Fatty Acid Profile, Volatile Organic Compound, and Physical Parameter Changes in Chicken Breast Meat Affected by Wooden Breast and White Striping Myopathies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Sample Collection
2.3. Physical Analysis
2.4. Chemical Analysis
2.4.1. Fatty Acid Content
2.4.2. Malondialdehyde (MDA)
2.4.3. Volatile Organic Compound (VOC) Profile
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forecast Volume of Poultry Meat Consumed in the European Union (EU-27) from 2015 to 2031*. Available online: https://www.statista.com/statistics/545577/poultry-meat-consumption-volume-european-union-28/#statisticContainer (accessed on 3 July 2023).
- Rajcic, A.; Baltic, M.Z.; Lazic, I.B.; Starcevic, M.; Baltic, B.M.; Vucicevic, I.; Nesic, S. Intensive genetic selection and meat quality concerns in the modern broiler industry. In Proceedings of the 61st International Meat Industry Conference, Zlatibor, Serbia, 26–29 September 2021. [Google Scholar] [CrossRef]
- Cavani, C.; Petracci, M.; Trocino, A.; Xiccato, G. Advances in research on poultry and rabbit meat quality. Ital. J. Anim. Sci. 2009, 8, 741–750. [Google Scholar] [CrossRef]
- Petracci, M.; Cavani, C. Muscle Growth and Poultry Meat Quality Issues. Nutrients 2012, 4, 1–12. [Google Scholar] [CrossRef]
- Sihvo, H.-K.; Immonen, K.; Puolanne, E. Myodegeneration with Fibrosis and Regeneration in the Pectoralis Major Muscle of Broilers. Vet. Pathol. 2014, 51, 619–623. [Google Scholar] [CrossRef]
- Sihvo, H.-K.; Lindén, J.; Airas, N.; Immonen, K.; Valaja, J.; Puolanne, E. Wooden Breast Myodegeneration of Pectoralis Major Muscle Over the Growth Period in Broilers. Vet. Pathol. 2017, 54, 119–128. [Google Scholar] [CrossRef]
- Kuttappan, V.A.; Hargis, B.M.; Owens, C.M. White striping and woody breast myopathies in the modern poultry industry: A review. Poult. Sci. 2016, 95, 2724–2733. [Google Scholar] [CrossRef]
- Petracci, M.; Soglia, F.; Madruga, M.; Carvalho, L.; Ida, E.; Estévez, M. Wooden-Breast, White Striping, and Spaghetti Meat: Causes, Consequences and Consumer Perception of Emerging Broiler Meat Abnormalities. Compr. Rev. Food Sci. Food Saf. 2019, 18, 565–583. [Google Scholar] [CrossRef]
- Velleman, S.G.; Anderson, J.W.; Coy, C.S.; Nestor, K.E. Effect of selection for growth rate on muscle damage during turkey breast muscle development. Poult. Sci. 2003, 82, 1069–1074. [Google Scholar] [CrossRef]
- Velleman, S.G. Relationship of Skeletal Muscle Development and Growth to Breast Muscle Myopathies: A Review. Avian Dis. 2015, 59, 525–531. [Google Scholar] [CrossRef]
- Hoving-Bolink, A.H.; Kranen, R.W.; Klont, R.E.; Gerritsen, C.L.M.; de Greef, K.H. Fibre area and capillary supply in broiler breast muscle in relation to productivity and ascites. Meat Sci. 2000, 56, 397–402. [Google Scholar] [CrossRef]
- Sihvo, H.-K.; Airas, N.; Lindén, J.; Puolanne, E. Pectoral Vessel Density and Early Ultrastructural Changes in Broiler Chicken Wooden Breast Myopathy. J. Comp. Pathol. 2018, 161, 1–10. [Google Scholar] [CrossRef]
