SE | p-Value | R2 (%) | Coefficient | SE | p-Value | R2 (%) | |
Location | ||||||||||||
Africa | −15.21 | 2.31 | <0.001 | 1.0 | 7.40 | 0.41 | <0.001 | 17.0 | −731.00 | 38.45 | <0.001 | 41.0 |
Europe | −3.56 | 2.60 | 0.171 | −0.68 | 0.39 | 0.082 | 32.60 | 68.55 | 0.634 | |||
North America | −2.23 | 2.79 | 0.424 | −0.55 | 0.45 | 0.225 | 62.84 | 29.40 | 0.033 | |||
Oceania | - | - | - | - | - | - | −46.40 | 73.50 | 0.528 | |||
South America | −2.01 | 2.14 | 0.347 | −0.71 | 0.38 | 0.063 | −30.53 | 23.74 | 0.199 | |||
Asia | Referent 1 | Referent 1 | Referent 1 | |||||||||
Year of study | 0.28 | 0.21 | 0.170 | 1.0 | −0.18 | 0.02 | <0.001 | 2.0 | 0.35 | 2.92 | 0.904 | 0.0 |
Hen breed/strain | ||||||||||||
Black Harco | −15.74 | 3.61 | <0.001 | 2.0 | 9.24 | 0.43 | <0.001 | 18.0 | - | - | - | 56.0 |
Bovans | 3.44 | 5.62 | 0.541 | 4.11 | 0.76 | <0.001 | 209.35 | 67.27 | 0.002 | |||
Brown Yaffa | −8.61 | 3.81 | 0.024 | 6.42 | 0.78 | <0.001 | −637.93 | 56.83 | <0.001 | |||
H&N Brown Nick | 3.20 | 2.94 | 0.277 | −1.04 | 0.68 | 0.126 | 98.33 | 50.13 | 0.050 | |||
Hisex Brown | 4.55 | 4.46 | 0.308 | 1.47 | 0.84 | 0.080 | - | - | - | |||
Hy-Line | −0.49 | 2.89 | 0.865 | 0.86 | 0.37 | 0.022 | 100.25 | 48.99 | 0.041 | |||
Isa Brown | - | - | - | 1.56 | 0.45 | <0.001 | −30.68 | 58.20 | 0.598 | |||
Roso SL hybrid | −0.47 | 6.84 | 0.946 | 5.93 | 1.28 | <0.001 | - | - | - | |||
White Leghorn | - | - | - | 0.48 | 0.72 | 0.501 | - | - | - | |||
Lohmann | Referent 1 | Referent 1 | Referent 1 | |||||||||
Age of hens | 0.16 | 0.06 | 0.004 | 1.0 | −0.05 | 0.01 | <0.001 | 1.0 | 4.85 | 0.91 | <0.001 | 0.0 |
Number of hens | 0.00 | 0.00 | 0.864 | 0.0 | −0.00 | 0.00 | <0.001 | 0.0 | −0.01 | 0.02 | 0.700 | 0.0 |
Study duration | 0.03 | 0.05 | 0.555 | 1.0 | −0.05 | 0.01 | <0.001 | 1.0 | 6.24 | 1.39 | <0.001 | 0.0 |
Study Factors | Egg Weight (g) | Egg Loss (%) | Eggshell Strength (kgf) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient | SE | p-Value | R2 (%) | Coefficient | SE | p-Value | R2 (%) | Coefficient | SE | p-Value | R2 (%) | |
Location | ||||||||||||
Africa | 0.55 | 0.48 | 0.248 | 0.0 | - | - | - | 0.0 | - | - | - | 5.0 |
Europe | −0.74 | 0.46 | 0.110 | −0.27 | 0.15 | 0.083 | −0.13 | 0.11 | 0.225 | |||
North America | −0.63 | 0.48 | 0.188 | 0.30 | 0.41 | 0.466 | −0.34 | 0.09 | <0.001 | |||
Oceania | 0.35 | 1.34 | 0.796 | - | - | - | −0.40 | 0.25 | 0.106 | |||
South America | −0.54 | 0.44 | 0.218 | 0.17 | 0.14 | 0.216 | 0.01 | 0.10 | 0.893 | |||
Asia | Referent 1 | Referent 1 | Referent 1 | |||||||||
Year of study | −0.00 | 0.03 | 0.906 | 0.0 | −0.02 | 0.01 | 0.141 | 0.0 | −0.01 | 0.01 | 0.087 | 0.0 |
Hen breed/strain | ||||||||||||
Black Harco | −0.29 | 0.51 | 0.574 | 44.0 | - | - | - | 20.0 | - | - | - | 10.0 |
Bovans | −2.14 | 0.62 | 0.001 | - | - | - | - | - | - | |||