- Clanton, T.L. Hypoxia-induced reactive oxygen species formation in skeletal muscle. J. Appl. Physiol. 2007, 102, 2379–2388. [Google Scholar] [CrossRef] [PubMed]
- Gandemer, G. Lipids in muscles and adipose tissues, changes during processing and sensory properties of meat products. Meat Sci. 2002, 62, 309–321. [Google Scholar] [CrossRef]
- Elmore, J.S.; Mottram, D.S.; Enser, M.; Wood, J.D. Effect of the Polyunsaturated Fatty Acid Composition of Beef Muscle on the Profile of Aroma Volatiles. J. Agric. Food Chem. 1999, 47, 1619–1625. [Google Scholar] [CrossRef] [PubMed]
- Hybertson, B.M.; Gao, B.; Bose, S.K.; McCord, J.M. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Mol. Asp. Med. 2011, 32, 234–246. [Google Scholar] [CrossRef]
- Halliwell, B.; Chirico, S.; Crawford, M.A.; Bjerve, K.S.; Gey, K.F. Lipid peroxidation: Its mechanism, measurement, and significance. Am. J. Clin. Nutr. 1993, 57, 715S–724S. [Google Scholar]
- Gardner, H.W. Oxygen radical chemistry of polyunsaturated fatty acids. Free Radic. Biol. Med. 1989, 7, 65–86. [Google Scholar] [CrossRef]
- Spiteller, P.; Kern, W.; Reiner, J.; Spiteller, G. Aldehydic lipid peroxidation products derived from linoleic acid. Biochim. Biophys. Acta 2001, 1531, 188–208. [Google Scholar]
- Barrera, G.; Pizzimenti, S.; Dianzani, M.U. Lipid peroxidation: Control of cell proliferation, cell differentiation and cell death. Mol. Asp. Med. 2008, 29, 1–8. [Google Scholar] [CrossRef]
- Starowicz, M. Analysis of Volatiles in Food Products. Separations 2021, 8, 157. [Google Scholar] [CrossRef]
- Braxton, D.; Dauchel, C.; Brown, W.E. Association between chewing efficiency and mastication patterns for meat, and influence on tenderness perception. Food Qual. Prefer. 1996, 7, 217–223. [Google Scholar] [CrossRef]
- Lyon, C.E.; Wilson, R.L. Effects of Sex, Rigor Condition, and Heating Method on Yield and Objective Texture of Broiler Breast Meat. Poult. Sci. 1986, 65, 907–914. [Google Scholar] [CrossRef]
- Northcutt, J.K.; Buhr, R.J.; Young, L.L.; Lyon, C.E.; Ware, G.O. Influence of Age and Postchill Carcass Aging Duration on Chicken Breast Fillet Quality. Poult. Sci. 2001, 80, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Poole, G.H.; Lyon, C.E.; Buhr, R.J.; Young, L.L.; Alley, A.; Hess, J.B.; Bilgili, S.F.; Northcutt, J.K. Evaluation of Age, Gender, Strain, and Diet on the Cooked Yield and Shear Values of Broiler Breast Fillets. J. Appl. Poult. Res. 1999, 8, 170–176. [Google Scholar] [CrossRef]
- Petracci, M.; Mudalal, S.; Soglia, F.; Cavani, C. Meat quality in fast-growing broiler chickens. World’s Poult. Sci. J. 2015, 71, 363–374. [Google Scholar] [CrossRef]
- Assunção, A.S.d.A.; Garcia, R.G.; Komiyama, C.M.; Gandra, É.R.d.S.; de Souza, J.R.; dos Santos, W.; Caldara, F.R.; Martins, R.A. Wooden breast myopathy on broiler breast fillets affects quality and consumer preference. Trop. Anim. Health Prod. 2020, 52, 3555–3565. [Google Scholar] [CrossRef]
- Tasoniero, G.; Cullere, M.; Cecchinato, M.; Puolanne, E.; Dalle Zotte, A. Technological quality, mineral profile, and sensory attributes of broiler chicken breasts affected by White Striping and Wooden Breast myopathies. Poult. Sci. 2016, 95, 2707–2714. [Google Scholar] [CrossRef]
- Zotte, A.D.; Tasoniero, G.; Puolanne, E.; Remignon, H.; Cecchinato, M.; Catelli, E.; Cullere, M. Effect of “Wooden Breast” appearance on poultry meat quality, histological traits, and lesions characterization. Czech J. Anim. Sci. 2017, 62, 51–57. [Google Scholar] [CrossRef]
- Marçal, J.O.; Oliveira, G.P.; Rubim, F.M.; Correa, L.F.; dos Santos, D.B.; Assis, L.G.A.; Geraldo, A.; Faria, P.B.; Lima, L.M.Z. The volatile compound profile in the meat of chickens raised in a free-range system varies with sexual maturity. Food Chem. Adv. 2022, 1, 100098. [Google Scholar] [CrossRef]
- Mancinelli, A.C.; Silletti, E.; Mattioli, S.; Bosco, A.D.; Sebastiani, B.; Menchetti, L.; Koot, A.; van Ruth, S.; Castellini, C. Fatty acid profile, oxidative status, and content of volatile organic compounds in raw and cooked meat of different chicken strains. Poult. Sci. 2021, 100, 1273–1282. [Google Scholar] [CrossRef]
- Kuttappan, V.A.; Lee, Y.S.; Erf, G.F.; Meullenet, J.F.; McKee, S.R.; Owens, C.M. Consumer acceptance of visual appearance of broiler breast meat with varying degrees of white striping. Poult. Sci. 2012, 91, 1240–1247. [Google Scholar] [CrossRef]
- Rozanski, S.; Vivian, D.R.; Kowalski, L.H.; Prado, O.R.; Fernandes, S.R.; de Souza, J.C.; Freitas, J.A. Carcass and meat traits, and non-carcass components of lambs fed ration containing increasing levels of urea. Ciencias Agrarias 2017, 38, 1577–1594. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; AOAC International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Klupsaite, D.; Buckiuniene, V.; Sidlauskiene, S.; Lele, V.; Sakiene, V.; Zavistanaviciute, P.; Klementaviciute, J.; Viskontaite, E.; Bartkiene, E. Comparison studies of the chemical, physical, technological, and microbiological characteristics of the European roe deer, boar, red deer, and beaver hunted wild game meat. Anim. Sci. J. 2020, 91, e13346. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Palacios, T.; Ruiz, J.; Ferreira, I.; Petisca, C.; Antequera, T. Effect of solvent to sample ratio on total lipid extracted and fatty acid composition in meat products within different fat content. Meat Sci. 2012, 91, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.; Cardoso, C.; Pestana, C. Measurement of malondialdehyde in fish: A comparison study between HPLC methods and the traditional spectrophotometric test. Food Chem. 2009, 112, 1038–1045. [Google Scholar] [CrossRef]
- Moura, J.W.F.; Medeiros, F.M.; Alves, M.G.M.; Batista, A.S.M. Fatores Influenciadores na Qualidade da Carne Suína. Rev. Científica De Produção Anim. 2015, 17, 18–29. [Google Scholar] [CrossRef]
- Why Oxidative Stress Matters for Poultry Meat Quality. Available online: https://www.zinpro.com/resource-center/blog/why-oxidative-stress-matters-for-poultry-meat-quality/ (accessed on 6 July 2023).