Brown Yaffa | 2.89 | 0.56 | <0.001 | - | - | - | - | - | - | |||
H&N Brown Nick | 1.11 | 0.48 | 0.021 | 1.19 | 0.22 | <0.001 | - | - | - | |||
Hy-Line | −0.24 | 0.42 | 0.565 | 1.40 | 0.23 | <0.001 | −0.19 | 0.08 | 0.012 | |||
Isa Brown | 0.36 | 0.48 | 0.455 | 1.37 | 0.25 | <0.001 | −0.21 | 0.11 | 0.046 | |||
Jinghong | 0.09 | 0.76 | 0.908 | - | - | - | −0.34 | 0.13 | 0.010 | |||
Roso SL hybrid | 0.15 | 1.14 | 0.896 | - | - | - | - | - | - | |||
White Leghorn | −0.00 | 0.62 | 0.998 | - | - | - | - | - | - | |||
Lohmann | Referent 1 | Referent 1 | Referent 1 | |||||||||
Age of hens | −0.00 | 0.01 | 0.946 | 0.0 | 0.00 | 0.01 | 0.407 | 0.0 | 0.01 | 0.00 | 0.014 | 1.0 |
Number of hens | −0.00 | 0.00 | 0.520 | 0.0 | 0.00 | 0.00 | 0.027 | 8.0 | −0.00 | 0.00 | 0.505 | 0.0 |
Study duration | −0.02 | 0.01 | 0.094 | 0.0 | 0.01 | 0.00 | 0.024 | 0.0 | −0.01 | 0.00 | 0.002 | 4.0 |
Low-GWP Diet | High-GWP Diet | |||||
---|---|---|---|---|---|---|
Category/Functional Unit | Baseline | OTM | % Change | Baseline | OTM | % Change |
Feed emission intensity | ||||||
Emissions per dozen eggs (kg CO2-eq/dozen eggs) | 1.27 | 1.25 | −1.65% | 1.58 | 1.56 | −1.65% |
Emissions per egg (g CO2-eq/egg) | 105.86 | 104.10 | −1.65% | 131.80 | 129.70 | −1.65% |
Emissions per kg eggs (kg CO2-eq/kg eggs) | 1.63 | 1.59 | −2.40% | 2.03 | 1.98 | −2.40% |
Total emission intensity | ||||||
Emissions per dozen eggs (kg CO2-eq/dozen eggs) | 1.71 | 1.68 | −1.75% | 2.03 | 1.99 | −1.73% |
Emissions per egg (g CO2-eq/egg) | 142.70 | 140.20 | −1.75% | 168.90 | 165.90 | −1.73% |
Emissions per kg eggs (kg CO2-eq/kg eggs) | 2.19 | 2.14 | −2.50% | 2.60 | 2.53 | −2.48% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byrne, L.; Ross, S.; Taylor-Pickard, J.; Murphy, R. The Effect of Organic Trace Mineral Supplementation in the Form of Proteinates on Performance and Sustainability Parameters in Laying Hens: A Meta-Analysis. Animals 2023, 13, 3132. https://doi.org/10.3390/ani13193132
Byrne L, Ross S, Taylor-Pickard J, Murphy R. The Effect of Organic Trace Mineral Supplementation in the Form of Proteinates on Performance and Sustainability Parameters in Laying Hens: A Meta-Analysis. Animals. 2023; 13(19):3132. https://doi.org/10.3390/ani13193132
Chicago/Turabian StyleByrne, Laurann, Stephen Ross, Jules Taylor-Pickard, and Richard Murphy. 2023. "The Effect of Organic Trace Mineral Supplementation in the Form of Proteinates on Performance and Sustainability Parameters in Laying Hens: A Meta-Analysis" Animals 13, no. 19: 3132. https://doi.org/10.3390/ani13193132
APA StyleByrne, L., Ross, S., Taylor-Pickard, J., & Murphy, R. (2023). The Effect of Organic Trace Mineral Supplementation in the Form of Proteinates on Performance and Sustainability Parameters in Laying Hens: A Meta-Analysis. Animals, 13(19), 3132. https://doi.org/10.3390/ani13193132