- Wang, C.; Che, S.; Susta, L.; Barbut, S. Textural and physical properties of breast fillets with myopathies (wooden breast, white striping, spaghetti meat) in Canadian fast-growing broiler chickens. Poult. Sci. 2023, 102, 102309. [Google Scholar] [CrossRef]
- Dalgaard, L.B.; Rasmussen, M.K.; Bertram, H.C.; Jensen, J.A.; Møller, H.S.; Aaslyng, M.D.; Hejbøl, E.K.; Pedersen, J.R.; Elsser-Gravesen, D.; Young, J.F. Classification of wooden breast myopathy in chicken pectoralis major by a standardised method and association with conventional quality assessments. Int. J. Food Sci. Technol. 2018, 53, 1744–1752. [Google Scholar] [CrossRef]
- Alnahhas, N.; Berri, C.; Chabault, M.; Chartrin, P.; Boulay, M.; Bourin, M.C.; Bihan-Duval, L. Genetic parameters of white striping in relation to body weight, carcass composition, and meat quality traits in two broiler lines divergently selected for the ultimate pH of the pectoralis major muscle. BMC Genet. 2016, 17, 1–9. [Google Scholar] [CrossRef]
- Clark, D.L.; Velleman, S.G. Physiology and reproduction: Spatial influence on breast muscle morphological structure, myofiber size, and gene expression associated with the wooden breast myopathy in broilers. Poult. Sci. 2017, 95, 2930–2945. [Google Scholar] [CrossRef]
- Kawasaki, T.; Iwasaki, T.; Yamada, M.; Yoshida, T.; Watanabe, T. Rapid growth rate results in remarkably hardened breast in broilers during the middle stage of rearing: A biochemical and histopathological study. PLoS ONE 2018, 13, e0193307. [Google Scholar] [CrossRef]
- Liu, R.; Kong, F.; Xing, S.; He, Z.; Bai, L.; Sun, J.; Tan, X.; Zhao, D.; Zhao, G.; Wen, J. Dominant changes in the breast muscle lipid profiles of broiler chickens with wooden breast syndrome revealed by lipidomics analyses. J. Anim. Sci. Biotechnol. 2022, 13, 93. [Google Scholar] [CrossRef]
- Soglia, F.; Laghi, L.; Canonico, L.; Cavani, C.; Petracci, M. Functional property issues in broiler breast meat related to emerging muscle abnormalities. Food Res. Int. 2016, 89, 1071–1076. [Google Scholar] [CrossRef]
- Oliveira, R.F.; Mello, J.L.M.; Ferrari, F.B.; Cavalcanti, E.N.F.; Souza, R.A.; Pereira, M.R.; Giampietro-Ganeco, A.; Villegas-Cayllahua, E.A.; Fidelis, H.A.; Fávero, M.S.; et al. Physical, Chemical and Histological Characterization of Pectoralis major Muscle of Broilers Affected by Wooden Breast Myopathy. Animals 2021, 11, 596. [Google Scholar] [CrossRef] [PubMed]
- Flores, M. Chapter 13—The Eating Quality of Meat: III—Flavor. In Lawrie’s Meat Science, 8th ed.; Toldrá, F., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 383–417. [Google Scholar]
- Madruga, M.S.; Elmore, J.S.; Oruna-Concha, M.J.; Balagiannis, D.; Mottram, D.S. Determination of some water-soluble aroma precursors in goat meat and their enrolment on flavour profile of goat meat. Food Chem. 2010, 123, 513–520. [Google Scholar] [CrossRef]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Varavinit, S.; Shobsngob, S.; Bhidyachakorawat, M.; Suphantharika, M. Production of meat-like flavor. Sci. Asia 2000, 26, 219–224. [Google Scholar] [CrossRef]
- Calenic, B.; Miricescu, D.; Greabu, M.; Kuznetsov, A.V.; Troppmair, J.; Ruzsanyi, V.; Amann, A. Oxidative stress and volatile organic compounds: Interplay in pulmonary, cardio-vascular, digestive tract systems and cancer. Open Chem. 2015, 13, 000010151520150105. [Google Scholar] [CrossRef]
- Baron, C.P.; Andersen, H.J. Myoglobin-Induced Lipid Oxidation. A Review. J. Agric. Food Chem. 2002, 50, 3887–3897. [Google Scholar] [CrossRef]
- Carvalho, L.T.; Lorenzo, J.M.; de Carvalho, F.A.L.; Bellucci, E.R.B.; Trindade, M.A.; Domínguez, R. Use of Turkey Meat Affected by White Striping Myopathy for the Development of Low-Fat Cooked Sausage Enriched with Chitosan. Foods 2020, 9, 1866. [Google Scholar] [CrossRef]
- Filho, D.V.C.; da Rocha, T.C.; Carvalho, J.M.; Carvalho, L.M.; Galvão, M.S.; Pedrao, M.R.; Estévez, M.; Madruga, M.S. Oxidative stability of white striping chicken breasts: Effect of cold storage and heat treatments. Poult. Sci. 2023, 102, 102826. [Google Scholar] [CrossRef]
- Shahidi, F.; Pegg, R.B. Hexanal as an indicator of the flavor deterioration of Meat and Meat Products. Lipids Food Flavors 1994, 1, 256–279. [Google Scholar] [CrossRef]
- Mutwakil; Dave, D.; Ghaly, A.E. Meat Spoilage Mechanisms and Preservation Techniques: A Critical Review. Am. J. Agric. Biol. Sci. 2011, 6, 486–510. [Google Scholar] [CrossRef]
- Fernández, J.; Pérez-Álvarez, J.A.; Fernández-López, J.A. Thiobarbituric acid test for monitoring lipid oxidation in meat. Food Chem. 1997, 59, 345–353. [Google Scholar] [CrossRef]
- Min, B.; Ahn, D.U. Mechanism of lipid peroxidation in meat and meat products: A review. Food Sci. Biotechnol. 2005, 14, 152–163. [Google Scholar]
- Resconi, V.C.; Escudero, A.; Campo, M.M. The Development of Aromas in Ruminant Meat. Molecules 2013, 18, 6748–6781. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Peña, C.M.; Luna, G.; García-González, D.L.; Aparicio, R. Characterization of French and Spanish dry-cured hams: Influence of the volatiles from the muscles and the subcutaneous fat quantified by SPME-GC. Meat Sci. 2005, 69, 635–645. [Google Scholar] [CrossRef]
- Kosowska, M.; Majcher, M.A.; Fortuna, T. Volatile compounds in meat and meat products. Food Sci. Technol. 2017, 37, 1–7. [Google Scholar] [CrossRef]
Variables | Severity of Myopathies | p-Value | ||
---|---|---|---|---|
Normal a (n = 6) | Mild b (n = 6) | Severe c (n = 6) | ||
pH | 6.05 ± 0.11 | 6.04 ± 0.16 | 6.03 ± 0.11 | 0.942 |
Dry matter content, % | 26.38 ± 0.74 c | 26.14 ± 0.56 c | 24.76 ± 0.88 a,b | 0.004 |
Drip loss, % | 2.85 ± 0.82 c | 3.63 ± 0.59 | 4.42 ± 0.44 a | 0.003 |
Water-holding capacity, % | 65.21 ± 1.67 | 65.66 ± 1.59 | 64.45 ± 1.99 | 0.498 |
Cooking loss, % | 12.47 ± 1.29 c | 15.17 ± 2.95 c | 21.00 ± 1.57 a,b | <0.001 |
Shear force, kg/cm2 | 1.64 ± 0.32 | 1.48 ± 0.34 | 1.49 ± 0.50 | 0.731 |
Variables | Severity of Myopathies | p-Value | ||
---|---|---|---|---|
Normal a (n = 6) | Mild b (n = 6) | Severe c (n = 6) | ||
Lightness, NBS | 51.22 ± 5.75 | 52.97 ± 3.19 | 52.45 ± 2.77 | 0.755 |
Redness, NBS | 11.61 ± 1.13 | 10.05 ± 1.26 | 10.81 ± 1.69 | 0.180 |
Yellowness, NBS | 8.61 ± 1.75 b,c | 11.00 ± 0.55 a | 10.34 ± 0.77 a | 0.008 |
Fatty Acid | Nomenclature | Severity of Myopathies | p-Value | ||
---|---|---|---|---|---|
Normal a (n = 6) | Mild b (n = 6) | Severe c (n = 6) | |||
Myristic acid | C14:0 | 0.04 ± 0.01 c | 0.20 ± 0.14 | 0.26 ± 0.13 a | 0.011 |
Palmitic acid | C16:0 | 19.91 ± 1.02 | 19.82 ± 0.56 | 20.15 ± 1.28 | 0.838 |
Stearic acid | C18:0 | 9.04 ± 0.76 b,c | 7.59 ± 0.98 a | 7.43 ± 1.12 a | 0.020 |
SFA | 28.99 ± 1.65 | 27.61 ± 1.35 | 27.84 ± 1.84 | 0.316 | |
Palmitoleic acid | C16:1 | 2.46 ± 0.40 b | 3.21 ± 0.49 a | 2.82 ± 0.48 | 0.040 |
Oleic acid | C18:1 | 30.84 ± 0.67 c | 32.05 ± 0.77 | 32.30 ± 1.04 a | 0.020 |
Gondoic acid | C20:1 ω9 | 0.45 ± 0.12 | 0.34 ± 0.06 | 0.36 ± 0.03 | 0.073 |
MUFA | 33.76 ± 0.92 b,c | 35.60 ± 1.14 a | 35.48 ± 1.27 a | 0.020 | |
Linoleic acid | C18:2 ω6 | 34.00 ± 1.50 | 34.09 ± 1.36 | 33.94 ± 1.60 | 0.984 |
γ-Linolenic | C18:2 ω6 | 0.04 ± 0.02 | 0.05 ± 0.03 | 0.07 ± 0.03 | 0.165 |
α-Linolenic acid | C18:3 α ω3 | 2.50 ± 0.53 | 2.01 ± 0.21 | 2.03 ± 0.23 | 0.055 |
Eicosadienoic acid | C20:2 ω6 | 0.35 ± 0.08 | 0.31 ± 0.06 | 0.29 ± 0.11 | 0.424 |
Arachidonic acid | C20:4 ω6 | 0.36 ± 0.11 | 0.32 ± 0.10 | 0.35 ± 0.12 | 0.807 |
PUFA | 37.26 ± 1.79 | 36.79 ± 1.48 | 36.68 ± 1.54 | 0.807 | |
Omega 6 | 34.76 ± 1.54 | 34.78 ± 1.37 | 34.64 ± 1.55 | 0.986 | |
Omega 3 | 2.50 ± 0.53 | 2.01 ± 0.21 | 2.03 ± 0.23 | 0.055 |
Volatile Compounds | Severity of Myopathies | p-Value | ||
---|---|---|---|---|
Normal a (n = 6) | Mild b (n = 6) | Severe c (n = 6) | ||
Aldehydes | ||||
Hexanal | 27.58 ± 5.26 b,c | 34.81 ± 2.69 a | 36.89 ± 2.95 a | 0.002 |
Heptanal | 0.67 ± 0.88 | 1.09 ± 1.05 | 0.99 ± 0.74 | 0.706 |
Octanal | 5.38 ± 2.87 | 5.85 ± 0.80 | 5.16 ± 0.59 | 0.789 |
Nonanal | 13.62 ± 4.07 | 13.43 ± 2.63 | 13.59 ± 1.84 | 0.993 |
2-Octenal | 0.15 ± 0.38 c | 0.69 ± 0.81 | 1.45 ± 0.11 a | 0.002 |
Decanal | nd | 0.36 ± 0.87 | 0.90 ± 1.03 | 0.163 |
Benzaldehyde | 19.93 ± 12.64 c | 11.67 ± 5.52 | 6.25 ± 2.93 a | 0.033 |
2-Decenal | 0.13 ± 0.33 c | 0.27 ± 0.66 c | 1.03 ± 0.24 a,b | 0.007 |
2,4-Dodecadienal | nd | nd | 0.25 ± 0.39 | 0.117 |
2-Dodecenal | 0.10 ± 0.25 | nd c | 0.45 ± 0.38 b | 0.023 |
Alcohols | ||||
1-Pentanol | 2.97 ± 1.11 | 3.07 ± 0.44 | 3.33 ± 0.31 | 0.677 |
1-Hexanol | 0.27 ± 0.42 | 0.46 ± 0.50 | 1.03 ± 0.60 | 0.053 |
1-Octen-3-ol | 9.51 ± 7.44 | 14.18 ± 1.18 | 14.98 ± 1.35 | 0.101 |
1-Heptanol | 3.26 ± 1.00 | 2.90 ± 0.33 | 3.19 ± 0.32 | 0.605 |
2-Ethyl-1-hexanol | 2.36 ± 1.70 c | 1.32 ± 0.51 | 0.54 ± 0.34 a | 0.027 |
1-Octanol | 6.70 ± 2.74 | 5.02 ± 0.76 | 4.87 ± 0.35 | 0.137 |
2-Octen-1-ol | 1.09 ± 0.87 c | 1.70 ± 0.63 | 2.41 ± 0.47 a | 0.015 |
Benzyl-alcohol | 5.19 ± 3.54 | 2.81 ± 1.60 | 1.78 ± 1.21 | 0.065 |
Esters | ||||
n-Caproic acid vinyl ester | 0.77 ± 1.89 | nd | 0.40 ± 0.98 | 0.565 |
Allyyl-2-ethylbutyrate | 0.09 ± 0.13 b,c | 0.38 ± 0.20 a | 0.39 ± 0.08 a | 0.003 |
Furans | ||||
2-Pentylfuran | 0.12 ± 0.29 | nd | nd | 0.391 |
Others | ||||
1-Tetradecyne | 0.12 ± 0.29 | nd | 0.13 ± 0.33 | 0.614 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebednikaitė, E.; Klupšaitė, D.; Bartkienė, E.; Klementavičiūtė, J.; Mockus, E.; Anskienė, L.; Balčiauskienė, Ž.; Pockevičius, A. Fatty Acid Profile, Volatile Organic Compound, and Physical Parameter Changes in Chicken Breast Meat Affected by Wooden Breast and White Striping Myopathies. Animals 2023, 13, 3136. https://doi.org/10.3390/ani13193136
Lebednikaitė E, Klupšaitė D, Bartkienė E, Klementavičiūtė J, Mockus E, Anskienė L, Balčiauskienė Ž, Pockevičius A. Fatty Acid Profile, Volatile Organic Compound, and Physical Parameter Changes in Chicken Breast Meat Affected by Wooden Breast and White Striping Myopathies. Animals. 2023; 13(19):3136. https://doi.org/10.3390/ani13193136
Chicago/Turabian StyleLebednikaitė, Eglė, Dovilė Klupšaitė, Elena Bartkienė, Jolita Klementavičiūtė, Ernestas Mockus, Lina Anskienė, Žana Balčiauskienė, and Alius Pockevičius. 2023. "Fatty Acid Profile, Volatile Organic Compound, and Physical Parameter Changes in Chicken Breast Meat Affected by Wooden Breast and White Striping Myopathies" Animals 13, no. 19: 3136. https://doi.org/10.3390/ani13193136
APA StyleLebednikaitė, E., Klupšaitė, D., Bartkienė, E., Klementavičiūtė, J., Mockus, E., Anskienė, L., Balčiauskienė, Ž., & Pockevičius, A. (2023). Fatty Acid Profile, Volatile Organic Compound, and Physical Parameter Changes in Chicken Breast Meat Affected by Wooden Breast and White Striping Myopathies. Animals, 13(19), 3136. https://doi.org/10.3390/ani13193136